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Abstract
With the growth of computing power neural
machine translation (NMT) models also grow
accordingly and become better. However, they
also become harder to deploy on edge devices
due to memory constraints. To cope with
this problem, a common practice is to distill
knowledge from a large and accurately-trained
teacher network (T ) into a compact student
network (S). Although knowledge distillation
(KD) is useful in most cases, our study shows
that existing KD techniques might not be suit-
able enough for deep NMT engines, so we pro-
pose a novel alternative. In our model, be-
sides matching T and S predictions we have a
combinatorial mechanism to inject layer-level
supervision from T to S. In this paper, we
target low-resource settings and evaluate our
translation engines for Portuguese→English,
Turkish→English, and English→German di-
rections. Students trained using our technique
have 50% fewer parameters and can still de-
liver comparable results to those of 12-layer
teachers.

1 Introduction

Almost in all deep learning tasks, including neural
machine translation (NMT), an ensemble of mod-
els outperforms a single model. In fact, ensemble
modelling (training multiple models and ensem-
ble decoding) is supported by most publicly avail-
able NMT frameworks (Klein et al., 2017; Junczys-
Dowmunt et al., 2018; Vaswani et al., 2018; Ott
et al., 2019). However, we know that dealing with
multiple models could be challenging, especially in
deep learning scenarios. To tackle the issue, one ef-
fective solution is to compress the knowledge in an
ensemble into a single model through distillation
(Buciluǎ et al., 2006; Hinton et al., 2015).

The core part of any knowledge distillation (KD)
pipeline is a component that matches different mod-
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els’ predictions, which is usually implemented via
multiple cost functions (see Section 2). Further-
more, we also need to take care of the architecture
mismatch that may exist between student (S) and
teacher (T ) models. In KD, these two models can
have different architectures (Jiao et al., 2019; Sun
et al., 2019) and the motivation is to be able to
compress a large teacher into a smaller student.

This research focuses on the aforementioned is-
sue. If we distill from intermediate layers of a
teacher that has more layers than its student, we
have to select a subset of T layers and skip others
as there are no peers for all of them on the S side.
Clearly, we do not benefit from the skipped layers
in this scenario. This type of KD introduces a prob-
lem of finding an optimal subset of T layers (to
distill from). Although this might, to some extent,
be mitigated via a search mechanism, our experi-
mental results show that the problem is severe in
NMT and each layer plays a unique role. Therefore,
we prefer to keep all layers rather than skip them.

KD has recently become popular in NMT but,
to the best of our knowledge, all NMT models
(Kim and Rush, 2016; Tan et al., 2019) are still
trained using the original idea of KD (Hinton et al.,
2015), which is referred to as Regular KD (RKD)
throughout this paper. RKD only matches S and
T outputs, regardless of their internal architecture.
However, there exist techniques such as Patient KD
(PKD) (Sun et al., 2019) proposed for other tasks
that not only match final predictions but also focus
on internal components and distill their information
too (Sun et al., 2020). In this research, we borrowed
those ideas and adapted them to NMT. This is the
first contribution of the paper.

PKD and other similar models suffer from the
skip problem, which happens when T has more lay-
ers than S and some T layers have to be skipped in
order to carry out layer-to-layer distillation. In this
paper, we propose a model to distill from all teacher
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layers so we do not have to skip any of them. This
is our second contribution by which we are able to
outperform PKD. Moreover, for the first time we
report experimental results for Transformer-based
(Vaswani et al., 2017) models trained with a layer-
level KD technique in the context of NMT. This set
of results is our third and last contribution in this
paper.

The remainder of the paper is organized as fol-
lows: In Section 2 we explain the fundamentals of
KD. Section 3 discusses the methodology. We de-
scribe the advantages of our model and accompany
our claims with experimental results in Section 4.
Finally, in Section 5, we conclude the paper with
our future plan.

2 Background

Usually, in multi-class classification scenarios the
training criterion is to minimize the negative log-
likelihood of samples, as shown in Equation 1:

L(θ) = −
|V |∑
v=1

1(y = v)× log p(y = v|x; θ) (1)

where 1(.) is an indicator function, (x, y) is an
input-output training tuple, and θ and |V | are the
parameter set of the model and the number of
classes, respectively. There is no feedback returned
from the network for misclassified examples as
1(y 6= v) = 0. This issue is resolved in KD with
extending L with an additive term (Kim and Rush,
2016; Tan et al., 2019), as shown in Equation 2:

LKD(θT , θS) =

−
|V |∑
v=1

q(y = v|x; θT )× log p(y = v|x; θS) (2)

where there is a student model with the parame-
ter set θS whose predictions are penalized with
its own loss as well as T predictions given by
q(y = v|x; θT ). In KD, the first component of the
loss (q) is usually referred to as the soft loss and the
S model’s loss is known as the hard loss. This form
of training provides richer feedback compared to
the previous one and leads to high(er)-quality re-
sults. KD for NMT also follows the same principle
where V is a target-language vocabulary set and
LKD is computed for each word during decoding.

With the matching strategy proposed in KD, S
learns to mimic its T . A teacher could be a deep

model trained on a large dataset but we do not nec-
essarily need to have the same complex architecture
for S. We can distill teacher’s knowledge into a
smaller model and replicate its results with fewer
resources.

Kim and Rush (2016) studied this problem and
proposed a sequence-level extension of Equation
2 for NMT models. They evaluated their idea on
recurrent, LSTM-based models (Hochreiter and
Schmidhuber, 1997) and could run the final model
on a cellphone. Freitag et al. (2017) extended the
original two-class idea (one S with one T ) to distill
from multiple teachers. They trained an attention-
based recurrent model (Bahdanau et al., 2015) for
their experiments.

Tan et al. (2019) proposed a setting to train a
multilingual Transformer for different language di-
rections. In order to have a high-quality multilin-
gual model they distill knowledge from separately
trained bilingual models. Their work is one of the
few papers that reports KD results for NMT on
Transformers. However, their results are not di-
rectly comparable to ours as they benefit from rich,
multilingual corpora.

Wei et al. (2019) introduced a pipeline where a
student model learns from different checkpoints.
At each validation step, if the current checkpoint is
a better model than the best existing checkpoint, S
learns from it, otherwise the best stored checkpoint
is considered as the teacher.

In all models discussed so far, i) S usually has
the same architecture as its teacher(s) but we know
that recent NMT models, particularly Transformers,
are deep models which makes them challenging to
run on edge devices. Moreover, ii) the training cri-
terion in the aforementioned models is to combine
final predictions. Transformers have new compo-
nents (e.g. self-attention) and multiple (sub-)layers
that consist of valuable information (Clark et al.,
2019) and we need more than an output-level com-
bination to efficiently distill for/from these models.
Therefore, a new technique that is capable of ad-
dressing i and ii is required.

Authors of PKD spotted the problem and fo-
cused on internal layers (Sun et al., 2019). They
studied the limitations of RKD for BERT (Devlin
et al., 2019) models and introduced a layer-to-layer
cost function. They select a subset of layers from
T whose values are compared to S layers. They
also showed that different internal components are
important and play critical roles in KD.
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The layer-level supervision idea was successful
for monolingual models but so far, no one has tried
it in the context of NMT. In this paper, we inves-
tigate if the same idea holds for bilingual models
or if NMT requires a different type of KD. More-
over, we address the skip problem in PKD (shown
in Figure 1). It seems in deep teacher models we
do not need to skip layers and we can distill from
all layers.

3 Methodology

In RKD, distillation only happens at the output level
whereas PKD introduces layer-wise supervision.
This idea is illustrated in Figure 1.

Figure 1: The network on the left-hand side is S and
the other one is T . In this example, T has 3 hidden
layers and KD for intermediate layers can be applied
using all layers or a subset of them, e.g. the second
layer can be skipped.

In PKD, finding a skippable layer is the main
challenge. Accordingly, we propose a combinato-
rial idea, CKD, by which we are able to fuse layers
and benefit from all information stored in all layers.
Our idea can be formulated as follows:

LCKD(Ls, Lt) =
∑
lis∈Ls

MSE(lis, f
i
t )

f it =F (l
j
t ); j ∈M(i)

(3)

where Ls and Lt indicate the set of all hidden
layers of S and T , respectively. MSE() is the
mean-square error function and lis is the i-th hid-
den layer of S. In PKD, f it is the teacher’s i-th
layer whereas in our case f it is the result of a fusion
applied through the function F () to a particular
subset of T layers. This subset is defined via a
mapper function M() which takes an index (point-
ing to a layer on the student side) and returns a set
of indices from the teacher model. Based on these
indices, teacher layers are combined and passed to
the distillation process, e.g. if M(2) = {1, 3} that
means F is fed by the first (l1t ) and third (l3t ) layers
of T and the distillation happens between l2s and
f2t (result of fusion).

For F (), a simple concatenation followed by a
linear projection provided the best results in our
experiments, so in the previous example:

f2t = F (l1t , l
3
t ) =W [l1t • l3t ]T + b

where • indicates concatenation, and W ∈ Rd×2d

and b ∈ Rd are learnable parameters of KD. All l1t ,
l3t , l2s , and f2t are d-dimensional vectors.

The mapper function M() defines our combina-
tion strategy for which we have 4 different varia-
tions of regular combination (RC), overlap com-
bination (OC), skip combination (SC), and cross
combination (CC). Figure 2 visualizes these vari-
ations. As the figure shows, PKD is a particular
case of our model, but CKD gives us more flexi-
bility in terms of distilling from different teacher
configurations.

Figure 2: Different variations of CKD. T has 5 and S
has 2 hidden layers. For the CC caseM(1) = {1, 3, 5}.

4 Experimental Study

Although our proposed model is a general KD
technique and can be applied in different settings,
we narrow down the scope of this paper to low-
resource, NMT settings. The incentive idea behind
our project was to train NMT models for small
datasets, so we report experimental results accord-
ingly.

To evaluate CKD, we trained multiple models
to translate from English (En) into German (De),
and from Portuguese (Pt) and Turkish (Tr) into En-
glish (En). For the Pt|Tr→En directions we use
the IWSLT-2014 dataset, and the En→De exper-
iment uses the WMT-2014 dataset.

In Pt→En, we use the original split of datasets
from IWSLT1 with 167K, 7590, and 5388 sen-
tences for training, development, and test sets, re-
spectively. For Tr→En, the split is 142K, 1958,

1https://wit3.fbk.eu/

https://wit3.fbk.eu/
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Models Pt→En Tr→En En→De1 En→De2

B
as

el
in

es Teacher 43.69 26.44 18.57 27.03
No-KD 42.12 24.60 17.04 16.09
Regular KD 42.26 25.16 17.66 16.99
PKD 42.27 26.88 17.84 21.06

C
K

D
(O

ur
s) Regular Comb. (RC) 43.43 26.75 18.29 21.15

Overlap Comb. (OC) 43.78 26.52 18.44 21.26
Skip Comb. (SC) 43.17 26.37 17.81 21.47
Cross Comb. (CC) 42.57 27.09 18.60 21.13

Table 1: BLEU score comparisons of different KD models. No-KD is a model trained with no KD techniques
using the the same architecture and dataset as students’.

and 1982 for training, development, and test sets.
With this dataset selection our T models’ results
are comparable to publicly reported results.2 On
these datasets, our teachers outperform all other
existing models so we can ensure that we distill
from reliable sources.

For En→De, the dataset is the same as the
original Transformer’s (Vaswani et al., 2017),
namely the training set includes 4.5M sentences,
newstest2013 is used as the validation set and
newstest2014 is our test set with 3000 and
3003 sentences, respectively. We selected this
dataset to be comparable to a well-known baseline
and make sure our training pipeline yields high-
quality engines.

We preprocess datasets with Sentence-Piece
(Kudo and Richardson, 2018). For Pt→En, we
extracted a shared vocabulary set for both source
and target sides with 32K subwords. Both S and
T are trained using the same training set. Tr→En
follows the same setting. For En→De, we conduct
two experiments. Since our focus in this paper is
to work with low-resource settings, in En→De1, S
and T are trained on a dataset of 200K sentences
randomly sampled from the main dataset (4.5M).3

For this experiment the vocabulary set size is 15K.
In En→De2, we slightly changed the setting where
we use the entire set of 4.5M sentences to train
T but S still uses the same 200K dataset. In this
scenario, we assumed that there already exists a
high-quality teacher trained on a large dataset but
we only have a small in-house dataset to train the
student. For this experiment the vocabulary size is
37K.

2http://cs.jhu.edu/˜kevinduh/a/
multitarget-tedtalks/

3Our code and datasets: https://github.com/
yimeng0701/CKD_pytorch

Table 1 summarizes our results for all experi-
ments. Models are compared based on BLEU (Pa-
pineni et al., 2002) scores computed using sacre-
BLEU (Post, 2018). As the table shows, our stu-
dents outperform all other students trained with
different KD techniques. Moreover, students in
Pt|Tr→En and En→De1 settings are even com-
parable to accurately-trained, deep teachers. All
teachers are 12-layer Transformers (6 for encod-
ing and 6 for decoding), whereas students only
have 4 layers (2 encoder layers and 2 decoder lay-
ers). All settings in our experiments are identical to
those of Vaswani et al. (2017), which means hyper-
parameters whose values are not clearly declared
in this paper use the same values as the original
Transformer model.

CKD makes it possible to reduce the number of
parameters in our students by 50% and yet deliver
the same high-quality translations. Accordingly,
this enables us to run these translation engines on
edge devices. Table 2 shows the exact number of
parameters for each model.

Pt→En Tr→En En→De1 En→De2
T 61M 61M 52M 63M
S 31M 31M 22M 34M

Table 2: The exact number of parameters for different
models and settings.

For results reported in Table 1, cross-model layer
mappings between teacher and student layers are
as follow:

MSC(1) = {1, 2} MSC(2) = {5, 6}
MCC(1) = {1, 3} MCC(2) = {4, 6}
MRC(1) = {1, 2, 3} MRC(2) = {4, 5, 6}
MOC(1) = {1, 2, 3, 4} MOC(2) = {3, 4, 5, 6}

http://cs.jhu.edu/~kevinduh/a/multitarget-tedtalks/
http://cs.jhu.edu/~kevinduh/a/multitarget-tedtalks/
https://github.com/yimeng0701/CKD_pytorch
https://github.com/yimeng0701/CKD_pytorch
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We tried a simple (and somewhat arbitrary) config-
uration for layer connections and there is no sys-
tematic strategy behind it. However, better results
can be achieved with better heuristics or through a
search process. Moreover, as the mappings show
there is no connection between student and teacher
models’ decoder layers. In our experiments, we
noticed that any KD technique applied to the de-
coder considerably decreases performance, so we
only use KD on the encoder side. More specifically,
each student model has two decoder layers which
only receive inputs from the same model’s encoder
layers and they are not connected to the teacher
side.

To train students with different KD techniques
we use different loss functions. In T and No-KD
we only have a single loss function (L) as described
in the original Transformer model (Vaswani et al.,
2017). For models trained with RKD, an addi-
tional loss is involved to match teacher and stu-
dent predictions (LKD). The final loss in this case
is an interpolation of the aforementioned losses:(
(β × L) + (η × LKD)

)
. In our experiments,

β = (1− η) where η = 0.1 is obtained through a
search process over the set {0.1, 0.3, 0.5, 0.7, 0.9}.

For students trained using PKD and CKD, a third
loss is also used in addition to L and LKD. Similar
to other losses, the third one is also multiplied by
a weight value (λ) to incorporate its impact into
the training process. In this new setting, β = (1−
η − λ), η = 0.1, and λ = 0.7. The high value of λ
compared to other weights shows the importance of
intermediate KD for deep models. All these values
are learned through an empirical study in order to
minimize the final loss of translation engines.

4.1 How Powerful is CKD?

In order to study the behaviour of CKD, we de-
signed multiple, small experiments in addition to
those reported in Table 1. PKD proposes a solution
to define a loss between internal components of
teacher and student models. The original model im-
plemented this idea for intermediate layers. In one
of our experiments we extended PKD by adding an
extra loss function for self-attention components.
Therefore, this new extension compares final out-
puts of student and teacher models as well as their
intermediate layers and self-attention parameters.
In this experiment, BLEU for Pt→En increased
from 42.27 to 43.28, but our model is still supe-
rior with the BLEU score 43.78. For this setting,

CKD outperforms even a very complicated vari-
ation of PKD that could be an indication of our
model’s capacity in training high-quality students.
For Tr→En and En→De1 we also observed slight
improvements by matching teacher and student self-
attention components but results were not statisti-
cally significant and CKD was still better.

We also studied how CKD behaves in large ex-
perimental settings, for which we used En→De
and En→French (Fr) datastes with 4.5M and 36M
training samples, respectively, and trained 12-layer
teachers and 4-layer students. For this experiment,
we used the same settings, and test and develop-
ment sets suggested in Vaswani et al. (2017). Table
3 summarizes our results.4

T No-KD PKD RC OC
En→Fr 38.41 35.45 34.97 36.10 35.85
En→De 27.03 24.31 23.38 24.14 23.97

Table 3: BLEU scores of different KD models for large
datasets.

As the table shows, CKD is better than PKD in
large experimental settings too. However, in order
to have a better understanding of the large-dataset
scenario we need to explore more configurations.
We emphasize that for this paper our focus was to
work with small students and datasets.

5 Conclusion and Future Work

In this paper, we proposed a novel model to distill
from intermediate layers as well as final predic-
tions. Moreover, we addressed the skip problem
of PKD. We applied our technique in NMT and
showed its potential in training high-quality and
compact models. In our future work, i) we are in-
terested in distilling from deep NMT models into
extremely small students with CKD, in the hope
of achieving the same results of large models with
much smaller counterparts. ii) We also try to im-
prove the combination module and find a better
alternative than concatenation. iii) Finally, we plan
to evaluate CKD in other tasks such as language
modeling.
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