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Abstract

We propose an efficient inference procedure
for non-autoregressive machine translation
that iteratively refines translation purely in the
continuous space. Given a continuous latent
variable model for machine translation (Shu
et al., 2020), we train an inference network to
approximate the gradient of the marginal log
probability of the target sentence, using only
the latent variable as input. This allows us
to use gradient-based optimization to find the
target sentence at inference time that approxi-
mately maximizes its marginal probability. As
each refinement step only involves computa-
tion in the latent space of low dimensional-
ity (we use 8 in our experiments), we avoid
computational overhead incurred by existing
non-autoregressive inference procedures that
often refine in token space. We compare our
approach to a recently proposed EM-like in-
ference procedure (Shu et al., 2020) that op-
timizes in a hybrid space, consisting of both
discrete and continuous variables. We evaluate
our approach on WMT’ 14 En—De, WMT’16
Ro—En and IWSLT’16 De—En, and observe
two advantages over the EM-like inference:
(1) it is computationally efficient, i.e. each re-
finement step is twice as fast, and (2) it is more
effective, resulting in higher marginal proba-
bilities and BLEU scores with the same num-
ber of refinement steps. On WMT’ 14 En—De,
for instance, our approach is able to decode 6.2
times faster than the autoregressive model with
minimal degradation to translation quality (0.9
BLEU).

1 Introduction

Most neural machine translation systems are autore-
gressive, hence decoding latency grows linearly
with respect to the length of the target sentence.
For faster generation, several work proposed non-
autoregressive models with sub-linear decoding
latency given sufficient parallel computation (Gu
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et al., 2018a; Lee et al., 2018; Kaiser et al., 2018).

As it is challenging to precisely model the depen-
dencies among the tokens without autoregression,
many existing non-autoregressive models first gen-
erate an initial translation which is then iteratively
refined to yield better output (Lee et al., 2018; Gu
etal., 2019; Ghazvininejad et al., 2019). While vari-
ous training objectives are used to admit refinement
(e.g. denoising, evidence lowerbound maximiza-
tion and mask language modeling), the generation
process of these models is similar in that the re-
finement process happens in the discrete space of
sentences.

Meanwhile, another line of work proposed to use
continuous latent variables for non-autoregressive
translation, such that the distribution of the tar-
get sentences can be factorized over time given
the latent variables (Ma et al., 2019; Shu et al.,
2020). Unlike the models discussed above, finding
the most likely target sentence under these mod-
els requires searching over continuous latent vari-
ables. To this end, Shu et al. (2020) proposed an
EM-like inference procedure that optimizes over
a hybrid space consisting of both continuous and
discrete variables. By introducing a deterministic
delta posterior, it maximizes a proxy lowerbound
by alternating between matching the delta posterior
to the original approximate posterior (continuous
optimization), and finding a target sentence that
maximizes the proxy lowerbound (discrete search).

In this work, we propose an iterative inference
procedure for latent variable non-autoregressive
models that purely operates in the continuous
space.! Given a latent variable model, we train
an inference network to estimate the gradient of
the marginal log probability of the target sentence,
using only the latent variable as input. At inference
time, we find the target sentence that approximately

"'We open source our code at https://github.com/
zomux/lanmt—ebm
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maximizes the log probability by (1) initializing
the latent variable e.g. as the mean of the prior,
and (2) following the gradients estimated by the
inference network.

We compare the proposed approach with the EM-
like inference (Shu et al., 2020) on three machine
translation datasets: WMT’ 14 En—De, WMT’ 16
Ro—En and IWSLT’ 16 De—En. The advantages
of our approach are twofold: (1) each refinement
step is twice as fast, as it avoids discrete search over
a large vocabulary, and (2) it is more effective, giv-
ing higher marginal probabilities and BLEU scores
with the same number of refinement steps. Our pro-
cedure results in significantly faster inference, for
instance giving 6.2 x speedup over the autoregres-
sive baseline on WMT’ 14 En—De at the expense
of 0.9 BLEU score.

2 Background: Iterative Refinement for
Non-Autoregressive Translation

We motivate our approach by reviewing existing
refinement-based non-autoregressive models for
machine translation in terms of their inference pro-
cedure. Let us use V, D, T and L to denote vo-
cabulary size, latent dimensionality, target sentence
length and the number of refinement steps, respec-
tively.

Most machine translation models are trained
to maximize the conditional log probability
log p(y|x) of the target sentence y given the source
sentence x, averaged over the training data consist-
ing of sentence pairs {(x,,y,)}"_;. To find the
most likely target sentence at test time, one per-
forms maximum-a-posteriori inference by solving
a search problem y = argmax, log p(y|x).

2.1 Refinement in a Discrete Space

As the lack of autoregression makes it challenging
to model the dependencies among the target tokens,
most of the existing non-autoregressive translation
models use iterative refinement to impose depen-
dencies in the generation process. Various training
objectives are used to incorporate refinement, e.g.
denoising (Lee et al., 2018), mask language mod-
eling (Ghazvininejad et al., 2019) and evidence
lowerbound maximization (Chan et al., 2019; Gu
et al., 2019). However, inference procedures em-
ployed by these models are similar in that an initial
hypothesis is generated and then successively re-
fined. We refer the readers to (Mansimov et al.,
2019) for a formal definition of a sequence gen-

eration framework that unifies these models, and
briefly discuss the inference procedure below.

By viewing each refinement step as introducing
a discrete random variable z; (a T' x V -dimensional
matrix, where each row is one-hot), inference with
L refinement steps requires finding y that maxi-
mizes the log probability log p(y|x).

log pa(y|x) =log > po(y,z1:L|x)

Z1.L

L
= log Z (pe(y|Z1;L,X) : HP@(Zi|Z<z', X))
i=1

Z.L

L
> (10gp9(Y|Z1:LaX) + z;logpe(zile,X))-
Z1:L 1=
(D

As the marginalization over z;.r, is intractable, in-
ference for these models instead maximize the log
joint probability with respect to Z;.;, and y:

L
log po(y|21:0,%) + Y _ log py(2l2<i,x).
i=1
Approximate search methods are used to find z;.7,
as z; = argmax,, log py(z|2<;, X).

2.2 Refinement in a Hybrid Space

Learning On the other hand, Ma et al. (2019);
Shu et al. (2020) proposed to use continuous la-
tent variables for non-autoregressive translation.
By letting the latent variables z (of dimensional-
ity T' x D) capture the dependencies between the
target tokens, the decoder py(y|z,x) can be fac-
torized over time. As exact posterior inference
and learning is intractable for most deep parameter-
ized prior and decoder distributions, these models
are trained to maximize the evidence lowerbound
(ELBO) (Kingma and Welling, 2014; Wainwright
and Jordan, 2008).

logps(y|x) > E |log

po(y, Z\X)}
ZNQ¢

q4s(2ly, x)

Inference Exact maximization of ELBO with re-
spect to y is challenging due to the expectation over
z ~ ¢4. To approximately maximize the ELBO,
Shu et al. (2020) proposed to optimize a determinis-
tic proxy lowerbound using a Dirac delta posterior:

o(z|p) = 1(2)

Then, the ELBO reduces to the following proxy
lowerbound:
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= log po(y|p, x) + log pe(ps|x).

Shu et al. (2020) proposed to approximately
maximize the ELBO with an EM-like infer-
ence procedure, to which we refer as delta
inference. It alternates between continuous
and discrete optimization: (1) E-step matches
the delta posterior with the approximate pos-
terior by minimizing their KL divergence:
p; = argmin, KL [ 8(z|0) || as(2l9;_1.%)]. and
(2) M-step maximizes the proxy lowerbound with
respect to y: y; = argmax,, log py(y|u;, x). Over-
all, delta inference finds y and p that maximizes
log pa(y|p, x) + log g4 (p]y, x). This iterative in-
ference procedure in hybrid space was empirically
shown to result in improved BLEU scores and
ELBO on each refinement step (Shu et al., 2020).

3 Iterative Refinement in a Continuous
Space

While the delta inference procedure is an effective
inference algorithm for machine translation models
with continuous latent variables, it is unsatisfactory
as the M-step requires searching over V' tokens
T times for each refinement step. As V is large
for most machine translation models, this is an
expensive operation, even when the 7' searches
can be parallelized. We thus propose to replace
the delta inference with continuous optimization in
the latent space only, given the underlying latent
variable model.

3.1 Learning

Let us define 79(2z; x) as the marginal log proba-
bility of the most likely target sentence under the
latent variable model given z.

74(2; x) = log pa(y %), 2

where y = argmax,, log pp(y|z,x). Our goal is
to find a function —FE,(z;x) that approximates
Tp(z; x) up to an additive constant and a positive
multiplicative factor, such that

argmin,, (Ey(z;x)) ~ argmax, (79(z; x)).

In this work, instead of directly approximating 7y,
we train — Ey, to learn the difference of 7y between

a pair of configurations of latent variables. Omit-
ting the source sentence x and the model parame-
ters 0 for notational simplicity, we solve the follow-
ing problem for z # z:

w51+ 58) (9 )

~ min ||V, Ey(z) 2+2 (VoEy(z))" - Var(z)).
v
3)

See Appendix A for a full derivation. Intu-
itively, V, ( — Ey(2;x)) is trained to approximate
V. 19(z; x), as Eq. 3 maximizes their dot product
while minimizing its squared norm.

As 1y(z; x) is not differentiable with respect to
z due to the argmax operation in Eq. 2, V, 79(z; x)
is not defined. We thus use a proxy gradient from
delta inference. Furthermore, we weigh the latent
configuration z according to the prior. Our final
training objective for £, is then as follows:

2
E o al) [ Hszw(z; x)H n

2 (V@) G- 2)|. @

where z is the output of applying k steps of delta
inference on z. If delta inference improves the log
probability at each iteration, we hypothesize that
(z — z) is a reasonable approximation to the true
gradient V, 7p(z;x). We empirically show that
this is indeed the case in Sec. 5.2.

3.2 Parameterization

We have two options for parameterizing
V. Ey(z;x) when minimizing Eq. 4. First, we can
parameterize it as the gradient of a scalar-valued
function E, to which earlier work have referred
as an energy function (Teh et al., 2003; LeCun
et al., 2006). Second, we can parameterize it as a
function Sy (z; x) that directly outputs the gradient
of the log probability with respect to z (which is
often referred to as a score function (Hyviérinen,
2005)), without estimating the energy directly.

While previous work found direct score es-
timation that bypasses energy estimation unsta-
ble (Alain and Bengio, 2014; Saremi et al., 2018),
it leads to faster inference by avoiding backprop-
agation in each refinement step. We compare the
two approaches in our experiments.
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Algorithm 1: Inference for Latent Variable
Models using Learned Gradients

Input :x,,6,vy

Output: y

letz = EZNPG (z]x) [Z]

while termination condition not met, do

| z=2z—a-(V,Ey(z;x))
end
¥ = argmax, log p(y|z, x)

3.3 Inference

At inference time, we initialize the latent variable
(e.g. using either a sample from the prior or its
mean) and iteratively update the latent variable
using the estimated gradients (see Alg. 1). As our
inference procedure only involves optimization in
the continuous space each step, we avoid having
to search over a large vocabulary. We can either
perform iterative refinement for a fixed number
of steps, or until some convergence condition is
satisfied.

4 Experimental Setup

4.1 Datasets and Preprocessing

We evaluate our approach on three widely used
machine translation datasets: IWSLT* 16 De—En?
(containing 197K training, 2K development and 2K
test sentence pairs), WMT’ 16 Ro—En? (612K, 2K,
2K pairs) and WMT’ 14 En—De* (4.5M, 3K, 3K
pairs).

We use sentencepiece tokenization (Kudo and
Richardson, 2018) with 32K sentencepieces on all
datasets. For WMT’16 Ro—En, we follow Sen-
nrich et al. (2016) and normalize Romanian and
remove diacritics before applying tokenization. For
training, we discard sentence pairs if either the
source or the target length exceeds 64 tokens.

Following Lee et al. (2018), we remove repe-
titions from the translations with a simple post-
processing step before computing BLEU scores.
We use detokenized BLEU with Sacrebleu (Post,
2018).

Distillation Following previous work on
non-autoregressive translation, we train non-

https://wit3.fbk.eu/
3www.statmt.org/wmtl6/translation—task.
html

‘www.statmt.org/wmtl4/translation-task.
html

autoregressive models on the target sentences
generated by an autoregressive model (Kim and
Rush, 2016; Gu et al., 2018a) trained using the
FairSeq framework (Ott et al., 2019).

4.2 Models and Baselines

Autoregressive baselines We use Transform-
ers (Vaswani et al., 2017) with the following
hyperparameters. For WMT’16 Ro—En and
WMT’ 14 En—De, we use Transformer-base. For
IWSLT’ 16 De—En, we use a smaller model with
(dmodel, dfitgers Niayers nheads) = (2567 1024, 5, 2)

Non-autoregressive latent variable models We
closely follow the implementation details from
(Shu et al., 2020). The prior and the approximate
posterior distributions are spherical Gaussian dis-
tributions with learned mean and variance, and the
decoder is factorized over time. The only difference
is at inference time, the target sentence length is
predicted once and fixed throughout the refinement
procedure. Therefore, the latent variable dimen-
sionality R”*? does not change.

The decoder, prior and approximate posterior
distributions are all parameterized using 7jayers
Transformer decoder layers (the last two also
have a final linear layer that outputs mean and
variance). For IWSLT’16 De—En, we use
(dmmkh dfitger, Niayers, nhwdo ::(25671024a374»
For WMT’ 14 En—De and WMT’16 Ro—En, we
use (512, 2048, 6, 8). The latent dimensionality
dlatent 18 set to 8 across all datasets. The source
sentence encoder is implemented with a standard
Transformer encoder. Given the hidden states of
the source sentence, the length predictor (a 2-layer
MLP) predicts the length difference between the
source and target sentences as a categorical distri-
bution in [—50, 50].

Energy function F,(z;x) is parameterized
with njyers Transformer decoder layers and a fi-
nal linear layer with the output dimensionality of
1. We average the last Transformer hidden states
across time and feed it to a linear layer to yield a
scalar energy value.

Score function When directly estimating the gra-
dient of the log probability with respect to z,
Sy (z; x) is parameterized with njayers Transformer
decoder layers and a final linear layer with the out-
put dimensionality of djagent-
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WMT’14 EN—DE

WMT’16 RO—EN IWSLT’16 DE—EN

BLEU SPEED TIME BLEU SPEED TIME BLEU SPEED TIME
o~ b=1 27.5 1L.1x 251 +175 30.9 1.1x 511 +560 31.1 1.1x 178 +139
< b=14 28.3 1x 291 +194 31.5 1x 610 +630 31.5 1x 210 +161

L=0 25.7 15x 19 +1 28.4 34 x 18 +5 27.0 19x 11 +5

s L=1 26.1 6.3 46 +5 29.0 19x 32 45 28.3 11x 18 +6

3 L=2 26.2 4.0x 72 43 29.1 14x 45 +7 28.5 8.0x 26 +£7

A L=4 26.1 2.8 103 +5 29.1 8.5 72 +5 28.6 5.2x 40 +9
SEARCH 26.9 5.5x% 63 £8 30.3 13x 48 +7 29.7 6.0x 35 +6

=N L=0 25.7 15x 19 +1 28.4 34x 18 +5 27.0 19x 11 45
5 © L=1 26.1 5.8 50 +£3 28.8 17x 36 +5 28.6 9.5% 22 +7
y = L=2 26.1 4.2x 69 +4 28.9 11x 55 49 28.7 7.0x 30 +9
< 5 L=14 26.0 2.5% 117 +6 28.8 7.1x 85 +5 28.8 4.5% 46 +9
z SEARCH 27.1 4.4x 66 +9 30.4 12x 53 +7 29.9 5.0% 42 +7
L=0 25.7 15% 19 +1 28.4 34 % 18 +5 27.0 19x 11 +5

2 L=1 26.3 10x 29 +2 29.1 24 x 25 45 28.8 13x 16 +6

8 L=2 26.3 7.6% 38 +2 29.1 19x 32 +6 29.0 10x 20 +5

v L=4 26.3 5.7x 51 +4 29.1 14 % 44 +5 29.1 7.5% 28 +5
SEARCH 27.4 6.2x 47 48 30.4 15x% 41 +6 30.2 6.3 X 33 +4

Table 1: Translation quality and inference speed of autoregressive baseline (AR) and several inference procedures
for non-autoregressive latent variable model (NAR LVM): Delta inference (Delta) (Shu et al., 2020), the proposed
inference procedure with estimated energy (Energy) or score (Score). Speed: inference speedup compared to
the autoregressive model with beam width 4. Time: Average wall clock time per example in milliseconds on a
Tesla V100 GPU (with standard deviations). b: beam width, L: the number of refinement steps. Search: parallel
decoding with 5 length candidates and 5 samples from the prior, with 1 refinement step. Results above Search
are obtained by initializing the latent variable as the mean of the prior. We boldface the highest BLEU among the

latent variable models.

4.3 Training and Optimization

We use the Adam optimizer (Kingma and Ba, 2015)
with batch size of 8192 tokens and the learning
rate schedule used by Vaswani et al. (2017) with
warmup of 8K steps. When training our infer-
ence networks, we fix the underlying latent vari-
able model. Our inference networks are trained for
1M steps to minimize Eq. 4, where z is obtained
by applying k(= 4) iterations of delta inference
on z sampled from the prior. We also find that
stochastically applying one gradient update (using
the estimated gradients) to z before computing z
leads to better performance.

4.4 Inference

Step size For the proposed inference procedure,
we use the step size o = 1.0 as it performed well
on the development set.

Length prediction Given a distribution of target
sentence length, we can either (1) take the argmax,
or (2) select the top [ candidates and decode them
in parallel (Ghazvininejad et al., 2019). In the
second case, we select the output candidate with
the highest log probability under an autoregressive
model, normalized by its length.

Latent search In Alg. 1, we can either initialize
the latent variable with a sample from the prior, or
its mean. We use n,, samples from the prior and
perform iterative refinement (e.g. delta inference
or the proposed inference procedures) in parallel.
Similarly to length prediction, we select the output
with the highest log probability. To avoid stochas-
ticity, we fix the random seed during sampling.

5 Quantitative Results

5.1 Translation Quality and Speed

Table 1 presents translation performance and infer-
ence speed of several inference procedures for the
non-autoregressive latent variable models, along
with the autoregressive baselines. We emphasize
that the same underlying latent variable model is
used across three different inference procedures
(Delta, Energy, Score), to compare their efficiency
and effectiveness.

Translation quality We observe that both of the
proposed inference procedures result in improve-
ments in translation quality with more refinement
steps. For instance, 4 refinement steps using the
learned score function improves BLEU by 2.1 on
IWSLT’ 16 De—En. Among the proposed infer-
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Figure 1: Marginal log probability log py(y|x) of out-
put ¥ from each refinement step.

ence procedures, we find it more effective to use
a learned score function, as it gives comparable or
better performance to delta inference on all datasets.
A learned energy function results in comparable
performance to delta inference. Parallel decoding
over multiple target length candidates and sampled
latent variables leads to significant improvements
in BLEU, resulting in 1 BLEU increase or more on
all datasets. Similarly to delta inference, we find
that the proposed iterative inference procedures
converge quite quickly, and often 1 refinement step
gives comparable translation quality to running 4
refinement steps.

Inference speed We observe that using a learned
score function is significantly faster than delta in-
ference: twice as fast on IWSLT 16 De—En and
WMT’ 16 Ro—En and almost four times as fast on
WMT’ 14 En—De. On WMT’ 14 En—De, the de-
coding latency for 4 steps using the score is close to
(within one standard deviation of) running 1 refine-
ment step of delta inference. On the other hand, we
find that using the learned energy function is slower,
presumably due to the overhead from backpropa-
gation. We find its wall clock time to be similar to
delta inference. As the entire inference process can
be parallelized, we find that parallel decoding with
multiple length candidates and latent variable sam-
ples only incurs minimal overhead. Finally, we con-
firm that decoding latency for non-autoregressive
models is indeed constant with respect to the se-
quence length (given parallel computation), as the
standard deviation is small (< 10 ms) across test
examples.

Overall result Overall, we find the proposed in-
ference procedure using the learned score func-
tion highly effective and efficient. On WMT’ 14
En—De, using 1 refinement step and parallel
search leads to 6.2x speedup over the autoregres-
sive baseline with minimal degradation to transla-
tion quality (0.9 BLEU score).

g
=)

2.1 | —— Delta
Score

o
©

e o
©

Edit distance
-
o
~

=R
N
o o
0 o

w

[a)

o

I
Repetitions

6 8 0 2 6 8

4 4
Steps Steps

Figure 2: Edit distance from the first output (left) and
the number of repetitions in the output (right) for L =
{1,2,4, 8} refinement steps for delta inference and in-
ference using a learned score function.

5.2 Log Probability Comparison

In Fig 1, we report the marginal log probability
log pg(y|x) of y found after L steps of each iter-
ative inference procedure on IWSLT’ 16 De—En.
We estimate the marginal log probability by impor-
tance sampling with 500 samples from the approxi-
mate posterior. We observe that the log probability
improves with more refinement steps for all infer-
ence procedures (delta inference and the proposed
procedures). We draw two conclusions from this.
First, delta inference indeed increases log proba-
bility at each iteration. Second, the proposed op-
timization scheme increases the target objective
function it was trained on (log probability).

5.3 Token Statistics

We compare delta inference and the proposed infer-
ence with a learned score function in terms of token
statistics in the output translations on IWSLT 16
De—En. In Figure 2 (left), we compute the aver-
age edit distance (in sentencepieces) per test exam-
ple from the initial output (mean of the prior). It
is clear that each refinement step using a learned
score function results in more changes in terms
of edit distance than delta inference. In Figure 2
(right), we compute the number of token repetitions
in the output translations (before removing them in
a post-processing step), relative to the initial out-
put. We observe that refining with a learned score
function results in less repetitive output compared
to delta inference.

6 Qualitative Results

6.1 Visualization of learned gradients

We visualize the learned gradients and the optimiza-
tion trajectory in Figure 3, from a score inference
network trained on a two-dimensional latent vari-
able model on IWSLT’ 16 De—En. The example
used to generate the visualization is shown below.
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Token 1 Token 2 Token 3 Token 4 Token 5 Token 6
Post: _So Post: _what Post: _opened Post: _my Post: _eyes Post: ?
Prior: _So Prior: _what Prior: _opened Prior: _me Prior: _eyes Prior: ?
Delta: _So Delta: _what Delta: _opened Delta: _me Delta: _eyes Delta: ?
Score: _So Score: _what Score: _opened Score: _my Score: _eyes
RRRRAR AR
SO
~ SNNNNVV VL
SNNNNNNAV N
NNNNNNNN Vb
\\\\\\\\\0*((
\\\\\\ NS 0
......... ’ L.
®
A o’ N .
AT A I B B I B T L WA Y

Figure 3: Visualization of estimated gradients and optimization trajectory.

Above each plot are tokens predicted

from the following latent variables: (1) approximate posterior mean, (2) prior mean, (3) delta inference and (4)
inference with the learned score. Black star: latent variable before refinement (prior mean). Blue cross: latent
variables after L = {1, 2, 3, 4} steps of delta inference (collapsed into a single point). Green circle: latent variables
after L steps of inference with a learned score function. Marker size decreases with successive refinement steps.

Red square: approximate posterior mean.

Source | Was offnete mir also die Augen?
Reference | So what opened my eyes ?
Posterior | So what opened my eyes ?
Prior | So what opened me eyes ?
Delta | So what opened me eyes ?
Score | So what opened my eyes ?

We observe that for tokens 1, 2 and 6, delta in-
ference converges quickly to the approximate pos-
terior mean. We also find that the local optima
estimated by the score function do not necessar-
ily coincide with the approximate posterior mean.
For Token 4, while the local optima estimated by
the score function (green circle) is far from the
posterior mean (red square), they both map to the
reference translation (“my”), indicating that there
exist multiple latent variables that map to the refer-
ence output.

6.2 Sample translations

We demonstrate that refining in the continuous
space results in non-local, non-trivial revisions to
the original sentence. For each example in Table 2,
we show the English source sentence, German ref-
erence sentence, original translation decoded from
a sample from the prior, and the revised translation
with one gradient update using the estimated score
function.

In Example 1, the positions of the main clause
(“Es gibt nicht viele Arzte”) and the prepositional
phrase (“im westafrikanischen Land”) are reversed
in the continuous refinement process. Inside the
main clause, “es gibt” is revised to “gibt es”, a cor-
rect grammatical form in German when the prepo-
sitional phrase comes before the main clause.

In Example 2, the two numbers are exchanged (*
1,2 Milliarden Dollar” and *“ 6,9 Milliarden Dollar”)

in the revised translation. Also, the phrase “aus den”
(out of the) is correctly inserted between the two.

In Example 3, the noun phrase “Weisheit in
Bedouin” is combined into a single German com-
pound noun “Bedouin-Weisheit”. Also, the phrases
“Der erste ...” and “mit dieser ...” are swapped
in the refinement process, to better resemble the
reference sentence.

EX]

7 Related Work

Learning Our training objective is closely re-
lated to the score matching objective (Hyviérinen,
2005), with the following differences. First, we
approximate the gradient of the data log density us-
ing a proxy gradient, whereas this term is replaced
by the Hessian of the energy in the original score
matching objective. Second, we only consider sam-
ples from the prior. Saremi et al. (2018) proposed
a denoising interpretation of the Parzen score ob-
jective (Vincent, 2011) that avoids estimating the
Hessian. Although score function estimation that
bypasses energy estimation was found to be unsta-
ble (Alain and Bengio, 2014; Saremi et al., 2018),
it has been successfully applied to generative mod-
eling of images (Song and Ermon, 2019).

Inference While we categorize inference meth-
ods for machine translation as (1) discrete search,
(2) hybrid optimization (Shu et al., 2020) and (3)
continuous optimization (this work) in Section 2,
another line of work relaxes discrete search into
continuous optimization (Hoang et al., 2017; Gu
et al., 2018b; Tu et al., 2020). By using Gumbel-
softmax relaxation (Maddison et al., 2017; Jang
et al., 2017), they train an inference network to
generate target tokens that maximize the log proba-
bility under a pretrained model.
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Example 1

Source | There aren "t many doctors in the west African country ; just one for every 5,000 people
Reference | In dem westafrikanischen Land gibt es nicht viele Arzte, nur einen fiir 5.000 Menschen
Original | Es gibt nicht viele Arzte im westafrikanischen Land, nur eine fiir 5.000 Menschen.
Refined | Im westafrikanischen Land gibt es nicht viele Arzte, nur eine fiir 5.000 Menschen.
Example 2
Source | Costumes are expected to account for $ 1.2 billion dollars out of the $ 6.9 billion spent , according to the NRF .
Reference | Die Kostiime werden etwa 1,2 Milliarden der 6,9 Milliarden ausgegebenen US-Dollar ausmachen, so der NRF.
Original | Es wird von, Kostiime, dass sie die dem NRF ausgegebenen 6,9 Milliarden Dollar 1,2 Milliarden Dollar
ausmachen.
Refined | Es wird erwartet, dass die Kostiime nach Angaben des NRF 1,2 Milliarden Dollar aus den 6,9 Milliarden Dollar
ausmachen.
Example 3
Source | It was with this piece of Bedouin wisdom that the first ever chairman Wolfgang Henne described the history and
fascination behind the “Helping Hands” society .
Reference | Mit dieser Beduinenweisheit beschrieb der erste Vorsitzende Wolfgang Henne die Geschichte und Faszination des
Vereins “Helfende Hénde”.
Original | Der erste Vorsitzende Wolfgang Henne beschrieb mit dieser erste Weisheit in Bedouin” die Geschichte und
Faszination hinter der “Helenden Hands” Gesellschaft
Refined | Mit diesem Stiick Bedouin-Weisheit beschrieb der erste Vorsitzende Wolfgang Henne jemals die Geschichte und
Faszination hinter der “Heling Hands” Gesellschaft

Table 2: Sample translations on WMT’ 14 En—De. We show the translation from a latent variable sampled from
the prior (Original) and the translation after one refinement step in the continuous space with the learned score
function (Refined). We emphasize phrases whose positions are swapped in the refinement process in red and blue.

Gradient-based Inference Performing gradient
descent over structured outputs was mentioned in
LeCun et al. (2006), and has been successfully ap-
plied to many structured prediction tasks (Belanger
and McCallum, 2016; Wang et al., 2016; Belanger
et al., 2017). Other work performed gradient de-
scent over the latent variables to optimize objec-
tives for a wide variety of tasks, including chemical
design (Gémez-Bombarelli et al., 2018) and text
generation (Mueller et al., 2017)

Generation by Refinement Refinement has a
long history in text generation. The retrieve-and-
refine framework retrieves an (input, output) pair
from the training set that is similar to the test ex-
ample, and performs edit operations on the cor-
responding output (Sumita and lida, 1991; Song
et al., 2016; Hashimoto et al., 2018; Weston et al.,
2018; Gu et al., 2018c). The idea of refinement has
also been applied in automatic post-editing (Novak
et al., 2016; Grangier and Auli, 2017).

8 Conclusion

We propose an efficient inference procedure for
non-autoregressive machine translation that refines
translations purely in the continuous space. Given
a latent variable model for machine translation, we
train an inference network to approximate the gra-
dient of the marginal log probability with respect

to the target sentence, using only the latent variable.
This allows us to use gradient based optimization to
find a target sentence at inference time that approxi-
mately maximizes the marginal log probability. As
we avoid discrete search over a large vocabulary,
our inference procedure is more efficient than pre-
vious inference procedures that refine in the token
space.

We compare our approach with a recently pro-
posed delta inference procedure that optimizes
jointly in discrete and continuous space on three
machine translation datasets: WMT’ 14 En—De,
WMT’16 Ro—En and IWSLT’ 16 De—En. With
the same underlying latent variable model, the pro-
posed inference procedure using a learned score
function has following advantages: (1) it is twice
as fast as delta inference, and (2) it is able to find
target sentences resulting in higher marginal proba-
bilities and BLEU scores.

While we showed that iterative inference with
a learned score function is effective for spherical
Gaussian priors, more work is required to investi-
gate if such an approach will also be successful for
more sophisticated priors, such as Gaussian mix-
tures or normalizing flows. This will be particu-
larly interesting, as recent study showed latent vari-
able models with a flexible prior give high test log-
likelihoods, but suffer from poor generation quality
as inference is challenging (Lee et al., 2020).
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