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Abstract

The Data-to-Text task aims to generate human-
readable text for describing some given struc-
tured data enabling more interpretability. How-
ever, the typical generation task is confined to
a few particular domains since it requires well-
aligned data which is difficult and expensive
to obtain. Using partially-aligned data is an
alternative way of solving the dataset scarcity
problem. This kind of data is much easier to
obtain since it can be produced automatically.
However, using this kind of data induces the
over-generation problem posing difficulties for
existing models, which tends to add unrelated
excerpts during the generation procedure. In
order to effectively utilize automatically an-
notated partially-aligned datasets, we extend
the traditional generation task to a refined task
called Partially-Aligned Data-to-Text Genera-
tion (PADTG) which is more practical since it
utilizes automatically annotated data for train-
ing and thus considerably expands the appli-
cation domains. To tackle this new task, we
propose a novel distant supervision generation
framework. It firstly estimates the input data’s
supportiveness for each target word with an
estimator and then applies a supportiveness
adaptor and a rebalanced beam search to har-
ness the over-generation problem in the train-
ing and generation phases respectively. We
also contribute a partially-aligned dataset ! by
sampling sentences from Wikipedia and auto-
matically extracting corresponding KB triples
for each sentence from Wikidata. The experi-
mental results show that our framework outper-
forms all baseline models as well as verify the
feasibility of utilizing partially-aligned data.

1 Introduction

The Data-to-Text generation task focuses on gener-
ating human-readable text corresponding to some
'The data and source code of this paper can be

obtained from https://github.com/fuzihaofzh/
distant_supervision_nlg

(Age of Empires, genre, strategy video game)

Train . -
< (Company of Heroes, genre, strategy video game) Training
Company of Heroes is a strategy video game developed in Canada|| Samples

Age of Empires is a strategy video game developed in Canada.

Figure 1: Illustration of the over-generation problem
in the partially-aligned data-to-text generation task. In
the training set, there is no KB triple corresponding to
the text “developed in Canada”. The model is likely
to bind the text to existing triples incorrectly. As a re-
sult, during the testing or operational stage, the model
is likely to overly generate this kind of excerpt for sim-
ilar triples.

given structured data. For example, given the
input knowledge base (KB) triple (Company of
Heroes, developer, Relic Entertainment), the aim is
to generate a text description such as “Company of
Heroes is developed by Relic Entertainment.”. In re-
cent years, many works have been proposed to give
impetus to the Data-to-Text generation task. For in-
stance, Gardent et al. (2017a; 2017b) proposed the
WebNLG task aiming at generating description text
of the given KB triples. Novikova et al. (2017) pro-
posed the E2E task aiming at generating restaurant
reviews according to the given restaurant attributes.
Lebret et al. (2016) proposed the WikiBio task in
which the biography of each person is generated
according to the given Wikipedia infobox.

These typical data-to-text generation tasks are
confined to a few particular domains since it re-
quires well-aligned data and text pairs which are
difficult and costly to obtain. Specifically, it is re-
quired that each input data provides exactly the
same information with the target text. This require-
ment makes the dataset difficult to build and con-
fines the task to particular domains where such
kind of data (WikiBio, E2E) or human-labeled data
(WebNLG) are available. Using partially-aligned
data is an alternative way of solving the dataset
scarcity problem. Partially-aligned data do not re-
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quire that each part in the text is exactly aligned
with a particular input KB triple. This kind of
data is much easier to obtain with automatic meth-
ods. Consequently, it can handle much broader
kinds of domains. However, it induces the over-
generation problem?. As shown in Fig. 1, some
parts (“developed in Canada”) in the generated text
for (Age of Empires, genre, strategy video game)
have not been mentioned in the input KB triple.
Essentially, it is because in the training set, such
unrelated text exists in some training samples. Dur-
ing the training, it misleads the model to bind the
text “developed in Canada’ to some irrelevant KB
triples. When similar triples exist in the testing, it
is prone to adding some over-generated text which
is actually unrelated to the given input data. Cur-
rent generation models fail to be trained on such
partially-aligned data due to lacking the tolerance
of the over-generation problem.

In order to effectively utilize automatically anno-
tated partially-aligned datasets for handling more
domains, we extend the traditional generation task
to a refined task called Partially-Aligned Data-to-
Text Generation (PADTG). Like the traditional task,
the PADTG task also requires generating text with
respect to the given input data. However, for the
training data, we only require that the given struc-
tured data contains partial information of the corre-
sponding text. This task is more practical since it
utilizes the partially-aligned data for training and
thus considerably expands the application domains.
However, due to such data’s nature, successfully
suppressing the over-generation problem is the crit-
ical point for proposing an effective model.

We propose a Distant Supervision Generation
(DSG) framework to tackle the PADTG task. Our
framework can deal with the challenging over-
generation problem when training on the partially-
aligned data. It firstly trains an estimator to calcu-
late each word’s supportiveness in the target sen-
tence with respect to the input data, i.e. how likely
the word is conveyed by the input triples. Then
the framework employs a sequence-to-sequence
(S82S) neural model to encode the input data and
generates the description sentence accordingly. In
the training procedure, a supportiveness adaptor
is used to adapt the estimated supportiveness into
the loss function while in the generation procedure,
a rebalanced beam search is used to generate text

Note that omission problem also happens in the Data-to-
Text generation task, but it is not a major problem.

augmented with the supportiveness scores.

To prepare the partially-aligned data, we build a
new dataset called WITA from text sources, namely,
Wikipedia and Wikidata. We propose a novel KB
extractor to extract KB triples given a piece of text
sampled from Wikipedia. The KB extractor firstly
detects named entities with an entity detector. The
triple retriever queries the Wikidata database to find
the most matching triples corresponding to these
entities. We filter the results with a matching score
to remove unextractable sentences.

Our contributions can be summarized as fol-
lows. (1) We propose a new task, namely, partially-
aligned Data-to-Text generation, which is more
practical and extensible to more domains. (2) We
propose a distant supervision generation framework
that can tackle the challenges of the new task in-
cluding the over-generation problem. (3) We con-
tribute a sizeable partially-aligned dataset suitable
for this task.

2 Method

2.1 Overview

Formally, we denote the input KB triples as K =
[(hi,71,t1), -, (An, Tn, tn)], Where h;, r;, t; rep-
resent the ith head, relation, and tail respectively
while n is the number of triples. The corresponding
text is denoted as 7' = [wy, - -+ , Wy, ], in Which w;
is the 7th word in 7" and m is the sentence length.
It should be noted that, in the task of Partially-
Aligned Data-to-Text Generation (PADTG), T con-
tains some information that K does not have. The
target of the task is to train a model that generates
text 7” that exactly describes the KB triples in K.
Our proposed Distant Supervision Genera-
tion (DSG) framework contains four compo-
nents, namely a Supportiveness Estimator (SE),
a Sequence-to-Sequence Generator (S2SG), a Sup-
portiveness Adaptor (SA), and a Rebalanced Beam
Search (RBS). As illustrated in Fig. 2, in the SE
training procedure, we first pre-train the SE com-
ponent to estimate a supportiveness vector s € R™
indicating whether each target word w; € T is
describing the input triples in K. It adopts the self-
supervised mechanism that trains the model to max-
imize the margin between the target words’ scores
and negative sampled words’ scores. Then, the
pre-trained SE component is utilized to estimate a
supportiveness vector s in both S2SG Training and
S2SG Generation. In the S2SG training procedure,
the S2SG model firstly calculates the generation
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Figure 2: Distant Supervision Generation Framework.

loss £. Then, SA combines ¢ with s to get a refined
loss in which the loss is diminished if one target
word has lower supportiveness. In the S2SG gener-
ation procedure, the RBS component combines s
with the probability distribution of candidate words
to obtain a better generation result.

2.2 Supportiveness Estimator

We concatenate the input KB triples word-by-
word as K/ = [wh, .- wl wl .o wt

K
wi ... w  KBSEP,w! fn 1 in
1> 9 t1]? 9 1 ‘tn‘ ’

which hj,r;,t; is the head, relation and tail en-
tity of the jth triple. w? 7 represents the ith word
in the jth KB triple’s head entity. |h;| stands for
the word count of the jth head entity. KBSEP is a
seperator between each triple.

Feature Extraction. In SE, a feature extraction
component fx is utilized to extract features for
each word denoted as Fx = fx(K’), in which
Fy € R¥xIK 'l is the extracted feature matrix for
K'. d is the embedding dimension and |K’| is the
length of K. Specifically, in the feature extraction
component, K’ is firstly embedded with an em-
bedding layer as K| = emb(K’), K; € R¥*IK'l
. Then K; is sent into a normalization layer (Ba
etal., 2016) as Ky = NL(K)), Ky € R&>IK'| NL
is defined as

V(z — E(z))

NL{z) = Var(z) + €

+ 5,

in which E and Var are mean and variance of
the input « while v and [ are learnable param-
eters. ¢ is a small constant which is usually set
to 1.0e — 5. K> is then sent into a combination
of linear feedforward layers and a ReL.U layer as
K3 = FWy(ReLU(FW{(K>))), K3 € R&IK'],
where FW4 and FW are linear feedforward layer
while ReLU stands for the ReLU layer. After-
wards, the features representation is calculated as

Fx = NL(K3). Similarly, the features for each
word in the target text is denoted as Frp = fp(7T),
Fr e Rdxm,

Supportiveness Vector. We calculate the sup-
porting matrix as M = FLFp, M € RIKxm i
which M; ; represents the supportiveness of the ith
word in K’ that support for the jth word in 7'. The
supportiveness score vector is aggregated from M

as
|K’|

= log Z exp(M,

where s; is the jth element of the vector s € R™
and it stands for input K’s supportiveness to the
jth word.

Negative Sampling. In order to prevent the
model from giving all words a high supportive-
ness score, we use the negative sampling method
to sample some negative sentences. We denote the
empirical distribution of the words in the target text
as Pr in which T is the set of all target sentences.
We sample words from Py while avoiding sam-
pling the same words in T. The sampling procedure
can be denoted as w; ~ Py, w; € T. The negative
sample is composed of ;s as T = [y, - - - , W),
where w; is the ith word in T which has the same
length as 7. The negative sample 7 will also be
fed to the network in the same way as the original
target T'. The supportiveness score vector for the
negative sample is denoted as § € R™.

Optimization Target. The overall loss function
consists of a margin loss, a word-consistent loss,
and a concentration loss. The margin loss is de-
fined as the margin between the supportiveness of
the original text and that of the negative sample,
which can be written as

m
0’ E o sZ
=1 =1

inwhich o(xz) = 1/(1+e") is a sigmoid function.
Minimizing £, helps maximize the gap between
the positive and the negative samples. The word-
consistent loss is used to make the supportiveness
from the same word in input KB larger than the
supportiveness from different words. It is defined
as

MS*

m | K| |K|
Lo=—> 3 U(T; = K})[M; ;—~log(} exp My ;)].
=1 j=1 k=1

It increases the supportiveness M;; if the ith word
in T and the jth word in K’ are the same word. The
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concentration loss is used to avoid one word in K’
supporting too many words in 7. It is denoted as

m
L.= max g M; ;.
Jj=1

If one word supports too many words, all its cor-
responding supportiveness will be penalized. The
overall loss function is denoted as the weighted
sum of these loss functions as

Lsg = Ly +wply +wele,
in which w,, and w, are tunable hyper-parameters.

2.3 Sequence-to-Sequence Generator

We use the Transformer (Vaswani et al., 2017)
structure as our S2S generator. The Transformer
is an attention-based structure and is widely used
in many tasks. It contains two major components,
namely an encoder and a decoder. All of these com-
ponents are built with several attention layers. The
encoder firstly takes K’ as input to generate the
feature representation: Gx = Enc(K’). The de-
coder takes shifted target text T (shift last EOS tag
to the beginning) as input and get the negative log-
likelihood for each word in T as ¢ = Dec(T", G ),
{ e ]R'T‘, where Dec is the transformer decoder and
|T| is the length of T'. We refer readers to Vaswani
et al. (2017) for more technical details.

2.4 Supportiveness Adaptor

The supportiveness Adaptor adapts the supportive-
ness score to S2SG’s output. We investigate three
methods, namely, Hard Adaptor, Soft Adaptor, and
Attention Adaptor.

Hard Adaptor. With the supportiveness scores,
we can simply remove words that have low support-
iveness. For each word w; in the target sentence
T, we use a uniform random number generator to
generate a random number r; € [0, 1]. we ignore
words in T if r; > s; and copy it into 7" other-
wise. Then, 7" is used instead of 7" in the training
procedure.

Soft Adaptor. Since the hard adaptor directly
removes words, it is easy to omit essential words
and make the model generating unreadable text.
We propose a soft adaptor to alleviate this issue.
We use the original target text 1" as input. For
the output negative log-likelihood loss vector ¢,
we combine it with the supportiveness vector s to

modify the S2SG’s loss as

Lsasc =Y _ lisi.

=1

Attention Adaptor. Instead of using SE to esti-
mate the supportiveness vector, attention adaptor
directly aggregates the attention matrix as the sup-
portiveness scores in our proposed DSG model. For
each target word, it takes its max attention weight
on each source word as the supportiveness score.
We use maximization to aggregate the scores in-
stead of considering all scores because all attention
weights sum up to 1, and thus irrelevant words can
also be assigned some attention. Using maximiza-
tion aggregation avoids such irrelevant words. The
supportiveness scores are then utilized in a similar
way as the soft adaptor.

2.5 Rebalanced Beam Search

In the generation step, the supportiveness scores
can also be utilized to help rebalance the final word
probability distribution. We make a pseudo target
sequence as T, = [1,2,--- ,|V|] which contains
all words in vocabulary V. The supportiveness
score s, € RIVI for all words is calculated as the
same procedure in training. In the traditional beam
search, it outputs a probability p, € R!VI over
the whole vocabulary denoting the possibility for
each token in the vocabulary to be chosen as the
next word. We rebalance the probability with the
supportiveness score vector as pr = p; - S, Where
« is a tunable hyper-parameter.

3  WITA: Our Partially-Aligned Dataset

We automatically harvest some partially-aligned
data from Wikipedia and Wikidata and prepare a
dataset called WITA. We select each Wikipedia ar-
ticle’s first sentence from the 20190920 Wikipedia
dump? as the target text. Then, we remove irrele-
vant tags and links with several predefined rules.
We propose a KB extractor, as illustrated in Fig. 3,
which can take the selected Wikipedia sentences
and extract the corresponding KB triples. In the
KB extractor, named entities are detected by an
entity detector. The detected named entities are
then combined into pairs by the Cartesian Product
operation. The triples that mention these entity
pairs are retrieved by a triple retriever that searches
the corresponding KB triples from the Wikidata

3https://dumps.wikimedia.org/enwiki/
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Figure 3: Our proposed KB extractor for harvesting the
partially-aligned data from Wikipedia and Wikidata.

database. We use an entity-recall based score to
filter inappropriate sentences.

3.1 Entity Detector

We use three sub-detectors to recognize named en-
tities and union them together. We first use a NER
detector based on the spaCy*’s NER tool to rec-
ognize the named entities. Then we use the Noun
detector based on spaCy’s noun chunks recogni-
tion component to identify noun chunks. This de-
tector is used because noun chunks have a high
probability of being named entities. Finally, we
use a linking detector, which is rule-based, to ex-
tract entities tagged with internal links. The de-
tected entities for given sentence c is denoted as
E. = [e1,e2, -+ ,ep,], while p is the entity number.

3.2 Triple Retriever

In order to quickly retrieve related triples for given
named entities, we first store the Wikidata database
in Elasticsearch’. We concatenate all possible vari-
ant names for an entity in Wikidata as the entity
name. For example, Steve Jobs” has alternative
names like “Steven Paul Jobs” and “Steven Jobs”.
The entity name is concatenated as “Steve Jobs —
Steven Paul Jobs — Steven Jobs”. In the Wikidata
database, each triple contains a head, a relation
and a tail entity and we denote the set of all the
preprocessed triple as D = {(h;, r;, t;)|Vi}, where
h;, 13, t; are the head, relation and tail entity for the
ith triple.

For given detected entities £, we make a list of
named entity pairs by conducting a Cartesian Prod-
uct as Ce = {(e;,€;)|Ve; € Ec,e; € E¢,e; # e}
Afterwards, we query the Wikidata database to find
a triple that matches the given named entity pair
(ei,ej) € C. to make the head entity close to e;
while the tail entity close to e;. It should be noted

*https://spacy.io/
>https://www.elastic.co/products/elasticsearch

that the relation may be wrong, i.e. the matching
triple describes a relation different from the one
in the input sentence. But in reality, this proba-
bility is very small since most of the entity pairs
only have one corresponding relation. For a given
named entity pair (e;, e;), the query condition can
be formally expressed as:

—

<ha T, t> = arg (r}?a)tg d(g(eia h) + g(eja t))+

(1= d)(gles, ) + glei, 1)

st. (1 —d)M +1(e;, h) > k; dM + (e, t)
(1—d)M +1(ej,t) > r; dM +1(ej,h)
(h,r,t) e D; de{0,1},

>
>

in which g is a single-term matching score® while
[ is the string similarity metric ranging from 0 to
1. M is a sufficiantly large number and d is an
integer. « is a threshold preventing the retrieved
head and tail being too different from e; and es.
After we have retrieved entities for all sentences,
we calculate a score based on entity-recall to filter
wrongly extracted data-text pairs. entity-recall for
KB triples and the corresponding text is defined as

Te = i ]l{zn:[ﬂ(wj S hl) + ﬂ(w]’ S Ti)"‘
j=1 =1

ﬂ(wj € tz)] > O}/m,

where m is the length of the sentence while n is the
triple number. 7, indicates how much information
in text has been covered by the retrieved triples.

Since WebNLG is the most similar task to our
PADTG task among others, we compare the statis-
tics of our WITA dataset with WebNLG in Table 1.
It can be observed that (1) WITA is larger than the
WebNLG dataset making it more practical. It can
be easily extended to more domains. (2) WITA
contains more relation types and entity types than
that of WebNLG, indicating that our dataset in-
volves more domains. (3) The vocabulary of the
target sentences of WITA is much larger than that
of WebNLG, which shows that our dataset is more
challenging and more realistic. (4) The entity-recall
score of WITA is lower than WebNLG. This is be-
cause WITA is automatically annotated and some
information in the text is not contained in the KB
triples. The low entity-recall score causes the over-
generation problem and the specific value measures
how serious the problem is.

Shttps://www.elastic.co/guide/en/elasticsearch/guide/current/

practical-scoring-function.html
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WITA WebNLG BLEU NIST METEOR ROUGE; CIDEr
Size 55,400 42,892 S2S 0.463 797 0.385 0.693 4.12
Relation Type 640 373 S2ST 0.496 8.05 0.417 0.721 4.53
Entity Type 128,405 3,114 DSG-A 0.518 8.36 0.421 0.730 4.75
Text Length  (18.8, 17.0, 5, 59) (23.7,22.0, 4, 84) DSG-H 0.500 8.61 0.403 0.711 4.65
KB Number (3.0,3.0,1,11) (2.9,3.0,1,7) DSG 0.555 8.71 0.425 0.742 5.02
Vocabulary 102,404 8,886 DSG w/o RBS 0.540 8.59 0.421 0.740 4.97
entity-recall  0.508 0.625 DSG w/o SA  0.522 8.38 0.421 0.734 4.83

Table 1: Statistics of WITA and WebNLG. For the text
length and KB number, the data are mean, median, min
and max respectively.

4 Experiments

4.1 Experimental Setup

We split WITA into a training set, a development
set, and a testing set of 50,000, 5,000, and 400
records respectively. For the purpose of eval-
uating the performance of the models, we ask
human helpers to annotate the testing set sen-
tences. The human helpers are asked to revise
the input KB triples and the corresponding tar-
get sentences making them exactly consistent with
each other. We use several evaluation metrics in-
cluding BLEU (Papineni et al., 2002), ROUGE/,
(Lin, 2004), METEOR (Banerjee and Lavie, 2005),
NIST (Doddington, 2002) and CIDEr (Vedan-
tam et al., 2015) with the package provided by
Novikova et al. (2017). We follow the default
setting in ROUGE;, where 3 is set to 1.2. We
build our model based on the Transformer model
(Vaswani et al., 2017; Ott et al., 2019) and use
Byte Pair Encoding (BPE) (Sennrich et al., 2016)
to build the subword dictionary. We use Fairseq
(Ott et al., 2019) to build our model and keep all
hyper-parameters for Transformer unchanged. We
set k = 0.75 from {0.1,0.25,0.5,0.75,0.9} by ex-
tracting samples and ask human helper to evaluate.
We use grid search to tune hyper-parameters on
the development set and choose w,, = 0.05 from
{0.02,0.05,0.1,0.2,0.5,1.0,2.0,5.0}, choose w, =
1.0 from {0.02,0.05,0.1,0.2,0.5,1.0, 2.0,5.0} and
choose @ = 0.1 from {0.02,0.05,0.1,0.2,0.5,1.0}.
The model has 49M parameters and it takes 2.4
hours to train it on a NVIDIA TITAN RTX graph-
ics card.

4.2 Comparison Models

We compare our full DSG model with the following

baselines, state-of-the-art models, and ablations.
S2S utilizes the traditional S2S model (Sutskever

et al., 2014; Cho et al., 2014) equipped with atten-

Table 2: Main results.

tion (Bahdanau et al., 2014; Luong et al., 2015) and
copy (Gu et al., 2016) mechanism. It is recognised
as the state-of-the-art model (Shimorina and Gar-
dent, 2018) in the WebNLG (Gardent et al., 2017b)
task.

S2ST utilizes the prevalent Transformer model
(Vaswani et al., 2017; Ott et al., 2019) which outper-
forms the traditional S2S model in many generation
tasks.

DSG-A utilizes the attention adaptor which
adapts attention as the supportiveness scores in
the loss.

DSG-H is almost the same as our DSG model.
The only difference is that the supportiveness
scores are adapted with hard adaptor while our
DSG model uses the soft adaptor.

DSG w/o RBS is an ablation model. It removes
the Rebalanced Beam Search component from our
DSG model.

DSG w/o SA is an ablation model without the
Supportiveness Adaptor. The supportiveness scores
are only used by RBS in the generation phase. They
are not adapted to the training loss.

4.3 Experimental Results

Main Results. The experimental results are shown
in Table 2. It can be observed that our DSG model
outperforms all comparison models in all metrics
significantly and consistently, illustrating the ef-
fectiveness and consistentness of our framework.
We can draw the following conclusions. (1) The
superior performance of our DSG model shows
that the supportiveness scores do help alleviate the
over-generation problem. (2) The DSG-A model
outperforms models without any adaptor. It fails
to exceed the DSG model in all metrics. It shows
attention can also be used to alleviate the over-
generation problem but it performs not as good as
our supportiveness scores. (3) The DSG model
outperforms the DSG-H model illustrating that the
soft adaptor is better than the hard adaptor. (4) The
ablation experiments show that both the RBS and
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l-gram 2-gram 3-gram 4-gram 5-gram

S2ST 962 2,313 3,118 3,425 3,501
DSG-A 894 2,161 2,934 3,217 3,290
DSG-H 646 1,817 2,494 27786 2,854
DSG 741 1,894 2,599 2870 2,936

Table 3: N-gram statistics for over-generation error
analysis.

S2ST DSG
BLEU ROUGE, |BLEU ROUGE.
10k | 0.215 0.467 0.260 0.514
20k | 0.383 0.631 0.421 0.659
30k | 0.446 0.684 0.487 0.711
40k | 0.500 0.719 0.518 0.728
50k | 0.496 0.721 0.555 0.749

Table 4: Dataset size analysis.

the SA components contribute to alleviating the
over-generation problem.

Specifically, the S2S model performs worse than
other models. It shows that the Transformer based
model works better in this task. This observa-
tion is consistent with the results observed in a
lot of other similar tasks. The S2ST model per-
forms worse than all other transformer-based mod-
els. The reason is that it suffers severely from the
over-generation problem and is very likely to gener-
ate superfluous content in the generation procedure.
The DSG-A model outperforms other models with-
out any adaptor. This is because attention can also
be regarded as a kind of supportiveness and it can
be undoubtedly used to detect the over-generated
words. However, since the purpose of the atten-
tion is to give weights to each input word, it is
forced to assign weights to input words even no
input data support the target word. As a result, it
performs worse than our DSG model. Our DSG
model with a soft adaptor outperforms the DSG-H
model equipped with a hard adaptor. The reason is
that when the hard adaptor is used, some words are
directly ignored possibly resulting in generating an
incoherent target sentence. Therefore, though it
outperforms other models without any supportive-
ness adaption, it fails to exceed our proposed DSG
model. The ablation experiment results show that
both the RBS and SA components contribute to al-
leviating the over-generation problem. SA mainly
focuses on alleviating the problem in the training
phase while RBS focuses on solving it in the gener-
ation phase. They are all essential components of
our model.

Supportiveness Distribution Analysis. To

(b) Attention

(c) A??reﬂated Suggortiveness (d) Aﬁireﬁated Attention
§5L0CCS EESCag  §5U° L5 SHS Tamh
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Figure 4: Comparision for supportiveness and attention.
x-axis is the target text while y-axis is the given input
KB triples. White stands for high score while black
stands for low score. (a) and (b) show how each word
in KB triples and text is aligned. (c) and (d) show the
aggregated supportiveness and attention for each word
in the target text.

give an intuitive understanding of how the sup-
portiveness works and how it differs from the atten-
tion, we give an example comparing supportiveness
distribution with the corresponding attention dis-
tribution. As shown in Fig. 4, it can be observed
that both the supportiveness and the attention can
capture the alignment relationship between words
in the KB triples and words in the target sentence.
The difference is that the aggregated supportive-
ness is high for correct words while the aggregated
attention is not that significant for almost all words.
The reason is that attention focuses on assigning
weights to individual words with the weights sum-
ming to 1 while our proposed supportiveness score
just focuses on deciding whether one word is cor-
rect or not. As a result, if one word is supported
by many words in KB triples, our proposed sup-
portiveness will be very high, while the attention
may be relatively lower since its sum is fixed to 1.
For example, three words “Goose” in the source
sequence support the same word in the target text.
The supportiveness for the word is very high while
the attention is low since the three words in the
source sequence dissipate the attention weight.
Over-Generation Error Analysis. In order
to perform a quantitative analysis of the over-
generation problem and show how it is mitigated
by our model, we conduct an over-generation er-
ror analysis in which we count all over-generated
n-gram words to measure how serious the problem
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KB Triple S2ST

DSG-H

DSG

Gold

The Four Crowned Martyrs “Four Crowned

(Four Crowned Martyrs, genre,

sculptural group), (Nanni di Banco

notable_work, Four Crowned Martyrs)
Nanni di Banco.

(‘also known as the Four
Crowned Martyrs ) is a
sculptural group four by

Four Crowned

Four Crowned

Martyrs” a Martyrs is a L
sculptural sculptural group I:gi?}g;ﬁ arou b
group Nanni di by Nanni di Nanlr)li di Bé; ncop y
Banco. Banco. )

(Newfoundland and Labrador Route
341, located_in, Newfoundland and

Labrador) Newfoundland and

Labrador.

Route 341 is a rural road in Route 341 a
the Canadian province of

Canadian of

Newfoundland and

Labrador.

Route 341 is a
settlement in
Newfoundland
and Labrador.

Route 341 is located
in in Newfoundland
and Labrador.

(Gaius Helen Mohiam, creator, Frank
Herbert), (Gaius Helen Mohiam,
instance_of, fictional character), (Dune
universe, creator, Frank Herbert),
(Dune universe, instance_of, fictional
universe), ( Gaius Helen Mohiam,
from_fictional _universe, Dune universe)

fictional character

Frank Herbert.

appearing in American
comic books published by

Gaius Helen

Gaius Helen Mohiam is a

Gaius Helen
Mohiam is a

Gaius Helen

Mohiam is a . Mohiam is a
. fictional . .

fictional character . fictional character in
character in the .

M Dune universe the Dune universe

Herberfor the Dune . created by Frank

univer stationed by Herbert

— Frank Herbert. ’

Table 5: Case study. The red font stands for over-generated words while the blue underline indicates incoherent

parts.

is. For generated sentences, we first remove all
stopwords and check whether each of the remain-
ing words appears in the given input KB triple. If
it is not contained in the KB triple, we will count
it as an over-generated word. The statistics are
shown in Table 3. It can be observed that the
DSG-H has minimal over-generated words. This
is because it directly drops all the possible over-
generated words in the training. It gets the lowest
over-generated words count at the cost of making
the result less human-readable and thus has lower
scores in other metrics like BLEU, etc. Our pro-
posed DSG model outperforms all other models
without significantly losing readability indicating
that our proposed framework directly helps allevi-
ate the over-generation problem.

Dataset Size Analysis. In order to explore
whether our framework is capable of working on
small datasets, we conduct a dataset size analy-
sis. The results are shown in Table 4. It can be
concluded that as the data size increases, all the
performance of models with or without support-
iveness improve noticeably. It shows that increas-
ing data size help improve the overall scores. On
the other hand, models assembled with supportive-
ness scores always outperform models without it.
It shows that our novel architecture alleviates the
over-generation problem at all scales of data size.

Human Evaluation. We conduct a human eval-
uation to eval the generation performance. We
sample 130 samples from each model’s generated
sentences and ask human helpers to give an overall
score and a match score with respect to the target
sentences ranging from 1 to 10. The results are

| Overall Match
S2ST 7.315 7.231
DSG-H | 7.285 7.331
DSG 7.377 7.569

Table 6: Human evaluation.

illustrated in Table 6. It can be concluded from the
experiment that the DSG model generates better
sentences in the sense of humans.

Case Study. We provide a case study for several
models. As shown in Table 5, The S2ST model
is always generating text accompanied with over-
generated content while our proposed DSG model
alleviates this problem significantly and consis-
tently. When comparing the DSG-H model with
the DSG model, we can find that the DSG-H model
can also avoid producing over-generated content.
However, it tends to remove a lot of correct words
making the sentence incoherent and unreadable.
Take the last case for example: The S2ST model
conveys that Gaius Helen Mohiam comes from an
American comic book. However, the given input
KB triple does not mention this fact. On the other
hand, the DSG-H model produces “ ... created by
Frank Herberfor the Dune univer ... ” which is
even not a human-readable sentence.

5 Related Works

During the past few years, many tasks have been
proposed to generate human-readable text from the
structured data. WebNLG (Gardent et al., 2017a,b;
Ferreira et al., 2019) is proposed to describe KB
triples sampled from DBPedia (Auer et al., 2007).
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The E2E (Novikova et al., 2017; Dusek et al., 2020)
task is proposed for generating restaurant reviews
based on the given attributes. Lebret et al. (2016)
propose the Wikibio task to generate people’s biog-
raphy based on given Wikipedia infobox. Fu et al.
(2020a) propose to generate text based on event
chains. Moreover, Liang et al. (2009) propose to
generate weather reports for weather records and
Wiseman et al. (2017), Chen and Mooney (2008)
and Puduppully et al. (2019) propose to generate a
match report according to the match briefing. All
these datasets are restricted to a few domains where
well-aligned data is happened to be available. No
existing works are focusing on handling partially-
aligned data. To solve the dataset scarcity prob-
lem, Fu et al. (2020c) propose to use dual learn-
ing to train generation models based on unaligned
text and knowledge triples. The model generates
text based on input triples and then predict the in-
put triples with a dual extraction model. The two
models are trained alternatively with dual learning.
Although Cheng et al. (2020) proposed the ENT-
DESC task aiming at generating better text descrip-
tion for a few entities by exploring the knowledge
from KB, their focus is more on distilling the useful
part from the input knowledge.

Text aligning has been studied for many years.
Dyer et al. (2013) propose the Fast Align model
which is a log-linear reparameterization of IBM
Model 2. Legrand et al. (2016) propose a new score
aggregation method to improve the alignment re-
sult. Moreover, attention-based models (Bahdanau
et al., 2014) can also be recognized as a kind of
alignment. However, these models focus on align-
ing source words to target words, and no existing
models have been proposed to directly calculate
supportiveness for generation tasks. In generation
systems, Fu et al. (2020b) propose to dynamically
align the current generation state with topics to im-
prove the generation performance. However, it still
can not directly align to the input source words.

6 Conclusions

In this work, we propose a new task, namely,
partially-aligned Data-to-Text generation, in which
we generate human-readable text based on auto-
matically produced training data. This task is more
practical and extensible to any domains. We pro-
pose a distant supervision generation framework
that tackling the task. The experimental results
show that our proposed model solves the over-

generation problem effectively and outperforms
all baseline models. Moreover, we contribute a
partially-aligned dataset WITA produced by our
novel automatically annotating framework which
is suitable for this new task.
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