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Abstract

We aim to improve question answering (QA)
by decomposing hard questions into simpler
sub-questions that existing QA systems are
capable of answering. Since labeling ques-
tions with decompositions is cumbersome,
we take an unsupervised approach to pro-
duce sub-questions, also enabling us to lever-
age millions of questions from the internet.
Specifically, we propose an algorithm for
One-to-N Unsupervised Sequence transduc-
tion (ONUS) that learns to map one hard,
multi-hop question to many simpler, single-
hop sub-questions. We answer sub-questions
with an off-the-shelf QA model and give the
resulting answers to a recomposition model
that combines them into a final answer. We
show large QA improvements on HOTPOTQA
over a strong baseline on the original, out-of-
domain, and multi-hop dev sets. ONUS auto-
matically learns to decompose different kinds
of questions, while matching the utility of su-
pervised and heuristic decomposition methods
for QA and exceeding those methods in flu-
ency. Qualitatively, we find that using sub-
questions is promising for shedding light on
why a QA system makes a prediction.1

1 Introduction

It has been a long-standing challenge in AI to an-
swer questions of any level of difficulty (Winograd,
1991). Question answering (QA) systems strug-
gle to answer complex questions such as “What
profession do H. L. Mencken and Albert Camus
have in common?” since the required informa-
tion is scattered in different places (Yang et al.,
2018). However, QA systems accurately answer

∗KC was a part-time research scientist at Facebook AI
Research while working on this paper.

1Our code, data, and pretrained models are avail-
able at https://github.com/facebookresearch/
UnsupervisedDecomposition.
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Figure 1: Overview: Using unsupervised learning, we
decompose a multi-hop question into single-hop sub-
questions, whose predicted answers are given to a re-
composition model to predict the final answer.

simpler, related questions such as “What profes-
sion does H. L. Mencken have?” and “Who was Al-
bert Camus?” (Petrochuk and Zettlemoyer, 2018).
Thus, a promising strategy to answer hard ques-
tions is divide-and-conquer: decompose a hard
question into simpler sub-questions, answer the
sub-questions with a QA system, and recompose
the resulting answers into a final answer, as shown
in Figure 1. This approach leverages strong perfor-
mance on simple questions to help answer harder
questions (Christiano et al., 2018).

Existing work decomposes questions using a
combination of hand-crafted heuristics, rule-based
algorithms, and learning from supervised decom-
positions (Talmor and Berant, 2018; Min et al.,
2019b), which each require significant human ef-
fort. For example, DECOMPRC (Min et al., 2019b)
decomposes some questions using supervision and
other questions using a heuristic algorithm with
fine-grained, special case handling based on part-

https://github.com/facebookresearch/UnsupervisedDecomposition
https://github.com/facebookresearch/UnsupervisedDecomposition
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Figure 2: One-to-N Unsupervised Sequence transduc-
tion (ONUS): Step 1: We create a corpus of pseudo-
decompositions D by finding candidate sub-questions
from a simple question corpus S which are similar
to a multi-hop question in Q. Step 2: We learn
to map multi-hop questions to decompositions us-
ing Q and D as training data, via either standard
sequence-to-sequence learning (Seq2Seq) or unsuper-
vised sequence-to-sequence learning (for ONUS).

of-speech tags and over 50 keywords. Prior work
also assumes that sub-questions only consist of
words from the question, which is not always true.
Decomposing arbitrary questions requires sophis-
ticated natural language generation, which often
relies on many, high-quality supervised examples.
Instead of using supervision, we find it possible to
decompose questions in a fully unsupervised way.

We propose an algorithm for One-to-N Unsuper-
vised Sequence transduction (ONUS) that learns
to map from the distribution of hard questions to
that of many simple questions. First, we automat-
ically create a noisy “pseudo-decomposition” for
each hard question by using embedding similarity
to retrieve sub-question candidates. We mine over
10M possible sub-questions from Common Crawl
with a classifier, showcasing the effectiveness of
parallel corpus mining, a common approach in ma-
chine translation (Xu and Koehn, 2017; Artetxe
and Schwenk, 2019), for QA. Second, we train a
decomposition model on the mined data with unsu-
pervised sequence-to-sequence learning, allowing
ONUS to improve over pseudo-decompositions.
As a result, we are able to train a large transformer
model to generate decompositions, surpassing the
fluency of heuristic/extractive decompositions. Fig-
ure 2 overviews our approach to decomposition.

We validate ONUS on multi-hop QA, where
questions require reasoning over multiple pieces of
evidence. We use an off-the-shelf single-hop QA

model to answer decomposed sub-questions. Then,
we give sub-questions and their answers to a re-
composition model to combine into a final answer.
We evaluate on three dev sets for HOTPOTQA, a
standard benchmark for multi-hop QA (Yang et al.,
2018), including two challenge sets.

ONUS proves to be a powerful tool for QA in
the following ways. First, QA models that use de-
compositions outperform a strong RoBERTa base-
line (Liu et al., 2019; Min et al., 2019a) by 3.1
points in F1 on the original dev set, 10 points on
the out-of-domain dev set from Min et al. (2019b),
and 11 points on the multi-hop dev set from Jiang
and Bansal (2019a). Our method is competitive
with state-of-the-art methods SAE (Tu et al., 2020)
and HGN (Fang et al., 2019) that use additional,
strong supervision on which sentences are relevant
to the question. Second, our analysis shows that
sub-questions improve multi-hop QA by using the
single-hop QA model to retrieve question-relevant
text. Qualitative examples illustrate how the re-
trieved text adds a level of interpretability to other-
wise black-box, neural QA models. Third, ONUS
automatically learns to generate useful decompo-
sitions for all four question types in HOTPOTQA,
highlighting the general nature of ONUS over prior
work, such as IBM Watson (Ferrucci et al., 2010)
and DECOMPRC (Min et al., 2019b), which decom-
pose different question types separately. Without
finetuning, our trained ONUS model can even de-
compose some questions in visual QA (Johnson
et al., 2017b) and knowledge-base QA (Talmor and
Berant, 2018), as well as claims in fact verifica-
tion (Thorne et al., 2018), suggesting promising
future avenues in other domains.

2 Method

We now formulate the problem and describe our
high-level approach, with further details in §3.
The goal of this work is to leverage a QA model
that is accurate on simple questions for answer-
ing hard questions, without using annotated ques-
tion decompositions. Here, we consider simple
questions to be “single-hop” questions that re-
quire reasoning over one paragraph or piece of
evidence, and we consider hard questions to be
“multi-hop.” Our aim is to train a multi-hop QA
modelM to provide the correct answer a to a multi-
hop question q about a given context c (e.g., sev-
eral paragraphs). Normally, we would train M
to maximize log pM (a|c, q). To facilitate learn-
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ing, we leverage a single-hop QA model that may
be queried with sub-questions s1, . . . , sN , whose
“sub-answers” a1, . . . , aN may be given to M . M
may then maximize the potentially easier objective
log pM (a|c, q, [s1, a1], . . . , [aN , sN ]).

Supervised decomposition models learn to map
each question q ∈ Q to a decomposition d =
[s1; . . . ; sN ] of N sub-questions sn ∈ S using
annotated (q, d) examples. In this work, we do
not assume access to strong (q, d) supervision.
To leverage the single-hop QA model without su-
pervision, we follow a three-stage approach: 1)
map a question q into sub-questions s1, . . . , sN
via unsupervised techniques, 2) find sub-answers
a1, . . . , aN with the single-hop QA model, and 3)
use s1, . . . , sN and a1, . . . , aN to predict a.

2.1 Unsupervised Question Decomposition
To train an unsupervised decomposition model,
we need suitable data. We assume access to a
hard question corpus Q and simple question cor-
pus S. Instead of using supervised (q, d) exam-
ples, we design an algorithm that creates pseudo-
decompositions d′ to form (q, d′) pairs from Q and
S using an unsupervised method (§2.1.1). We then
train a model to map q to a decomposition. We ex-
plore learning to decompose with standard and un-
supervised sequence-to-sequence learning (§2.1.2).

2.1.1 Creating Pseudo-Decompositions
Inspired by Zhou et al. (2015) in question re-
trieval, we create a pseudo-decomposition set d′ =
{s1; . . . ; sN} for each q ∈ Q by retrieving simple
question si from S. We concatenate s1; . . . ; sN to
form d′ used downstream. N may potentially vary
based on q. To retrieve useful simple questions for
answering q, we face a joint optimization problem.
We want sub-questions that are both (i) similar to
q according to a metric f (first term) and (ii) max-
imally diverse (second term), so our objective is:

argmax
d′⊂S

∑
si∈d′

f(q, si)−
∑

si,sj∈d′,i 6=j

f(si, sj) (1)

2.1.2 Learning to Decompose
With the above pseudo-decompositions, we explore
various decomposition methods (details in §3.2.3):

PseudoD We use sub-questions from pseudo-
decompositions directly in downstream QA.

Sequence-to-Sequence (Seq2Seq) We train a
Seq2Seq model pθ to maximize log pθ(d

′|q).

One-to-N Unsupervised Sequence transduction
(ONUS) We use unsupervised learning to map
one question to N sub-questions. We start with
paired (q, d′) but do not learn from the pairing be-
cause it is noisy. Instead, we use unsupervised
Seq2Seq methods to learn a q → d mapping.

2.2 Answering Sub-Questions

To answer the generated sub-questions, we use an
off-the-shelf QA model. The QA model may an-
swer sub-questions using any free-form text (i.e.,
a word, phrase, sentence, etc.). Any QA model is
suitable, so long as it can accurately answer simple
questions in S. We thus leverage good accuracy on
questions in S to help answer questions in Q.

2.3 Learning to Recompose

Downstream QA systems may use sub-questions
and sub-answers in various ways. We train a re-
composition model to combine the decomposed
sub-questions/answers into a final answer, when
also given the original input (context+question).

3 Experimental Setup

We now detail the implementation of our approach.

3.1 Question Answering Task

We test ONUS on HOTPOTQA, a standard multi-
hop QA benchmark. Questions require information
from two distinct Wikipedia paragraphs to answer
(“Who is older, Annie Morton or Terry Richard-
son?”). For each question, HOTPOTQA provides
10 context paragraphs from Wikipedia. Two para-
graphs contain question-relevant sentences called
“supporting facts,” and the remaining paragraphs
are irrelevant, “distractor paragraphs.” Answers in
HOTPOTQA are either yes, no, or a text span in
an input paragraph. Accuracy is measured with
F1 word overlap and Exact Match (EM) between
predicted and gold spans.

3.2 Unsupervised Decomposition

3.2.1 Training Data and Question Mining
Supervised decomposition methods are limited by
the amount of available human annotation, but our
unsupervised method faces no such limitation, sim-
ilar to unsupervised QA (Lewis et al., 2019). Since
we need to train data-hungry Seq2Seq models, we
would benefit from large training corpora. A larger
simple question corpus will also improve the rel-
evance of retrieved simple questions to the hard
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question. Thus, we take inspiration from paral-
lel corpus mining in machine translation (Xu and
Koehn, 2017; Artetxe and Schwenk, 2019). We
use questions from SQUAD 2 and HOTPOTQA to
form our initial corpora S (single-hop questions)
and Q (multi-hop questions), respectively, and we
augment Q and S by mining more questions from
Common Crawl. First, we select sentences that
start with “wh”-words or end in “?” Next, we train
an efficient, FastText classifier (Joulin et al., 2017)
to classify between questions sampled from Com-
mon Crawl, SQUAD 2, and HOTPOTQA (60K
in total). Then, we classify our Common Crawl
questions, adding those classified as SQUAD 2
questions to S and those classified as HOTPOTQA
questions to Q. Mining greatly increases the num-
ber of single-hop questions (130K→ 10.1M) and
multi-hop questions (90K→ 2.4M), showing the
power of parallel corpus mining in QA. 2

3.2.2 Creating Pseudo-Decompositions
To create pseudo-decompositions (retrieval-based
sub-questions for a given question), we exper-
imented with using a variable number of sub-
questions N per question (Appendix §A.1), but
we found similar QA results with a fixed N = 2,
which we use in the remainder for simplicity.

Similarity-based Retrieval To retrieve relevant
sub-questions, we embed any text t into a vector
vt by summing the FastText vectors (Bojanowski
et al., 2017)3 for words in t and use cosine as our
similarity metric f .4 Let q be a multi-hop question
with a pseudo-decomposition (s∗1, s

∗
2) and v̂ be the

unit vector of v. Since N = 2, Eq. 1 simplifies to:

(s∗1, s
∗
2) = argmax

{s1,s2}∈S

[
v̂>q v̂s1 + v̂>q v̂s2 − v̂>s1 v̂s2

]
The last term requires O(|S|2) comparisons, which
is expensive as |S| > 10M. Instead of solving the
above equation exactly, we find an approximate
pseudo-decomposition (s′1, s

′
2) by computing over

S′ = topK{s∈S}
[
v̂>q v̂s

]
with K = 1000. We effi-

ciently build S′ with FAISS (Johnson et al., 2017a).

Random Retrieval For comparison, we test a
random pseudo-decomposition baseline, where we
retrieve s1, . . . , sN by sampling uniformly from S.

2See Appendix §A.3 for details on question classifier.
3300-dim. English Common Crawl vectors: https://

fasttext.cc/docs/en/english-vectors.html
4We also tried TFIDF and BERT representations but did

not see improvements over FastText (see Appendix §A.4).

Editing Pseudo-Decompositions Since sub-
questions are retrieval-based, they are often
not about the same entities as q. Inspired by
retrieve-and-edit methods (e.g., Guu et al., 2018),
we replace each sub-question entity not in q
with an entity from q of the same type (e.g.,
“Date” or “Location”) if possible.5 This step
is important for PseudoD and Seq2Seq (which
would learn to hallucinate entities) but not ONUS
(which must reconstruct entities in q from its own
decomposition, as discussed next).

3.2.3 Unsupervised Decomposition Models
Pretraining Pretraining is crucial for unsuper-
vised Seq2Seq methods (Artetxe et al., 2018; Lam-
ple et al., 2018), so we initialize all decomposi-
tion models (Seq2Seq or ONUS) with the same
pretrained weights. We warm-start our pretrain-
ing with the pretrained, English Masked Language
Model (MLM) from Lample and Conneau (2019), a
12-block transformer (Vaswani et al., 2017). We do
MLM finetuning for one epoch on Q and pseudo-
decompositions D formed via random retrieval,
using the final weights to initialize a pretrained
encoder-decoder. See Appendix §B.2 for details.

Seq2Seq We finetune the pretrained encoder-
decoder using maximum likelihood. We stop train-
ing based on validation BLEU between generated
decompositions and pseudo-decompositions.

ONUS We finetune the pretrained encoder-
decoder with back-translation (Sennrich et al.,
2016) and denoising objectives simultaneously,
similar to Lample and Conneau (2019) in un-
supervised one-to-one translation.6 For denois-
ing, we produce a noisy input d′ by randomly
masking, dropping, and locally shuffling tokens
in d ∼ D, and we train a model with param-
eters θ to maximize log pθ(d|d′). We likewise
maximize log pθ(q|q′) for a noised version q′ of
q ∼ Q. For back-translation, we generate a multi-
hop question q̂ for a decomposition d ∼ D, and
we maximize log pθ(d|q̂). Similarly, we maximize
log pθ(q|d̂) for a model-generated decomposition d̂
of q ∼ Q. To stop training without supervision, we
use a modified version of round-trip BLEU (Lam-
ple et al., 2018) (see Appendix §B.1 for details).
We train on HOTPOTQA questions Q and their
pseudo-decompositions D.7

5Entities found with spaCy (Honnibal and Montani, 2017).
6www.github.com/facebookresearch/XLM
7Using the augmented corpora here did not improve QA.

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
www.github.com/facebookresearch/XLM
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3.3 Single-hop Question Answering Model

We finetune a pretrained model for single-hop QA
following prior work from Min et al. (2019b) on
HOTPOTQA, as described below.8

Model Architecture Our model takes in a ques-
tion and several paragraphs to predict the answer.
We compute a separate forward pass on each para-
graph (with the question). For each paragraph,
the model learns to predict the answer span if the
paragraph contains the answer and to predict “no
answer” otherwise. We treat yes or no predic-
tions as spans within the passage (prepended to
each paragraph), as in Nie et al. (2019) on HOT-
POTQA. During inference, for the final softmax,
we consider all paragraphs as a single chunk. Sim-
ilar to Clark and Gardner (2018), we subtract a
paragraph’s “no answer” logit from the logits of
all spans in that paragraph, to reduce or increase
span probabilities accordingly. In other words, we
compute the probability p(sp) of each span sp in a
paragraph p ∈ {1, . . . , P} using the predicted span
logit l(sp) and “no answer” paragraph logit n(p)
with p(sp) ∝ el(sp)−n(p). ROBERTALARGE (Liu
et al., 2019) is used as our pretrained model.

Training Data and Ensembling Similar to Min
et al. (2019b), we train an ensemble of 2 single-hop
QA models on SQUAD 2 and the “easy” (single-
hop) subset of HOTPOTQA (see Appendix §C for
training details). We average model logits before
predicting the answer. We use the single-hop QA
ensemble as a black-box model once trained, never
training the model on multi-hop questions.

Returned Text Instead of returning only the pre-
dicted sub-answer span to the recomposition model,
we return the sentence that contains the predicted
sub-answer, which is more informative.

3.4 Recomposition Model

Our recomposition model architecture is identical
to the single-hop QA model, but the recomposition
model also uses sub-questions and sub-answers as
input. We append each (sub-question, sub-answer)
pair to the question with separator tokens. We train
one recomposition model on all of HOTPOTQA,
also including SQUAD 2 examples used to train the
single-hop QA model. All reported error margins
show the mean and std. dev. across 5 recomposition
training runs using the same decompositions.

8Code based on transformers (Wolf et al., 2019).

Decomp. Pseudo- HOTPOTQA Dev F1
Method Decomps. Orig Multi OOD

7 7 (1hop) 66.7 63.7 66.5
7 7 (Baseline) 77.0±.2 65.2±.2 67.1±.5

PseudoD Random 78.4±.2 70.9±.2 70.7±.4
FastText 78.9±.2 72.4±.1 72.0±.1

Seq2Seq Random 77.7±.2 69.4±.3 70.0±.7
FastText 78.9±.2 73.1±.2 73.0±.3

ONUS Random 79.8±.1 76.0±.2 76.5±.2
FastText 80.1±.2 76.2±.1 77.1±.1

DecompRC* 79.8±.2 76.3±.4 77.7±.2
SAE (Tu et al., 2020) † 80.2 61.1 62.6
HGN (Fang et al., 2019) † 82.2 78.9‡ 76.1‡

Ours SAE† HGN†

Test (EM/F1) 66.33/79.34 66.92/79.62 69.22/82.19

Table 1: Unsupervised decompositions significantly
improve F1 on HOTPOTQA over the baseline and
single-hop QA model used to answer sub-questions
(“1hop”). On all dev sets and the test set, we achieve
similar F1 to methods that use supporting fact supervi-
sion (†). (*) We test supervised/heuristic decomposi-
tions from Min et al. (2019b). (‡) Scores are approxi-
mate due to mismatched Wikipedia dumps.

4 Results on Question Answering

We compare variants of our approach that use
different learning methods and different pseudo-
decomposition training sets. As a baseline,
we compare ROBERTA with decompositions to
ROBERTA without decompositions. We use the
best hyperparameters for the baseline to train our
ROBERTA models with decompositions (see Ap-
pendix §D.3 for hyperparameters).

We report results on 3 dev set versions: (1)
the original version,9 (2) the multi-hop version
from Jiang and Bansal (2019a) who created some
distractor paragraphs adversarially to test multi-hop
reasoning, and (3) the out-of-domain (OOD) ver-
sion from Min et al. (2019b) who retrieved distrac-
tor paragraphs with the same procedure as the orig-
inal version but excluded the original paragraphs.

Main Results Table 1 shows how unsupervised
decompositions affect QA. Our ROBERTA base-
line does quite well on HOTPOTQA (77.0 F1),
in line with Min et al. (2019a) who achieved
strong results using a BERT-based version of the
model (Devlin et al., 2019). We achieve large gains
over the ROBERTA baseline by simply adding
sub-questions and sub-answers to the input. Using
decompositions from ONUS trained on FastText

9Test set is private, so we randomly halve the dev set to
form validation/held-out dev sets. Our codebase has our splits.
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Q- Using Decomps.
Type 7 X

Bridge 80.1±.2 81.7±.4
Comp. 73.8±.4 80.1±.3
Inters. 79.4±.6 82.3±.5
1-hop 73.9±.6 76.9±.6

SQs SAs QA F1

7 7 77.0±.2

X Sent. 80.1±.2
X Span 77.8±.3
X Rand. 76.9±.2
X 7 76.9±.2
7 Sent. 80.2±.1

Table 2: Left: Decompositions improve QA F1 for all
4 HOTPOTQA types. Right (Ablation): QA model F1
when trained with various sub-answers: the sentence of
the predicted sub-answer, predicted sub-answer span,
or random entity from the context. We also train mod-
els with (X) or without (7) sub-questions/sub-answers.

pseudo-decompositions, we find a gain of 3.1 F1
on the original dev set, 11 F1 on multi-hop dev,
and 10 F1 on OOD dev. ONUS decompositions
even match the performance of using supervised
and heuristic decompositions from DECOMPRC
(i.e., 80.1 vs. 79.8 F1 on the original dev set).

Pseudo-decomposition and ONUS training both
contribute to decomposition quality. FastText
pseudo-decompositions themselves provide an im-
provement in QA over the baseline (e.g., 72.0
vs. 67.1 F1 on OOD dev) and over random
pseudo-decompositions (70.7 F1), validating our
retrieval-based algorithm for creating pseudo-
decompositions. Seq2Seq trained on FastText
pseudo-decompositions achieves comparable gains
to FastText pseudo-decompositions (73.0 F1 on
OOD dev), validating the quality of pseudo-
decompositions as training data. As hypothe-
sized, ONUS improves over PseudoD and Seq2Seq
by learning to align hard questions and pseudo-
decompositions while ignoring the noisy pairing
(77.1 F1 on OOD dev). ONUS is relatively ro-
bust to the training data used but still improves
further by using FastText vs. Random pseudo-
decompositions (77.1 vs. 76.5 F1 on OOD dev).

We submitted the best QA approach based on
dev evaluation (using ONUS trained on FastText
pseudo-decompositions) for hidden test evalua-
tion. We achieved a test F1 of 79.34 and Exact
Match (EM) of 66.33. Our approach is competitive
with state-of-the-art systems SAE (Tu et al., 2020)
and HGN (Fang et al., 2019), which both (unlike
us) learn from strong, supporting-fact supervision
about which sentences are relevant to the question.

4.1 Question Type Breakdown

To understand where decompositions help, we
break down QA accuracy across 4 question types

Figure 3: Multi-hop QA is better when the single-hop
QA model answers with the ground truth “supporting
fact” sentences. We plot mean and std. over 5 QA runs.

from Min et al. (2019b). “Bridge” questions ask
about an entity not explicitly mentioned (“When
was Erik Watts’ father born?”). “Intersection”
questions ask to find an entity that satisfies multiple
separate conditions (“Who was on CNBC and Fox
News?”). “Comparison” questions ask to compare
a property of two entities (“Which is taller, Momhil
Sar or K2?”). “Single-hop” questions are answer-
able using single-hop shortcuts or single-paragraph
reasoning (“Where is Electric Six from?”). We
split the original dev set into the 4 types using the
supervised type classifier from Min et al. (2019b).
Table 2 (left) shows F1 scores for ROBERTA with
and without decompositions across the 4 types.

ONUS decompositions improve QA across all
types. Our single decomposition model does not
need to be tailored to the question type, unlike Min
et al. (2019b) who use a different model per ques-
tion type. For single-hop questions, our QA ap-
proach does not require falling back to a single-hop
QA model and instead learns to leverage decompo-
sitions in that case also (76.9 vs. 73.9 F1).

4.2 Answers to Sub-Questions are Crucial
To measure the usefulness of sub-questions and
sub-answers, we train the recomposition model
with various, ablated inputs, as shown in Table 2
(right). Sub-answers are crucial to improving QA,
as sub-questions with no answers or random an-
swers do not help (76.9 vs. 77.0 F1 for the base-
line). Only when sub-answers are provided do we
see improved QA, with or without sub-questions
(80.1 and 80.2 F1, respectively). It is important
to provide the sentence containing the predicted
answer span instead of the answer span alone (80.1
vs. 77.8 F1, respectively), though the answer span
alone still improves over the baseline (77.0 F1).

4.3 How Do Decompositions Help?
Decompositions help by retrieving important sup-
porting evidence to answer questions. Fig. 3 shows
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Q1: Who is older, Annie Morton or Terry Richardson?
SQ1: Who is Annie Morton?
x Annie Morton (born October 8, 1970) is an

American model born in Pennsylvania.
SQ2: When was Terry Richardson born?
x Kenton Terry Richardson (born 26 July 1999) is an

English professional footballer who plays as a
defender for League Two side Hartlepool United.

Â: Annie Morton

Q2: How many copies of Roald Dahl’s variation on a
popular anecdote sold?

SQ1: How many copies of Roald Dahl’s?
x His books have sold more than 250 million

copies worldwide.
SQ2 What is the name of the variation on a

popular anecdote?
x “Mrs. Bixby and the Colonel’s Coat” is a short story

by Roald Dahl that first appeared in the 1959 issue of
Nugget.

Â: more than 250 million

Q3: Are both Coldplay and Pierre Bouvier
from the same country?

SQ1: Where are Coldplay and Coldplay from?
x Coldplay are a British rock band formed in 1996 by

lead vocalist and keyboardist Chris Martin and lead
guitarist Jonny Buckland at University College
London (UCL).

SQ2: What country is Pierre Bouvier from?
x Pierre Charles Bouvier (born 9 May 1979) is a

Canadian singer, songwriter, musician, composer and
actor who is best known as the lead singer and
guitarist of the rock band Simple Plan.

Â: No

Table 3: Example sub-questions generated by our
model, along with predicted sub-answer sentences (an-
swer span underlined) and final predicted answer.

that QA improves when the sub-answer sentences
are gold “supporting facts.” We retrieve these
without relying on strong, supporting fact supervi-
sion, unlike many state-of-the-art models (Tu et al.,
2020; Fang et al., 2019; Nie et al., 2019).10

4.4 Example Decompositions
To illustrate how decompositions help, Table 3
shows example sub-questions from ONUS with
predicted sub-answers. Sub-questions are single-
hop questions relevant to the multi-hop question.
The single-hop QA model returns relevant sub-
answers, sometimes despite under-specified (Q2,
SQ1) or otherwise imperfect sub-questions (Q3,
SQ1). The recomposition model returns an an-
swer consistent with the sub-answers. Furthermore,
the sub-answers used for QA are in natural lan-
guage, adding a level of interpretability to other-
wise black-box, neural QA models. Decomposi-
tions are largely extractive, copying from the multi-

10See Appendix §B.3 for supporting fact scores.

Decomp. GPT2 % Well- Edit Length
Method NLL Formed Dist. Ratio

ONUS 5.56 60.9 5.96 1.08
DecompRC 6.04 32.6 7.08 1.22

Table 4: Analysis of sub-questions produced by our
method vs. the supervised+heuristic method of Min
et al. (2019b). Left-to-right: Negative Log-Likelihood
according to GPT2 (lower is better), % classified as
Well-Formed, Edit Distance between decomposition
and multi-hop question, and token-wise Length Ratio
between decomposition and multi-hop question.

hop question rather than hallucinating new entities,
which helps generate relevant sub-questions. Ap-
pendix Table 7 shows decompositions from our
trained ONUS model, without further finetuning,
on image-based questions (CLEVR; Johnson et al.,
2017b), knowledge-base questions (ComplexWe-
bQuestions; Talmor and Berant, 2018), and even
claims in fact verification (FEVER; Thorne et al.,
2018), which suggests promising future avenues
for our approach in other domains and highlights
the general nature of the proposed method.

5 Analysis

To better understand our system, we now analyze
our pipeline by examining the model for each stage:
decomposition, single-hop QA, and recomposition.

5.1 Unsupervised Decomposition Model
Intrinsic Evaluation of Decompositions We
evaluate the quality of decompositions on other
metrics aside from downstream QA. To measure
the fluency of decompositions, we compute the
likelihood of decompositions using the pretrained
GPT-2 language model (Radford et al., 2019).
We train a BERTBASE classifier on the question-
wellformedness dataset of Faruqui and Das (2018),
and we use the classifier to estimate the proportion
of sub-questions that are well-formed. We measure
how abstractive decompositions are by computing
(i) the token Levenstein distance between the multi-
hop question and its generated decomposition and
(ii) the ratio between the length of the decomposi-
tion and the length of the multi-hop question. We
compare ONUS to DECOMPRC (Min et al., 2019b),
a supervised+heuristic decomposition method.

As shown in Table 4, ONUS decompositions are
more natural and well-formed than DECOMPRC
decompositions. As an example, for Table 3 Q3,
DECOMPRC produces the sub-questions “Is Cold-
play from which country?” and “Is Pierre Bouvier
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Figure 4: Left: We decode decompositions with beam
search and use nth-ranked hypothesis as a question de-
composition. We plot the F1 of a recomposition model
trained to use the nth-ranked decomposition. Right:
Multi-hop QA is better when the single-hop QA model
places high probability on its sub-answer.

from which country?” ONUS decompositions are
also closer in edit distance and length to the multi-
hop question, consistent with our observation that
our decomposition model is largely extractive.

Quality of Decomposition Model A well-
trained decomposition model should place higher
probability on decompositions that are more help-
ful for QA. We generate N = 5 hypotheses from
our best decomposition model using beam search,
and we train a recomposition model to use the
nth-ranked hypothesis as a question decomposition
(Figure 4, left). QA accuracy decreases as we use
lower probability decompositions, but accuracy re-
mains relatively robust, at most decreasing from
80.1 to 79.3 F1. The limited drop suggests that
decompositions are still useful if they are among
the model’s top hypotheses, another indication that
ONUS is trained well for decomposition.

5.2 Single-hop Question Answering Model

Sub-Answer Confidence Figure 4 (right) shows
that the single-hop model’s sub-answer confidence
correlates with downstream multi-hop QA accuracy
on all dev sets. A low confidence sub-answer may
be indicative of (i) an unanswerable or ill-formed
sub-question or (ii) a sub-answer that is more likely
to be incorrect. In both cases, the single-hop QA
model is less likely to retrieve useful supporting
evidence for answering the multi-hop question.

Changing the Single-hop QA Model We find
that our approach is robust to the single-hop QA
model used. We test the BERTBASE ensemble
from Min et al. (2019b) as the single-hop QA
model. The model performs much worse compared
to our ROBERTALARGE single-hop ensemble on

Recomposition Model QA F1 (w/o −→ w/ Decomps.)

BERTBASE 71.8±.4 −→ 73.0±.4
BERTLARGE 76.4±.2 −→ 79.0±.1
ROBERTALARGE 77.0±.3 −→ 80.1±.2

Table 5: Better models gain more from decomposition.

HOTPOTQA itself (56.3 vs. 66.7 F1). However, the
model results in similar QA when used to answer
single-hop sub-questions within our larger system
(79.9 vs. 80.1 F1 for our ensemble).

5.3 Recomposition Model

Varying the Base Model To understand how de-
compositions impact performance as the recompo-
sition model gets stronger, we vary the base pre-
trained model. Table 5 shows the impact of adding
decompositions to BERTBASE, BERTLARGE, and
finally ROBERTALARGE (see Appendix §D.3 for
hyperparameters). The gain from using decompo-
sitions grows with strength of the recomposition
model. Decompositions improve QA by 1.2 F1 for
a BERTBASE model, by 2.6 F1 for the stronger
BERTLARGE model, and by 3.1 F1 for our best
ROBERTALARGE model.

6 Related Work

Answering complex questions has been a long-
standing challenge in natural language processing.
Prior work explored decomposing questions with
supervision and heuristic algorithms. IBM Wat-
son (Ferrucci et al., 2010) decomposes questions
into sub-questions in multiple ways or not at all.
DECOMPRC (Min et al., 2019b) largely frames sub-
questions as extractive spans of a question, learning
to predict span-based sub-questions via supervised
learning on human annotations. In other cases, DE-
COMPRC decomposes a multi-hop question using
a heuristic algorithm or not at all. Watson and DE-
COMPRC use special case handling to decompose
different questions, while our algorithm is fully
automated and requires little hand-engineering.

More traditional, semantic parsing methods map
questions to compositional programs, whose sub-
programs can be viewed as question decomposi-
tions in a formal language (Talmor and Berant,
2018; Wolfson et al., 2020). Examples include
classical QA systems like SHRDLU (Winograd,
1972) and LUNAR (Woods et al., 1974), as well as
neural Seq2Seq semantic parsers (Dong and Lap-
ata, 2016) and neural module networks (Andreas
et al., 2015, 2016). Such methods usually require
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strong, program-level supervision to generate pro-
grams, as in visual QA (Johnson et al., 2017c) and
on HOTPOTQA (Jiang and Bansal, 2019b). Some
models use other forms of strong supervision, e.g.,
the sentences needed to answer a question, as anno-
tated by HOTPOTQA. Such an approach is taken by
SAE (Tu et al., 2020) and HGN (Fang et al., 2019),
whose methods may be combined with ours.

Unsupervised decomposition complements
strongly and weakly supervised decomposition
approaches. Our unsupervised approach enables
methods to leverage millions of otherwise unusable
questions, similar to work on unsupervised
QA (Lewis et al., 2019). When decomposition ex-
amples exist, supervised and unsupervised learning
can be used in tandem to learn from both labeled
and unlabeled examples. Such semi-supervised
methods outperform supervised learning for tasks
like machine translation (Sennrich et al., 2016).
Other work on weakly supervised question genera-
tion uses a downstream QA model’s accuracy as
a signal for learning to generate useful questions.
Weakly supervised question generation often uses
reinforcement learning (Nogueira and Cho, 2017;
Wang and Lake, 2019; Strub et al., 2017; Das et al.,
2017; Liang et al., 2018), where an unsupervised
initialization can greatly mitigate the issues of
exploring from scratch (Jaderberg et al., 2017).

7 Conclusion

We proposed a QA system that answers a question
via decomposition, without supervised question de-
compositions, using three stages: (1) decompose
a question into many sub-questions using One-to-
N Unsupervised Sequence transduction (ONUS),
(2) answer sub-questions with an off-the-shelf QA
system, and (3) recompose sub-answers into a final
answer. When evaluated on three HOTPOTQA dev
sets, our approach significantly improved QA over
an equivalent model that did not use decomposi-
tions. Our approach relies only on the final answer
as supervision but works as effectively as state-of-
the-art methods that rely on much stronger super-
vision, such as supporting fact labels or example
decompositions. We found that ONUS generates
fluent sub-questions whose answers often match
the gold-annotated, question-relevant text. Overall,
this work opens up exciting avenues for leverag-
ing methods in unsupervised learning and natural
language generation to improve the interpretability
and generalization of machine learning systems.
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A Pseudo-Decompositions

Tables 8-10 show examples of pseudo-
decompositions and learned decompositions
from various models.

A.1 Variable-Length Pseudo-Decompositions

A general algorithm for creating pseudo-
decompositions should find a suitable number of
sub-questions N for each question. To this end,
we compare the objective in Eq. 1 for creating
pseudo-decompositions with an alternate objective
based on Euclidean distance. This alternate
objective has the advantage that the regularization
term that encourages sub-question diversity grows
more slowly N , disencouraging larger N less:

d′∗ = argmin
d′⊂S

∣∣∣∣∣
∣∣∣∣∣vq −∑

s∈d′
vs

∣∣∣∣∣
∣∣∣∣∣
2

(2)

We create pseudo-decompositions in an similar
way as with Eq. 1, first finding a set of candidate
sub-questions S′ ⊂ S with high cosine similarity to
vq. Then, we perform beam search to sequentially
choose sub-questions up to a maximum of N sub-
questions.

We test pseudo-decomposition objectives by cre-
ating synthetic, compositional questions by com-
bining 2-3 single-hop questions with “and.” Then,
we measure rank of the correct decomposition (a
concatenation of the single-hop questions), accord-
ing to each objective. For N = 2, both objectives
perform well. For N = 3, Eq. 2 achieves a mean
reciprocal rank of 30%, while Eq. 1 gets ∼0%. In
practice, few questions appear to require N > 2
on HOTPOTQA, as we find similar QA accuracy
with Eq. 1 (which consistently uses N = 2 sub-
questions) and Eq. 2 (which mostly usesN = 2 but
sometimes uses N = 3). For example, with Eq. 1
vs. Eq. 2, we find 79.9 vs. 79.4 dev F1 when using
the BERTBASE ensemble from Min et al. (2019b)
to answer sub-questions. Thus, we use Eq. 1 in
our main experiments, as it is simpler and faster to
compute. Table 8 contains an example where the
variable-length decomposition method discussed
above (Eq. 2) generates three sub-questions while
other methods produce two.

A.2 Impact of Question Corpus Size

In addition to our previous results on FastText vs.
Random pseudo-decompositions, we found it im-
portant to use a large question corpus to create

Decomp. Pseudo- HOTPOTQA F1
Method Decomps. Dev Advers. OOD

7 7 (1hop) 66.7 63.7 66.5
7 7 (Baseline) 77.0±.2 65.2±.2 67.1±.5

PseudoD Random 78.4±.2 70.9±.2 70.7±.4
BERT 78.9±.4 71.5±.3 71.5±.2
TFIDF 79.2±.3 72.2±.3 72.0±.5
FastText 78.9±.2 72.4±.1 72.0±.1

Seq2Seq Random 77.7±.2 69.4±.3 70.0±.7
BERT 79.1±.3 72.6±.3 73.1±.3
TFIDF 79.2±.1 73.0±.3 72.9±.3
FastText 78.9±.2 73.1±.2 73.0±.3

CONUS Random 79.4±.2 75.1±.2 75.2±.4
BERT 78.9±.2 74.9±.1 75.2±.2
TFIDF 78.6±.3 72.4±.4 72.8±.2
FastText 79.9±.2 76.0±.1 76.9±.1

ONUS Random 79.8±.1 76.0±.2 76.5±.2
BERT 79.8±.3 76.2±.3 76.7±.3
TFIDF 79.6±.2 75.5±.2 76.0±.2
FastText 80.1±.2 76.2±.1 77.1±.1

DecompRC 79.8±.2 76.3±.4 77.7±.2
SAE (Tu et al., 2020) 80.2 61.1 62.6
HGN (Fang et al., 2019) 82.2 78.9 76.1

Table 6: QA F1 scores for all combinations of learning
methods and pseudo-decomposition retrieval methods
that we tried.

pseudo-decompositions. QA F1 increased from
79.2 to 80.1 when we trained decomposition mod-
els on pseudo-decompositions comprised of ques-
tions retrieved from Common Crawl (>10M ques-
tions) rather than only SQUAD 2 (∼130K ques-
tions), using an appropriately larger beam size for
pseudo-decomposition (100→ 1000).

A.3 Question Mining Details
We train a 4-way FastText, bag-of-words clas-
sifier to classifier between (1) HOTPOTQA
“Bridge”/“Intersection” questions (See §4.1 for def-
initions), (2) HOTPOTQA “Comparison” questions
(See §4.1 for definition), (3) SQuAD 2.0 questions,
(4) and Common Crawl questions. We randomly
sample 15K examples from each of the above four
groups of questions to form our training data. The
trained classifier performs well, achieving 95.5%
accuracy for HOTPOTQA vs. SQuAD question
classification on held-out questions. Questions in
Common Crawl that were classified as from HOT-
POTQA by the classifier often had more words,
conjunctions (“or,” “and”), and comparison words
(“older,” “earlier”), and were generally complex
questions.

A.4 Pseudo-Decomposition Retrieval Method
Table 6 shows QA results with pseudo-
decompositions retrieved using sum-bag-of-
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Figure 5: How multi-hop QA accuracy varies over the
course of decomposition model training, for one train-
ing run of ONUS on FastText pseudo-decompositions.
Our unsupervised stopping criterion selects the epoch 3
checkpoint, which performs roughly as well as the best
checkpoint (epoch 5).

word representations from FastText, TFIDF,
BERTLARGE first layer hidden states. We also
vary the learning method and include results
Curriculum ONUS (CONUS), where we initialize
the ONUS approach with the Seq2Seq model
trained on the same data.

B Unsupervised Decomposition Model

B.1 Training Procedure
Unsupervised Stopping Criterion To stop
ONUS training, we use an unsupervised stopping
criterion to avoid relying on a supervised validation
set of decompositions. We generate a decomposi-
tion d̂ for a multi-hop question q, and we measure
BLEU between q and the model-generated ques-
tion q̂ for d̂, similar to round-trip BLEU in unsuper-
vised one-to-one translation (Lample et al., 2018).
We scale round-trip BLEU score by the fraction
of “good” decompositions, where a good decompo-
sition has (1) two sub-questions (question marks),
(2) no sub-question which contains all words in
the multi-hop question, and (3) no sub-question
longer than the multi-hop question. We chose these
criteria to detect a failure mode; without scaling, de-
composition models can achieve perfect round-trip
BLEU by copying the multi-hop question as the
decomposition. We measure scaled BLEU across
multi-hop questions in HOTPOTQA dev, and we
stop training when the metric does not increase for
3 consecutive epochs.

It is possible to stop training the decomposi-
tion model based on downstream QA accuracy.
However, training a QA model on each decom-

position model checkpoint (1) is computationally
expensive and (2) ties decompositions to a spe-
cific, downstream QA model. In Figure 5, we
show downstream QA results across various ONUS
checkpoints when using the BERTBASE single-hop
QA ensemble from Min et al. (2019b). The unsu-
pervised stopping criterion does not significantly
hurt downstream QA compared to using a weakly-
supervised stopping criterion based on multi-hop
QA accuracy.

B.2 Training Hyperparameters
MLM Pretraining We warm-start our pretrain-
ing with the 340M parameter, pretrained, English
Masked Language Model (MLM) from Lample and
Conneau (2019), a 12-block encoder-only trans-
former (Vaswani et al., 2017) trained on Toronto
Books Corpus (Zhu et al., 2015) and Wikipedia.
We pretrain our encoder for 26 hours (one full
epoch on Q) with 8 DGX-1 machines, each with
8, 32GB NVIDIA V100 GPUs interconnected by
Infiniband. We use the largest possible batch
size (1536), and we choose the best learning rate
(3×10−5) based on training loss after a small num-
ber of iterations. We chose a maximum sequence
length of 128. Other hyperparameters are identical
to those from Lample and Conneau (2019) used in
unsupervised one-to-one translation. To initialize a
pretrained encoder-decoder from the encoder-only
MLM, we initialize a 6-block encoder with the first
6 MLM blocks, and we initialize a 6-block decoder
with the last 6 MLM blocks, randomly initializing
the remaining weights as in Lample and Conneau
(2019).

ONUS We train each decomposition model with
distributed training over 8, 32GB NVIDIA V100
GPUs, lasting roughly 8 hours. We chose the
largest batch size that fit in GPU memory (256)
and then the largest learning rate that resulted in
stable learning early in training (3× 10−5). Other
hyperparameters are the same as Lample and Con-
neau (2019).

Seq2Seq We again train each decomposition
model with distributed training over 8, 32GB
NVIDIA V100 GPUs, lasting roughly 8 hours.
We use a large batch size (1024) and chose the
largest learning rate which resulted in stable train-
ing across the various pseudo-decomposition train-
ing corpora from Appendix §A.4 (1× 10−4). We
keep other training settings and hyperparameters
the same as for ONUS.
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B.3 Unsupervised Fact Retrieval

Our unsupervised supporting fact retrieval (de-
scribed in §4.3) achieves 15.7 EM and 55.2 F1
for retrieving the gold supporting facts (sentences)
needed to answer HOTPOTQA questions. To our
knowledge, there is no prior work on unsupervised
fact retrieval on HOTPOTQA to compare against,
but our performance approaches early, supervised
fact-retrieval methods on HOTPOTQA from Yang
et al. (2018) which achieve 59.0 F1.

B.4 Decomposing Questions in Other Tasks

As shown in Table 7, we decompose queries from
several other datasets, using our decomposition
model trained on only questions in HOTPOTQAand
Common Crawl. In particular, we generate sub-
questions for (1) questions in ComplexWebQues-
tions (Talmor and Berant, 2018), which are multi-
hop questions about knowledge-bases, (2) ques-
tions in CLEVR (Johnson et al., 2017b), which
are multi-hop questions about images, and (3)
claims (statements) in fact-verification challenges,
FEVER 1.0 (Thorne et al., 2018) and 2.0 (Thorne
et al., 2019). These queries differ significantly
from questions in HOTPOTQA in topic, syntac-
tic structure, and/or modality being asked about.
Despite such differences, our trained ONUS model
often (though not always) generates reasonable sub-
questions without any further finetuning, provid-
ing further evidence of the general nature of our
approach and potential for applicability to other
domains.

C Single-hop QA Model

To train the single-hop QA model, we largely fol-
low Min et al. (2019b) as described below. We use
an ensemble of two models trained on SQUAD 2
and examples from HOTPOTQA labeled as “easy”
(single-hop). SQUAD is a single-paragraph QA
task, so we adapt it to the multi-paragraph setting
by retrieving and appending distractor paragraphs
from Wikipedia for each question. We use the
TFIDF retriever from DrQA (Chen et al., 2017) to
retrieve two distractor paragraphs, which we add
to the input for one model in the ensemble. We
drop words from the question with a 5% probabil-
ity to help the model handle any ill-formed sub-
questions.
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Figure 6: QA F1 of the downstream, recomposition
model, with and without unsupervised decompositions
(UDs), when varying the amount of training data. We
also assess the impact of removing single-hop training
data (SQUAD 2.0 and HOTPOTQA“easy” questions).

D Recomposition Model

D.1 Varying Training Set Size
To understand how decompositions impact perfor-
mance given different amounts of QA training data,
we vary the number of multi-hop training exam-
ples. We use the “medium” and “hard” level labels
in HOTPOTQA to determine which examples are
multi-hop. We consider training setups where the
recomposition model does or does not use data aug-
mentation via training on hotpot “easy”/single-hop
questions and SQUAD 2 questions. Fig. 6 shows
the results. Decompositions improve QA, so long
as the recomposition model has enough training
data to achieve a minimum level of performance
(here, roughly 68 F1).

D.2 Improvements across Question Types
To better understand where decompositions im-
prove QA, we examined the improvement over
the baseline across various fine-grained splits of
our three evaluation sets. Decompositions were
roughly as helpful for yes/no questions as for
questions with a span-based answer. Across our
evaluation sets, we did not find a consistent pat-
tern regarding what questions, stratified by “wh-”
question-starting words, benefited the most from
decompositions. Intuitively, we found larger QA
improvements when using decompositions when a
sub-answer sentence contained a gold, final answer,
as shown in Figure 7.

D.3 Training Hyperparameters
To train ROBERTALARGE, we fix the number of
training epochs to 2, as training longer did not help.
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Figure 7: Performance difference between a QA model
that does vs. does not use ONUS decompositions,
stratified by whether the gold final answer is in a sub-
answer sentence. We find a larger gain when the sub-
answer sentence contains the gold, final answer.

We sweep over batch size ∈ {64, 128}, learning
rate ∈ {1×10−5, 1.5×10−5, 2×10−5, 3×10−5},
and weight decay ∈ {0, 0.1, 0.01, 0.001}, similar
to the ranges used in the original paper (Liu et al.,
2019). We chose the hyperparameters that did best
for the baseline QA model (without decomposi-
tions) on our dev set: batch size 64, learning rate
1.5× 10−5, and weight decay 0.01. Similarly, for
BERT experiments, we fix the number of epochs
to 2 and choose hyperparameters by sweeping over
the recommended ranges from Devlin et al. (2019)
for learning rate ({2× 10−5, 3× 10−5, 5× 10−5})
and batch size ({16, 32}). For BERTBASE, we thus
choose learning rate 2×10−5 and batch size 16, and
for BERTLARGE, we use the whole-word masking
model with learning rate 2×10−5 and batch size 32.
ROBERTALARGE and BERTLARGE have 340M
parameters, while BERTBASE has 110M parame-
ters. We train all QA models with mixed precision
floating point arithmetic (Micikevicius et al., 2018),
distributing training across 8, 32GB NVIDIA V100
GPUs, lasting roughly 6 hours.
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Dataset Question and ONUS Decomposition

FEVER 1.0 Q1: The highest point of the Hindu Kush is Everest.
SQ1: The highest point of the Hindu Kush?
SQ2: Where is Everest?

Q2: John Dolmayan was born on July 15, 1873.
SQ1: When was John Dolmayan born?
SQ2: Who was born on July 15, 1873.?

Q3: Colin Kaepernick became a starter during the 49ers 63rd season in the Republican party.
SQ1: When did Colin Kaepernick become a starter?
SQ2: The 49ers 63rd season in the Republican party.?

Q4: Buffy Summers has been written by Sarah Michelle Gellar.
SQ1: When has Buffy Summers been written?
SQ2: Who was Sarah Michelle Gellar.?

FEVER 2.0 Q1: Brad Wilk co-founded Rage with Tom Morello and Zack de la Rocha before 1940.
SQ1: When did Brad Wilk co-founded Rage with Tom Morello?
SQ2: Who was Zack de la Rocha before 1940?

Q2: David Spade starred in a 2015 American comedy film directed by Fred Wolf
SQ1: When was David Spade born?
SQ2: Who directed the 2015 American comedy film?

Q3: Java is in Indonesia and was formed by volcanic eruptions Pleistocene Era.
SQ1: Where is Java in Indonesia?
SQ2: When were the last volcanic eruptions of Pleistocene Era.

Q4: Henry Cavill played a fictional character, a superhero appearing
in American comic books published by DC Comics.

SQ1: When did Henry Cavill play a fictional character?
SQ2: Who are the American superhero appearing in American comic books?

CLEVR Q1: How many cubes are small brown objects or rubber things?
SQ1: How many cubes are small?
SQ2: What are brown objects or rubber things?

Q2: What material is the small ball that is in front of the big metal cylinder behind
the block that is to the left of the small yellow rubber sphere made of?

SQ1: What material is the small ball?
SQ2: The big metal cylinder behind the big metal cylinder is

to the left of the small yellow rubber sphere made of?
Q3: There is a object in front of the large cyan rubber thing; what is its material?

SQ1: Why is there a object in front of the large cyan rubber thing?
SQ2: What is its material?

Q4: Are there any other things that have the same material as the yellow thing?
SQ1: Where are there any other things that have the same material?
SQ2: The yellow thing?

Complex Q1: What is the major religions in UK that believes in the deities “Telangana Talli”?
Web SQ1: What is the major religions in UK?
Questions SQ2: Who believes in the deities “Telangana Talli”?

Q2: Where to visit in Barcelona that was built before 1900?
SQ1: Where to visit in Barcelona?
SQ2: What was built before 1900?

Q3: The person who wrote the lyrics for “Dirge for Two Veterans” was influenced by what?
SQ1: The person who wrote the lyrics?
SQ2: What was the influence of “Dirge for Two Veterans”?

Q4: What country with Zonguldak province as its second division speaks Arabic?
SQ1: What country with Zonguldak province as its second division?
SQ2: Who speaks Arabic?

Table 7: Zero-shot Unsupervised Decompositions of questions or claims from other datasets using our ONUS
model trained on HOTPOTQA and Common Crawl questions (without further, dataset-specific fine-tuning).
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Q: What is the name of the singer who’s song was released as the lead single from the album “Confessions”
and that had popular song stuck behind for 8 consecutive weeks?

Variable
ONUS+
FastText

Sub-Q1 What is the name of the singer?
Sub-Q2 Who’s the song was released as the lead single from the album?
Sub-Q3 What popular song was stuck behind for 8 consecutive weeks?

ONUS+
FastText

Sub-Q1 What is the name of the singer?
Sub-Q2 What song was released as the lead single from the album “Confessions,” and that had popular song stuck behind for 8 consecutive weeks?

ONUS+
Random

Sub-Q1 What is the name of the singer who’s song was released as the lead single from the album “Confessions?
Sub-Q2 Why did popular song stuck behind for 8 consecutive weeks?

Seq2Seq+
FastText

Sub-Q1 What is the name of the lead singer of the group?
Sub-Q2 When was the last time you heard a song called “on and on” by a female vocalist?

Seq2Seq+
Random

Sub-Q1 What is the maximum number of students allowed to take part in the program?
Sub-Q2 What is the maximum number of students allowed per year?

PseudoD
+ FastText

Sub-Q1 Which single was released as the album’s lead single?
Sub-Q2 Who did the song writing, what are some of the stories behind the songs?

PseudoD
+ Random

Sub-Q1 What was sold to foreign ptts?
Sub-Q2 What tends to lead to less money?

DecompRC Sub-Q1 Which singer?
Sub-Q2 What is the name of alicia keys’s song was released as the lead single from the album ”Confessions”, and that had popular song stuck
behind for 8 consecutive weeks?

Table 8: Various decomposition methods for the question “What is the name of the singer who’s song was released
as the lead single from the album “Confessions,” and that had popular song stuck behind for 8 consecutive weeks?”
Here, the Variable-Length ONUS model decomposed the question into three subquestions rather than two.

Q: Are both Coldplay and Pierre Bouvier from the same country?

Variable
ONUS

Sub-Q1 Who are similar musical artists to Coldplay?
Sub-Q2 Where is Pierre Bouvier from?

ONUS+
FastText

Sub-Q1 Where are Coldplay and Coldplay from?
Sub-Q2 What country is Pierre Bouvier from?

ONUS+
Random

Sub-Q1 Why are both Coldplay and Pierre Bouvier from the same country?
Sub-Q2 What is the purpose of a speech?

Seq2Seq+
FastText

Sub-Q1 Who are similar musical artists to Pierre Bouvier?
Sub-Q2 In the same year, Pierre Bouvier, Pierre Bouvier, Pierre Bouvier and Pierre Bouvier?

Seq2Seq+
Random

Sub-Q1 What is the maximum number of students allowed to take part in the program?
Sub-Q2 What is the maximum number of students allowed to take part in the course of the course of the course of the course of the course of the
course of the course of the course of the course of the course of the course of the course of the course of the course of?

PseudoD
+ FastText

Sub-Q1 What do a handful of couples have in common with Coldplay, Coldplay, and Pierre Bouvier?
Sub-Q2 Where are the french alps?

PseudoD
+ Random

Sub-Q1 In what year did Fermat declare Fermat’s little theorem?
Sub-Q2 When did the United States withdraw from the Bretton Woods Accord?

DecompRC Sub-Q1 Is Coldplay from which country?
Sub-Q2 Is Pierre Bouvier from which country?

Table 9: Various decomposition methods for: “Are both Coldplay and Pierre Bouvier from the same country?”

Q: Who is older, Annie Morton or Terry Richardson?

Variable
ONUS

Sub-Q1 Who is Annie Morton?
Sub-Q2 Who was Terry Morton?

ONUS+
FastText

Sub-Q1 Who is Annie Morton?
Sub-Q2 When was Terry Richardson born?

ONUS+
Random

Sub-Q1 Who is older, Annie Morton?
Sub-Q2 Who is Terry Richardson?

Seq2Seq+
FastText

Sub-Q1 Who is Terry Morton?
Sub-Q2 Who is Terry Morton?

Seq2Seq+
Random

Sub-Q1 What is the maximum number of students allowed to take part in the program?
Sub-Q2 What is the maximum number of students allowed to take part in the program?

PseudoD
+ FastText

Sub-Q1 Who was Terry Richardson?
Sub-Q2 Who changes positions more, Annie Morton, Cotton Hill, or Terry Richardson?

PseudoD
+ Random

Sub-Q1 What did Decnet Phase I become?
Sub-Q2 What group can amend the Victorian constitution?

DecompRC Sub-Q1 Annie Morton is born when?
Sub-Q2 Terry Richardson is born when?

Table 10: Various decomposition methods for: “Who is older, Annie Morton or Terry Richardson?”


