
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 8704–8717,
November 16–20, 2020. c©2020 Association for Computational Linguistics

8704

TeaForN: Teacher-Forcing with N-grams

Sebastian Goodman
Google Research

Venice, CA 90291
seabass@google.com

Nan Ding
Google Research

Venice, CA 90291
dingnan@google.com

Radu Soricut
Google Research

Venice, CA 90291
rsoricut@google.com

Abstract

Sequence generation models trained with
teacher-forcing suffer from issues related to ex-
posure bias and lack of differentiability across
timesteps. Our proposed method, Teacher-
Forcing with N-grams (TeaForN), addresses
both these problems directly, through the use
of a stack of N decoders trained to decode
along a secondary time axis that allows model-
parameter updates based on N prediction steps.
TeaForN can be used with a wide class of
decoder architectures and requires minimal
modifications from a standard teacher-forcing
setup. Empirically, we show that TeaForN
boosts generation quality on one Machine
Translation benchmark, WMT 2014 English-
French, and two News Summarization bench-
marks, CNN/Dailymail and Gigaword.

1 Introduction

Many state-of-the-art sequence generation mod-
els are trained using a technique called teacher-
forcing (Goodfellow et al., 2016). Teacher-forcing
is popular because it improves sample efficiency
and provides training stability, but models trained
with teacher-forcing are known to suffer from is-
sues such as exposure bias (Venkatraman et al.,
2015; Bengio et al., 2015; Ding and Soricut, 2017)
and a lack of differentiability across timesteps (i.e.,
training updates made when decoding at time-step t
cannot fully propagate to time-step t−1). Previous
attempts to address these issues include scheduled
sampling (Bengio et al., 2015), parallel N-gram
prediction (Yan et al., 2020), and sampling from
previous predictions (Zhang et al., 2019).

Our proposed method, Teacher-Forcing with N-
grams (TeaForN), imposes few requirements on the
decoder architecture and does not require curricu-
lum learning or sampling model outputs. TeaForN
fully embraces the teacher-forcing paradigm and

extends it to N-grams, thereby addressing the prob-
lem at the level of teacher-forcing itself.

The advent of large-scale pretraining has pushed
the state-of-the-art on Natural Language bench-
marks to impressive heights, often showing gains
across many tasks at once (Devlin et al., 2019; Raf-
fel et al., 2019; Zhang et al., 2019). A negative
consequence of this is the tendency towards large,
data-hungry models, which have a negative impact
on energy-consumption and accessibility (Strubell
et al., 2019), as well as higher latency and produc-
tion costs. As such, it is of increasing importance
to develop techniques that counteract these tenden-
cies. While TeaForN does increase training cost
moderately, it can be used to drive down latency
and inference cost, which dominate the overall cost
of a production model.

Many sequence generation models use beam
search to improve generation quality (Vaswani
et al., 2017; Raffel et al., 2019; Zhang et al., 2019;
Yan et al., 2020). In contrast with greedy decoding,
beam search keeps the k most-likely candidates
at each decoding timestep. While beam search
has proven to be a reliable technique for improv-
ing output quality, previous work has shown that
beam search actually degrades performance for suf-
ficiently large k (Koehn and Knowles, 2017). In
addition, the inference cost of a model increases lin-
early with k, due to the need for multiple decodings.
We conduct an analysis of the effect of beam size
on models trained both with and without TeaForN.
We show that models trained with TeaForN require
a smaller beam size to reach similar performance, a
property that can achieve significant cost-savings.

Our experiments show that TeaForN can boost
performance on both Machine Translation and
News Summarization tasks, provided there is suf-
ficient model capacity. With TeaForN, Trans-
former big (Vaswani et al., 2017) improves by +.5
SacreBLEU (Post, 2018) on the WMT14 En-Fr



8705

benchmark with beam search and +.3 without.
When using TeaForN for summarization, PEGA-
SUS large (Zhang et al., 2019) improves by +.3
ROUGE-L on the Gigaword benchmark (Rush
et al., 2015) and by +.2 on the CNN/Dailymail
benchmark (Hermann et al., 2015). Further, PE-
GASUS large trained with TeaForN matches the
prior ROUGE-L scores on these benchmarks with-
out beam search, representing an 8x reduction in
decoder inference cost.

2 Related Work

One of the standard approaches to sequence-
learning training is Maximum-likelihood Estima-
tion (MLE). Although widely used in large array of
applications, MLE estimation for sequence learn-
ing suffers from the exposure-bias problem (Venka-
traman et al., 2015; Ranzato et al., 2015). Exposure-
bias produces brittle models due to training proce-
dures during which the models are only exposed
to their training data distribution but not to their
own predictions. Possible solutions to the exposure-
bias problem in neural-network settings have used
“data as demonstrator” (Venkatraman et al., 2015)
and “scheduled sampling” (Bengio et al., 2015)
approaches. Although improving model perfor-
mance in practice, such proposals have been shown
to be statistically inconsistent (Huszar, 2015), and
still need to perform MLE-based warm-start train-
ing, rendering such solutions unsatisfactory. Along
similar lines, the “professor forcing” (Lamb et al.,
2016) method uses adversarial domain adaptation
to encourage network dynamics to be the same
during training and inference, though it requires
sampling sequences during training.

A different approach, based on reinforcement
learning methods, achieves sequence learning fol-
lowing a policy-gradient (PG) method (Sutton et al.,
1999). It directly attacks the exposure-bias problem
by having the training models exposed exclusively
to their own predictions while scoring them using
reward functions. However, this approach intro-
duces another issue, related to the large discrep-
ancy between the model prediction distribution and
the reward function’s values, which is especially
acute during the early training stages when the pre-
dicted outputs are all equally bad. As a result, this
method also requires a warm-start phase in which
the model distribution achieves some local maxi-
mum with respect to a reward–free objective (e.g.,
MLE), followed by a model refinement phase in

which reward-based PG updates are used to refine
the model (Ranzato et al., 2015; Wu et al., 2016;
Liu et al., 2017). Although such combinations
achieve better results in practice compared to pure
likelihood-based approaches, they are unsatisfac-
tory from a theoretical and modeling perspective,
as well as inefficient from a speed-to-convergence
perspective. A pure PG formulation that side-steps
these issues is (Ding and Soricut, 2017), which al-
lows for both cold-start training as well as more
efficient convergence properties.

The PG-based approaches have an inherent
complexity that stems from the use of quirky re-
ward functions such as ROUGE (Lin, 2004) or
CIDEr (Vedantam et al., 2015), which forfeits the
advantage of sample efficiency as they often can-
not be efficiently computed using current acceler-
ators like TPUs (You et al., 2019). MLE-based
approaches appear to be favored due to efficiency
properties, and the search for training methods that
produce less brittle models is still on-going.

Another closely related idea is End-to-End Back-
prop (E2E) (Ranzato et al., 2015), which has a
similar goal of naturally approximating sequence
level training by propagating smooth model predic-
tions instead of groundtruth inputs. TeaForN dif-
fers from E2E in several key ways. First, TeaForN
learns jointly from both groundtruth and model
predictions as inputs throughout the entire training
duration, whereas E2E requires a training schedule
to transition from groundtruths to model predic-
tions. Second, TeaForN supports methods other
than k-max for computing smooth model predic-
tions, two of which we explore as a part of our
work. Third, we introduce the notion of a discount
factor, which weights the importance of immediate
predictions higher than that of future predictions.

Another such work is (Yan et al., 2020), which
proposes a modified Transformer for parallel N-
gram prediction. While their work does address the
issue of strong local correlations caused by teacher-
forcing, it does not address exposure bias, as it
always trains on groundtruth inputs.

Also related are models such as the one proposed
by (Strubell et al., 2017), which uses a stacked of
dilated convolutions to iteratively refine model pre-
dictions. Though architecturally similar, TeaForN
only uses the stack at training time and solves for a
fundamentally different problem.

Our TeaForN method maintains the efficiency
advantages of MLE-based approaches, while ad-



8706

GO, y
(1)
gt , ..., y

(t−1)
gt

Embedding Lookup

Input Embeddings

x
(1)
0 , ..., x

(t)
0

Timing Signal

pos(1), ..., pos(t)

Decoder-0

Output Embeddings

o
(1)
0 , ..., o

(t)
0

Logits/Loss L0

Timing Signal

pos(2), ..., pos(t+ 1)

Input Embeddings

x
(1)
1 , ..., x

(t)
1

Decoder-1

Output Embeddings

o
(1)
1 , ..., o

(t)
1

Logits/Loss λL1

b b b

Groundtruth Prefix

s = 0

s = 1

Targets

y
(2)
gt , ..., y

(t+1)
gt

Targets

y
(1)
gt , ..., y

(t)
gt

Figure 1: An illustration of TeaForN training, wherein
each decoder after the first uses the outputs of the previ-
ous decoder as inputs. Decoder weights may be shared
across layers in order to address exposure bias.

dressing both exposure bias and the issue of dif-
ferentiability across timesteps. In addition, it is
general enough to be used on a wide class of autore-
gressive decoders, including RNN (Hochreiter and
Schmidhuber, 1997; Chung et al., 2014) and Trans-
former (Vaswani et al., 2017) decoders, though our
experiments focus on the Transformer.

3 TeaForN

Autoregressive sequence decoders are trained
to minimize the negative log likelihood of the
groundtruth tokens y(t)gt . During training, previ-
ous groundtruth tokens are used as decoder inputs
for predicting the next token. If we define the em-
bedding matrix to be E of size V ×D, where V is
the vocabulary size and D is the embedding size,
and the embedding of the groundtruth token as
x(t) = E[y

(t−1)
gt , :] := e

(t−1)
gt of size D, then the

standard teacher-forcing loss is equal to,

L = −
T∑
t=1

log(P (y
(t)
gt |y

(0)
gt , ..., y

(t−1)
gt ))

= −
T∑
t=1

log(P (y
(t)
gt |x(1), ..., x(t)))

where we define y(0)gt = GO as the starting token.

The class probability distribution P is typically
modeled as softmax-normalized logits, which are a
linear projection of decoder output o(t) of size D
onto the class embeddings using output projection
matrix W of size V ×D:

P (y(t)|x(1), ..., x(t)) = softmax(Wo(t)).

To reduce the model parameter size, it is standard to
share the parameters of the output projection matrix
and the embedding matrix, such that E =W .

During inference, groundtruth tokens become
unavailable. Therefore, previous tokens from the
model predictions are used as decoder inputs for
decoding the next token. The discrepancy between
training time and inference time input distributions
causes models to suffer from exposure bias, mean-
ing that they do not learn to correct for past decod-
ing errors (Bengio et al., 2015).

TeaForN addresses exposure bias by learning
jointly how to predict from both groundtruth and
past model predictions as inputs. TeaForN setups
consist of a stack of N decoders, as illustrated in
Figure 1. At position t, the first decoder (Decoder-
0) takes input from the embedding of the previous
groundtruth token x(t)0 = e

(t−1)
gt and learns to pre-

dict the target token y(t)gt , same as in teacher-forcing.
The next decoder (Decoder-1) takes input from the
output x(t)1 = o

(t)
0 of the first decoder and learns to

predict the next target token y(t+1)
gt .

More formally, let us use subscript s ∈ [0, N)
to denote the offset within the decoder stack. We
define the input to decoder s at time t as:

x(t)s = pos(t+ s) +

{
e
(t−1)
gt s = 0

o
(t)
s−1 s > 0

where pos(t + s) is a timing signal that is
added to the inputs for models such as the Trans-
former (Vaswani et al., 2017). This term may be
omitted for models that do not expect it.

The training loss of Decoder-s at time t is the
negative log likelihood of the (t+ s)th element in
the groundtruth sequence:

Ls = −
T∑
t=1

log(P (y
(t+s)
gt |x(1)s , ..., x(t)s ; θs))

and the total TeaForN training loss is the sum of
decoder losses

L =

N−1∑
s=0

λs−1Ls



8707

where λ ∈ (0, 1] is a discount factor needed to
weigh the risk of harming next-word accuracy
against the benefits of TeaForN. During inference,
TeaForN uses only the first decoder (Decoder-0) in
the stack; the rest are discarded.

The intuition behind TeaForN is as follows. Un-
der standard teacher-forcing, the decoder output
o(t) only learns to predict the groundtruth label
y
(t)
gt , while outputs that favor other classes are con-

sidered equally bad, and will be penalized by the
loss. This is not reasonable because classes carry-
ing similar meanings to the groundtruth label do not
change the meaning of the sequence significantly,
and may still lead to the correct prediction for the
next label. Under TeaForN, the decoder output o(t)

is also used as the input of a secondary decoder
for decoding the next position. Therefore, all out-
puts that result in predicting the next groundtruth
label y(t+1)

gt will have lower loss and therefore be
differentiated from other outputs.

In our experiments, we allow the decoder pa-
rameters to be either shared (θ0 = θs, ∀s) or un-
shared. In a shared-weight configuration, the model
learns to predict the next groundtruth label from
the class that the same model predicted in the pre-
vious position. This is similar to the inference time
condition, so we expect shared-weight TeaForN to
address exposure-bias better than unshared-weight
TeaForN. Shared-weight configurations also have
performance advantages such as lower memory
consumption and faster training.

Since TeaForN solves for a more difficult prob-
lem than teacher-forcing, we expect it to work bet-
ter for models with higher capacity. We later show
evidence of this by comparing results for two model
sizes on Machine Translation.

It is straightforward to show that TeaFor1 (N=1)
and teacher-forcing are equivalent, as the inputs
to the first TeaForN decoder are groundtruth se-
quence embeddings and λ0 = 1. Thus, TeaForN is
a natural extension of teacher-forcing to N-grams.

3.1 Embedded Top-k Stacked Decoder Input
Previously, our TeaForN model directly used the
decoder output of the (s− 1)-th stack as the input
of the decoder of the s-th stack:

x(t)s = o
(t)
s−1. (1)

This is an approximation to the inference-time de-
coder input, which (for greedy decoding) is

x(t)s = E[argmax(Wo
(t)
s−1), :], (2)

where argmax(x) returns the index of the V -dim
vector with the maximum value.

Inspired by the End-to-End Backprop
(E2E) (Ranzato et al., 2015), we also consider the
following alternative decoder input,

x(t)s = E>softmax(top k(Wo
(t)
s−1)), (3)

where top k is a function which keeps the top-k
values of the vector, and masks out the others.

It is easy to verify, when k = 1, Eq. (3) reduces
to Eq. (2); when k = V ,

x(t)s = E>softmax(Wo
(t)
s−1).

Compared to Eq. (1), Eq. (3) is more computa-
tionally expensive, as it involves additional embed-
ding matrix multiplications and/or a top-k sorting.
Furthermore, we would like to emphasize a critical
difference between the TeaForN and E2E (Ranzato
et al., 2015). In TeaForN, the 0-th stack of every
position is always clamped to the groundtruth input,
while for E2E the groundtruth is completely thrown
away after warm-up training. The groundtruth
clamping allows the TeaForN to avoid the warm-up
training which is necessary for E2E.

4 Experimental Results

Our empirical study of TeaForN is comprised of
two sections. First, we present experiments on
Machine Translation using the well-known Trans-
former model (Vaswani et al., 2017). Second, we
show results for News Summarization, for which
we use PEGASUS (Zhang et al., 2019), a state-of-
the-art pretrained text summarization model.

We perform minimal hyperparameter tuning over
the course of these experiments. This can be partly
credited to the underlying models being well-tuned
already, but also to TeaForN, which works out-of-
the-box without much hyperparameter tuning. One
exception is the tuning of the number of training
steps, as we found that the number of steps used by
previous settings is sometimes insufficient.

4.1 Machine Translation
In this section, we study the effects of applying
TeaForN to a well-known Transformer-based Ma-
chine Translation model. We present results for
two size variants of the model, Transformerbase and
Transformerbig (Vaswani et al., 2017). The differ-
ences are summarized in Table 2.

We use the same WMT14 language-pair bench-
marks originally reported in the Transformer paper:



8708

θshared
Greedy decoding Beam search@k=4

Teacher-forcing TeaFor2 Teacher-forcing TeaFor2

En-De
N

26.96± .04 27.02± .06
27.96± .09 27.88± .05

Y 27.16± .02 27.90± .03

En-Fr
N

40.20± .04 40.32± .08
40.86± .08 40.88± .10

Y 40.32± .04 40.84± .07

Table 1: A comparison of models on WMT14 language pairs En-De and En-Fr using Transformerbase. We report
mean and Standard Error of SacreBLEU scores over five independent training runs. θshared refers to whether the
free parameters of the decoder are shared across decoder instances (Y) or kept separate (N). The discount factor is
λ = .5 for TeaFor2 models.

• English-German (En-De), with 4.5M sen-
tence pairs for training and 2,737 for testing.

• English-French (En-Fr), with 36M sentence
pairs for training and 3,003 for testing.

We use SacreBLEU (Post, 2018) with case-
sensitive tokenization to score translations. We
report SacreBLEU scores for beam search widths
k ∈ [1, 8] to show the interaction between TeaForN
learning and beam search.

4.1.1 Transformerbase

Using Transformerbase as our underlying model,
we measure the impact of TeaForN on the Ma-
chine Translation task. We test both shared- and
unshared-weight configurations, with N = 2 (i.e.
”TeaFor2”) and λ = .5. We expect weight-shared
configurations to be more effective, as a more direct
means of addressing exposure bias in the decoder.

All models are trained for 1M steps, and we
observe no signs of overfitting. For model selection,
we average the last five checkpoints, as originally
done for the Transformer (Vaswani et al., 2017).
We report mean and standard-error variation of
SacreBLEU scores over five runs.

Transformerbase Transformerbig

Pdrop .1 .3
dmodel 512 1024
dff 2048 4096
h 8 16

Table 2: A summary of differences between model vari-
ants Transformerbase and Transformerbig. Pdrop refers
to dropout probability, dmodel refers to class embed-
ding size and hidden size, dff refers to the size of
feedforward layers, and h refers to the number of self-
attention heads (Vaswani et al., 2017).

Table 1 shows that TeaFor2 improves the qual-
ity of greedy decoding on both language pairs.
TeaFor2 raises SacreBLEU scores by +.20 on En-
De (27.16 vs 26.96) and +.12 on En-Fr (40.32
vs 40.20). Shared-weight TeaFor2 boosts perfor-
mance on the En-De benchmark by +.14 Sacre-
BLEU (27.16 vs 27.02). The small size of the
En-De training set (relative to En-Fr), means that
the En-De model has additional capacity for learn-
ing the TeaFor2 task. This supports our case that
TeaForN with weight-sharing improves model per-
formance, but only if there is sufficient model ca-
pacity. Table 1 also shows that TeaFor2, with or
without weight-sharing for En-Fr, outperforms stan-
dard teacher-forcing by the same amount, +.12
SacreBLEU (40.32 vs 40.20). We credit the in-
crease in performance to TeaForN’s ability to make
predictions that lead to better predictions in the
subsequent sequence positions.

Beam search results in Table 1 show that the
gains of TeaFor2 are negated by beam search with
k = 4. Because of the small capacity of the
Transformerbase model, the benefits of TeaFor2
are minimal and only reflected in the result from
greedy decoding. In the following experiment,
we show that higher-capacity models benefit more
from TeaForN when using beam search.

4.1.2 Transformerbig

Using Transformerbig, we now compare standard
teacher-forcing against TeaForN (N=2,3).

We test against the same WMT14 language pairs
as the previous experiments. We train En-Fr mod-
els for 1M steps and En-De models for 500k steps.
Beyond 500k training steps, we observe that En-
De models overfit the training data (see Table 4).
This is likely due to a combination of larger model
capacity in Transformerbig (Table 2) and smaller
training set for En-De. For model selection, we



8709

1 2 3 4 5 6 7 8
41.4

41.6

41.8

42

42.2

42.4

42.6

42.8

Beam width, k

Sa
cr

eB
L

E
U

TeaFor2 (English-French)

Teacher-forcing (λ = 0)
TeaFor2 (λ = .2)
TeaFor2 (λ = .4)
TeaFor2 (λ = .6)
TeaFor2 (λ = .8)
TeaFor2 (λ = 1)

1 2 3 4 5 6 7 8
41.4

41.6

41.8

42

42.2

42.4

42.6

42.8

Beam width, k

Sa
cr

eB
L

E
U

TeaFor3 (English-French)

Teacher-forcing (λ = 0)
TeaFor3 (λ = .2)
TeaFor3 (λ = .4)
TeaFor3 (λ = .6)
TeaFor3 (λ = .8)
TeaFor3 (λ = 1)

Figure 2: Beam width vs. SacreBLEU on the WMT 2014 English-French benchmark, for discount factors λ ∈
{0, .2, .4, .6, .8, 1}. Reported scores are averages over n=3 independent training runs, with error bars omitted for
readability. See Appendix Tables 7 and 9 for results with standard error measurements.

average the last twenty checkpoints, as was done
for the Transformer (Vaswani et al., 2017).

We use weight-sharing for all TeaForN setups
in this section. Transformer big has more capacity
than Transformer base, so it is expected to perform
better in a shared-weight configuration.

Figure 2 shows that TeaForN outperforms
standard-teacher forcing on the En-Fr benchmark,
across all beam widths up to k = 8 and all dis-
count factors λ ∈ {.2, .4, .6, .8, 1}. With beam
2, TeaFor2 achieves a higher score on En-Fr than
teacher-forcing achieves with any beam size up to
8 (42.6 vs 42.4) and significantly outperforms it
with beam size 5 (42.8 vs 42.4). TeaFor3 performs
as well as Teacher-forcing but worse than TeaFor2

En-De En-Fr

(Ott et al., 2018) 28.6 41.4
(So et al., 2019) 29.2 -
Transformerbig 29.20± 0.12 42.33± 0.07

TeaFor2 29.30± 0.05 42.73± 0.05
TeaFor3 29.23± 0.05 42.43± 0.03

Table 3: A comparison of SacreBLEU scores of Ma-
chine Translation models on WMT14 En-De and En-Fr
benchmarks. Results for our models are shown below
the horizontal line. We report mean and standard error
over n=3 independent training runs. We set beam width
k = 8 for all models; we tune λ against the validation
set (selected values of λ are .4, .2, .4, and .4 left-to-right
and top-to-bottom). See Appendix for test and valida-
tion scores with standard error measurements.

on the En-Fr benchmark, for nearly every discount
factor tested. This shows that TeaForN can be used
to train models with higher quality for any given
beam size or, alternatively, train models of similar
quality but lower inference cost (i.e., faster).

In contrast with the results for lower-capacity
models, Fig. 2 shows that beam search does not
erase gains due to TeaForN training. The Teacher-
forcing setup gains +.6 SacreBLEU from beam
search (42.4 vs 41.8) compared to +.6 for TeaFor2
(42.8 vs 42.2), in spite of a +.4 SacreBLEU
higher baseline. Provided sufficient model capac-
ity, TeaForN is seen to improve the quality of the
underlying model, so that greedy decoding is more
effective, but not at the expense of beam search.

Intuitively, discount factors that are too high may
interfere with prediction quality, as they decrease
the relative importance of next word prediction.
We see this on the English-German benchmark,
shown in Fig. 3, where the highest discount factor
tested (λ = 1) significantly reduces greedy perfor-
mance (27.9/27.8 from 28.1) and peak performance
(28.9/28.8 vs 29.2). In all of our Transformerbig
experiments, the best performing discount factor is
either .2 or .4, which are the lowest values tested.

Table 3 shows our results compared to current
state-of-the-art Machine Translation models. To
allow for a fair comparison, we select our discount
factor λ ∈ {.2, .4, .6, .8, 1} to maximize perfor-
mance against a development set, WMT12. On
the En-De benchmark, TeaForN setups perform
similarly to Teacher-forcing, at 29.0 SacreBLEU.



8710

On En-Fr, TeaFor2 outperforms Teacher-forcing
significantly, by +.4 SacreBLEU (42.7 vs 42.3).

4.1.3 Top-K Approximation
Up to this point, TeaForN setups have used Eq. (1)
to approximate the inference-time decoder input.

We now share results for an alternative approx-
imation called Top-K, described by Eq. (3) and
inspired by (Ranzato et al., 2015), which feeds
the embedding expectation of the decoder output.
If K = V , Top-K is an exact expectation. If
K < V , Top-K approximates the expectation as the
probability-weighted embeddings of the K most
likely outputs.

In this experiment, we try K ∈ {4, V } and N ∈
{2, 3} using Transformerbig as our base model. We
report results on both WMT14 benchmarks. We
use discount factor λ = .2 for all setups.

Figure 4 shows that Top-K does not work as well
as the original TeaForN approximation described
by Eq. (1). Top-K withK = 4 performs worse than
TeaForN on the En-De benchmark but not the En-
Fr benchmark. When K = V , the situation is the
exact opposite, with Top-K performing better on
the En-De benchmark but not the En-Fr benchmark.

4.1.4 Word Drop Regularization
TeaForN could potentially have regularization-like
effects by solving for a more difficult task than
standard teacher-forcing. TeaForN trains models to
decode not just from groundtruth prefixes, but also
from past model predictions.

To see whether regularization-like effects are
responsible for the gains seen using TeaForN,
we perform a regularization experiment using
Transformerbig. In particular, we randomly sample
a set of groundtruth decoder input words in each ex-
ample with probability Pdrop ∈ {0, .1, .2, .3}. For
each selected word, we apply the word drop regu-
larization by masking all its embedding elements

1x iterations 1.5x iterations

En-De
greedy 28.10± .12 27.97± .20
beam 29.30± .20 29.20± .16

En-Fr
greedy 41.83± .08 41.90± .12
beam 42.40± .04 42.40± .12

Table 4: SacreBLEU scores of Transformerbig on
WMT14 En-De and En-Fr benchmarks. We report
mean and standard error over n=3 independent training
runs.

to zero.
Fig. 5 shows that word drop regularization in-

creases performance against the En-De benchmark
but reduces performance against En-Fr. These
results are in stark contrast with the results of
TeaForN, which only improves performance in
the En-Fr case. Though TeaForN may have
regularization-like effects, they are likely different
from the effects of word drop regularization.

4.1.5 Additional Compute
TeaForN uses more compute resources than
Teacher-forcing when inference-time architecture
and number of training iterations are the same, as
is the case in our Transformerbig experiments.

To enable a fair comparison in terms of training-
time compute, we conduct an experiment where
we train Transformerbig so that the total device
time is about the same. We train the baseline for
1.5x iterations, a figure which was estimated from
the observed training speeds of Transformerbig and
TeaFor2 (4.5 iterations/sec and 6.8 iterations/sec).

Table 4 shows that this additional training does
not significantly benefit Transformerbig, for either
language pair. Based on these results, we conclude
that the benefits of TeaForN do not likely derive
from additional compute.

4.2 News Summarization
We now present our experiment on News Summa-
rization using PEGASUSlarge (Zhang et al., 2019)
as our base model.

We test on two News Summarization tasks,
CNN/Dailymail and Gigaword:

• CNN/Dailymail (Hermann et al., 2015) con-
sists of 93k CNN articles and 220k Daily Mail
articles, where publishers provide bullet-style
summaries with each article.

• Gigaword (Rush et al., 2015) contains 4M
articles from seven publishers, where article
headlines serve as the summary.

The PEGASUS approach has been shown to
work better on News Summarization tasks when
pretrained on HugeNews, a dataset of 1.5B news-
like articles scraped from the web between 2013
and 2019. We use the same pretraining proce-
dure as originally described for PEGASUSlarge
(HugeNews), which uses teacher-forcing to learn
based on an unsupervised Gap Sentence Generation
task (Zhang et al., 2019).



8711

1 2 3 4 5 6 7 8
27.6

27.8

28

28.2

28.4

28.6

28.8

29

29.2

29.4

Beam width, k

Sa
cr

eB
L

E
U

TeaFor2 (English-German)

Teacher-forcing (λ = 0)
TeaFor2 (λ = .2)
TeaFor2 (λ = .4)
TeaFor2 (λ = .6)
TeaFor2 (λ = .8)
TeaFor2 (λ = 1)

1 2 3 4 5 6 7 8
27.6

27.8

28

28.2

28.4

28.6

28.8

29

29.2

29.4

Beam width, k

Sa
cr

eB
L

E
U

TeaFor3 (English-German)

Teacher-forcing (λ = 0)
TeaFor3 (λ = .2)
TeaFor3 (λ = .4)
TeaFor3 (λ = .6)
TeaFor3 (λ = .8)
TeaFor3 (λ = 1)

Figure 3: Beam width vs. SacreBLEU on the WMT 2014 English-German benchmark, for discount factors λ ∈
{0, .2, .4, .6, .8, 1}. Left and right plots show TeaFor2 and TeaFor3, respectively. Reported scores are averages
over n=3 independent training runs, with error bars omitted for readability. See Appendix Tables 11 and 13 for
results with standard error measurements.

1 2 3 4 5 6 7 8
27.6

27.8

28

28.2

28.4

28.6

28.8

29

29.2

29.4

Beam width, k

Sa
cr

eB
L

E
U

English-German

Teacher-forcing
TeaFor2
TeaFor2 (top4)
TeaFor2 (topV )

1 2 3 4 5 6 7 8

41.8

42

42.2

42.4

42.6

42.8

Beam width, k

Sa
cr

eB
L

E
U

English-French

Teacher-forcing
TeaFor2
TeaFor2 (top4)
TeaFor2 (topV )

Figure 4: Beam width vs. SacreBLEU on WMT 2014 benchmarks comparing approximation methods Top-K.
Reported scores are averages over n=3 independent training runs, with error bars omitted for readability. See
Appendix Tables 15 and 16 for results with standard error measurements.

1 2 3 4 5 6 7 8
27.8

28

28.2

28.4

28.6

28.8

29

29.2

29.4

29.6

Beam width, k

Sa
cr

eB
L

E
U

English-German

Pdrop = 0 (Teacher-forcing)
Pdrop = .1
Pdrop = .2
Pdrop = .3

1 2 3 4 5 6 7 8
41.4

41.6

41.8

42

42.2

42.4

Beam width, k

Sa
cr

eB
L

E
U

English-French

Pdrop = 0 (Teacher-forcing)
Pdrop = .1
Pdrop = .2
Pdrop = .3

Figure 5: Beam width vs. SacreBLEU on WMT 2014 benchmarks using Word Drop Regularization. Reported
scores are averages over n=3 independent training runs. See Appendix Tables 17 and 18 for results with standard
error measurements.



8712

R1/R2/RL CNN/Dailymail Gigaword

BERTShare (Rothe et al., 2019) 39.25/18.09/36.45 38.13/19.81/35.62
MASS (Song et al., 2019) 42.12/19.50/39.01 38.73/19.71/35.96

UniLM (Dong et al., 2019) 43.33/20.21/40.51 38.45/19.45/35.75
BART (Lewis et al., 2019) 44.16/21.28/40.90 -

T5 (Raffel et al., 2019) 43.52/21.55/40.69 -
PEGASUS (Zhang et al., 2019) 44.17/21.47/41.11 39.12/19.86/36.24
(Greedy) TeaFor3+PEGASUS 43.90/20.36/41.20 39.10/19.40/36.30

(Beam@k=8) TeaFor3+PEGASUS 44.20/21.70/41.32 39.16/20.16/36.54

Table 5: A comparison of News Summarization models on CNN/Dailymail and Gigaword benchmarks. Scores are
ROUGE-1/ROUGE-2/ROUGE-L F-measures. PEGASUS is shorthand for PEGASUSlarge (HugeNews) and uses
beam width k = 8 for both tasks. We use TeaFor3 with λ = .5 and weight-sharing.

Decoder Layers Steps/sec HBM usage (GB)
Teacher-Forcing 16 1.97 8.64

TeaFor2 32 1.25 8.96
TeaFor3 48 .986 10.33

Table 6: Performance of TeaForN with weight-sharing during PEGASUSlarge (HugeNews) pretraining. Steps/sec
refers to the number of training batches processed per second. High-Bandwidth Memory usage refers to the
consumption of Google Cloud TPU device memory.

We use TeaFor3 with λ = .5 and weight-sharing.
For model selection, we use the checkpoint with
the highest ROUGE-L F-score on the validation set,
with evaluations every 1k steps. We stop training
on Gigaword after 160k steps and CNN/Dailymail
after 400k steps.

Final scores in Table 5 show the benefits of
TeaForN on summarization tasks. Using just
greedy decoding, TeaFor3 setups match or ex-
ceed the previous state-of-the-art ROUGE-L score
on both CNN/Dailymail and Gigaword bench-
marks, with an 8x cheaper decoder. Using beam
search, TeaForN increases performance on the
CNN/Dailymail task by +.23 ROUGE-2 (21.70 vs
21.47) and +.21 ROUGE-L (41.32 vs 41.11) and
the Gigaword task by +.30 ROUGE-2 (20.16 vs
19.86) and +.30 ROUGE-L (36.54 vs 36.24).

4.3 Training Performance

Table 6 shows how TeaForN affects training per-
formance, using Google Cloud TPUs (You et al.,
2019). TeaFor2 slows down training by 37% com-
pared to standard teacher-forcing (1.25 steps/sec
vs 1.97) and TeaFor3 by 50% (.986 steps/sec vs
1.97). TeaFor2 increases High-Bandwidth Memory
(HBM) usage by 4% compared to teacher-forcing
(8.96GB vs 8.64) and TeaFor3 by 20%.

While training cost and speed are moderately im-

pacted by TeaForN, we note that inference cost is
significantly reduced by virtue of producing mod-
els that reach similar quality with fewer beams,
enabling significant cost savings for production
models, in addition to overall stronger models.

5 Conclusion

In this work, we introduce a new technique for se-
quence generation models called Teacher-Forcing
with N-grams (TeaForN), which (a) addresses ex-
posure bias, (b) allows the decoder to better take
into account future decisions, and (c) requires no
curriculum training.

We show empirical evidence of the efficacy
of TeaForN on several sequence generation tasks.
With Transformer big (Vaswani et al., 2017), we
boost the performance of Transformerbig signif-
icantly on the En-Fr benchmark. With PEGA-
SUS large (Zhang et al., 2019), we improve upon
the existing ROUGE-L scores the Gigaword and
CNN/Dailymail benchmarks (Rush et al., 2015).
Further, we show that TeaForN can match the prior
state-of-the-art ROUGE-L scores on the summa-
rization benchmarks without beam search, repre-
senting an 8x reduction in decoder cost at inference.

Overall, TeaForN is a promising approach for
improving quality and/or reducing inference costs
in sequence generation models.



8713

References
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and

Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems 28, pages 1171–1179.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Nan Ding and Radu Soricut. 2017. Cold-start reinforce-
ment learning with softmax policy gradients. In
NIPS.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified Language
Model Pre-training for Natural Language Under-
standing and Generation. arXiv e-prints, page
arXiv:1905.03197.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suley-
man, and Phil Blunsom. 2015. Teaching Machines
to Read and Comprehend. arXiv e-prints, page
arXiv:1506.03340.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ferenc Huszar. 2015. How (not) to train your genera-
tive model: Scheduled sampling, likelihood, adver-
sary? CoRR, abs/1511.05101.

Philipp Koehn and Rebecca Knowles. 2017. Six Chal-
lenges for Neural Machine Translation. arXiv e-
prints, page arXiv:1706.03872.

Alex M Lamb, Anirudh Goyal ALIAS
PARTH GOYAL, Ying Zhang, Saizheng Zhang,
Aaron C Courville, and Yoshua Bengio. 2016.
Professor forcing: A new algorithm for training
recurrent networks. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems
29, pages 4601–4609. Curran Associates, Inc.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer.
2019. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Trans-
lation, and Comprehension. arXiv e-prints, page
arXiv:1910.13461.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out.

Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama,
and Kevin Murphy. 2017. Optimization of image
description metrics using policy gradient methods.
In International Conference on Computer Vision
(ICCV).

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling Neural Machine Trans-
lation. arXiv e-prints, page arXiv:1806.00187.

Matt Post. 2018. A call for clarity in reporting bleu
scores.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level
training with recurrent neural networks. CoRR,
abs/1511.06732.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2019. Leveraging Pre-trained Checkpoints for Se-
quence Generation Tasks. arXiv e-prints, page
arXiv:1907.12461.

Alexander M. Rush, Sumit Chopra, and Jason We-
ston. 2015. A Neural Attention Model for Abstrac-
tive Sentence Summarization. arXiv e-prints, page
arXiv:1509.00685.

David R. So, Chen Liang, and Quoc V. Le. 2019.
The Evolved Transformer. arXiv e-prints, page
arXiv:1901.11117.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: Masked Sequence to Se-
quence Pre-training for Language Generation. arXiv
e-prints, page arXiv:1905.02450.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- Au-
gust 2, 2019, Volume 1: Long Papers, pages 3645–
3650. Association for Computational Linguistics.

Emma Strubell, Patrick Verga, David Belanger, and An-
drew McCallum. 2017. Fast and accurate sequence
labeling with iterated dilated convolutions. CoRR,
abs/1702.02098.

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/1905.03197
http://arxiv.org/abs/1905.03197
http://arxiv.org/abs/1905.03197
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1706.03872
http://arxiv.org/abs/1706.03872
http://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf
http://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://aclweb.org/anthology/W04-1013
http://aclweb.org/anthology/W04-1013
http://arxiv.org/abs/1806.00187
http://arxiv.org/abs/1806.00187
http://arxiv.org/abs/arXiv:1804.08771
http://arxiv.org/abs/arXiv:1804.08771
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1907.12461
http://arxiv.org/abs/1907.12461
http://arxiv.org/abs/1509.00685
http://arxiv.org/abs/1509.00685
http://arxiv.org/abs/1901.11117
http://arxiv.org/abs/1905.02450
http://arxiv.org/abs/1905.02450
https://doi.org/10.18653/v1/p19-1355
https://doi.org/10.18653/v1/p19-1355
http://arxiv.org/abs/1702.02098
http://arxiv.org/abs/1702.02098


8714

RS Sutton, D McAllester, S Singh, and Y Mansour.
1999. Policy gradient methods for reinforcement
learning with function approximation. In NIPS.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of NeurIPS.

Ramakrishna Vedantam, C. Lawrence Zitnick, and
Devi Parikh. 2015. CIDEr: Consensus-based image
description evaluation. In Proceedings of CVPR.

Arun Venkatraman, Martial Hebert, and J. Andrew
Bagnell. 2015. Improving multi-step prediction of
learned time series models. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelli-
gence, pages 3024–3030. AAAI Press.

Y. Wu, M. Schuster, and al. 2016. Google’s neu-
ral machine translation system: Bridging the gap
between human and machine translation. CoRR,
abs/1609.08144.

Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu,
Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming
Zhou. 2020. Prophetnet: Predicting future n-gram
for sequence-to-sequence pre-training.

Yang You, Zhao Zhang, Cho-Jui Hsieh, James Dem-
mel, and Kurt Keutzer. 2019. Fast deep neural net-
work training on distributed systems and cloud tpus.
IEEE Trans. Parallel Distrib. Syst., 30(11):2449–
2462.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2019. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summarization.

Wen Zhang, Yang Feng, Fandong Meng, Di You, and
Qun Liu. 2019. Bridging the Gap between Train-
ing and Inference for Neural Machine Translation.
arXiv e-prints, page arXiv:1906.02448.

A Appendix

http://arxiv.org/abs/arXiv:2001.04063
http://arxiv.org/abs/arXiv:2001.04063
https://doi.org/10.1109/TPDS.2019.2913833
https://doi.org/10.1109/TPDS.2019.2913833
http://arxiv.org/abs/arXiv:1912.08777
http://arxiv.org/abs/arXiv:1912.08777
http://arxiv.org/abs/1906.02448
http://arxiv.org/abs/1906.02448


8715

k λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1

1 41.83± 0.05 42.17± 0.07 42.10± 0.08 42.07± 0.07 42.00± 0.05 42.03± 0.05
2 42.20± 0.09 42.60± 0.05 42.50± 0.08 42.30± 0.05 42.33± 0.10 42.43± 0.07
3 42.37± 0.07 42.67± 0.03 42.63± 0.05 42.43± 0.03 42.53± 0.05 42.57± 0.03
4 42.40± 0.05 42.73± 0.05 42.63± 0.03 42.47± 0.03 42.63± 0.03 42.60± 0.05
5 42.30± 0.08 42.80± 0.05 42.70± 0.05 42.47± 0.03 42.57± 0.03 42.57± 0.03
6 42.37± 0.07 42.77± 0.03 42.63± 0.03 42.40± 0.00 42.60± 0.00 42.60± 0.05
7 42.33± 0.07 42.73± 0.05 42.63± 0.03 42.40± 0.00 42.57± 0.03 42.50± 0.05
8 42.33± 0.07 42.73± 0.05 42.60± 0.05 42.43± 0.03 42.50± 0.05 42.50± 0.05

Table 7: Mean SacreBLEU and Standard Error (n=3) of TeaFor2 on the WMT14 English-French benchmark, for
all beam sizes k and discount factors λ tested. Bold font indicates the configuration reported in Table 3.

k λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1

1 31.10± 0.00 31.67± 0.03 31.53± 0.03 31.53± 0.03 31.63± 0.14 31.57± 0.05
2 31.40± 0.05 32.00± 0.05 31.83± 0.07 31.97± 0.03 31.97± 0.11 31.97± 0.05
3 31.50± 0.05 32.10± 0.05 31.97± 0.05 31.90± 0.05 32.00± 0.12 32.03± 0.03
4 31.53± 0.03 32.10± 0.05 31.90± 0.05 31.97± 0.05 32.03± 0.10 32.03± 0.03
5 31.57± 0.03 32.07± 0.03 31.93± 0.03 31.97± 0.05 32.03± 0.10 32.00± 0.00
6 31.47± 0.05 32.10± 0.08 31.90± 0.05 31.97± 0.03 32.00± 0.08 31.93± 0.03
7 31.43± 0.07 32.07± 0.07 31.87± 0.03 31.87± 0.03 31.97± 0.11 31.93± 0.03
8 31.43± 0.03 32.07± 0.07 31.87± 0.10 31.87± 0.07 31.93± 0.14 31.90± 0.00

Table 8: Mean SacreBLEU and Standard Error (n=3) of TeaFor2 on the WMT12 English-French benchmark, for
all beam sizes k and discount factors λ tested. Bold font indicates the configuration reported in Table 3.

k λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1

1 41.83± 0.05 42.07± 0.05 41.97± 0.03 42.17± 0.07 42.00± 0.05 42.00± 0.05
2 42.20± 0.09 42.37± 0.10 42.27± 0.05 42.40± 0.08 42.30± 0.05 42.30± 0.08
3 42.37± 0.07 42.53± 0.03 42.37± 0.03 42.53± 0.05 42.43± 0.05 42.40± 0.08
4 42.40± 0.05 42.63± 0.07 42.37± 0.03 42.57± 0.03 42.43± 0.10 42.43± 0.03
5 42.30± 0.08 42.57± 0.12 42.43± 0.03 42.57± 0.03 42.47± 0.12 42.50± 0.05
6 42.37± 0.07 42.60± 0.08 42.43± 0.03 42.50± 0.05 42.50± 0.05 42.43± 0.03
7 42.33± 0.07 42.60± 0.09 42.47± 0.03 42.50± 0.05 42.47± 0.07 42.47± 0.03
8 42.33± 0.07 42.57± 0.10 42.43± 0.03 42.47± 0.03 42.40± 0.05 42.47± 0.03

Table 9: Mean SacreBLEU and Standard Error (n=3) of TeaFor3 on the WMT14 English-French benchmark, for
all beam sizes k and discount factors λ tested. Bold font indicates the configuration reported in Table 3.

k λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1

1 31.10± 0.00 31.40± 0.00 31.70± 0.05 31.60± 0.05 31.50± 0.08 31.57± 0.05
2 31.40± 0.05 31.80± 0.05 32.00± 0.05 31.83± 0.07 31.80± 0.08 31.83± 0.03
3 31.50± 0.05 31.83± 0.05 32.10± 0.05 31.93± 0.10 31.80± 0.09 32.00± 0.05
4 31.53± 0.03 31.87± 0.03 32.03± 0.07 31.93± 0.10 31.80± 0.09 31.97± 0.12
5 31.57± 0.03 31.87± 0.03 32.00± 0.09 31.90± 0.09 31.80± 0.14 31.93± 0.07
6 31.47± 0.05 31.83± 0.03 31.93± 0.05 31.87± 0.10 31.77± 0.10 31.93± 0.10
7 31.43± 0.07 31.80± 0.00 31.93± 0.03 31.87± 0.10 31.80± 0.09 31.93± 0.10
8 31.43± 0.03 31.77± 0.03 31.90± 0.05 31.87± 0.10 31.77± 0.10 31.83± 0.07

Table 10: Mean SacreBLEU and Standard Error (n=3) of TeaFor3 on the WMT12 English-French benchmark, for
all beam sizes k and discount factors λ tested. Bold font indicates the configuration reported in Table 3.



8716

k λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1

1 28.10± 0.08 28.17± 0.07 28.17± 0.03 28.27± 0.10 28.10± 0.08 27.83± 0.07
2 28.67± 0.07 28.67± 0.07 28.80± 0.08 28.87± 0.07 28.83± 0.03 28.47± 0.07
3 28.97± 0.10 28.97± 0.07 29.03± 0.05 29.07± 0.03 29.00± 0.08 28.73± 0.07
4 29.07± 0.10 29.07± 0.07 29.27± 0.07 29.13± 0.03 29.13± 0.07 28.77± 0.07
5 29.20± 0.12 29.13± 0.10 29.23± 0.03 29.17± 0.05 29.20± 0.08 28.80± 0.05
6 29.30± 0.12 29.17± 0.07 29.27± 0.03 29.20± 0.00 29.23± 0.07 28.80± 0.05
7 29.23± 0.12 29.20± 0.05 29.30± 0.05 29.20± 0.05 29.27± 0.05 28.87± 0.03
8 29.20± 0.12 29.20± 0.05 29.30± 0.05 29.13± 0.03 29.23± 0.07 28.80± 0.00

Table 11: Mean SacreBLEU and Standard Error (n=3) of TeaFor2 on the WMT14 English-German benchmark,
for all beam sizes k and discount factors λ tested. Bold font indicates the configuration reported in Table 3.

k λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1

1 22.07± 0.03 22.10± 0.05 22.20± 0.09 22.10± 0.05 22.13± 0.03 21.97± 0.07
2 22.40± 0.05 22.50± 0.12 22.50± 0.05 22.30± 0.00 22.37± 0.03 22.40± 0.05
3 22.50± 0.05 22.57± 0.07 22.60± 0.08 22.30± 0.05 22.47± 0.03 22.43± 0.07
4 22.43± 0.07 22.57± 0.07 22.57± 0.10 22.30± 0.05 22.37± 0.03 22.43± 0.07
5 22.50± 0.09 22.57± 0.07 22.53± 0.07 22.37± 0.05 22.37± 0.03 22.37± 0.05
6 22.43± 0.07 22.57± 0.07 22.53± 0.07 22.33± 0.07 22.30± 0.05 22.40± 0.05
7 22.43± 0.07 22.53± 0.10 22.47± 0.10 22.30± 0.05 22.30± 0.05 22.37± 0.05
8 22.37± 0.10 22.43± 0.10 22.53± 0.07 22.30± 0.05 22.27± 0.03 22.30± 0.05

Table 12: Mean SacreBLEU and Standard Error (n=3) of TeaFor2 on the WMT12 English-German benchmark,
for all beam sizes k and discount factors λ tested. Bold font indicates the configuration reported in Table 3.

k λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1

1 28.10± 0.08 28.40± 0.12 28.07± 0.14 28.23± 0.05 28.17± 0.10 27.80± 0.05
2 28.67± 0.07 29.00± 0.08 28.67± 0.07 28.73± 0.03 28.60± 0.08 28.40± 0.05
3 28.97± 0.10 29.27± 0.05 28.87± 0.07 29.00± 0.00 28.87± 0.05 28.63± 0.03
4 29.07± 0.10 29.33± 0.07 28.97± 0.07 29.00± 0.05 28.93± 0.07 28.67± 0.05
5 29.20± 0.12 29.30± 0.09 29.13± 0.05 29.00± 0.00 28.97± 0.07 28.70± 0.05
6 29.30± 0.12 29.33± 0.07 29.17± 0.03 29.03± 0.03 29.00± 0.05 28.77± 0.10
7 29.23± 0.12 29.37± 0.07 29.20± 0.08 29.10± 0.05 29.03± 0.05 28.73± 0.07
8 29.20± 0.12 29.33± 0.10 29.23± 0.05 29.07± 0.05 29.00± 0.05 28.77± 0.10

Table 13: Mean SacreBLEU and Standard Error (n=3) of TeaFor3 on the WMT14 English-German benchmark,
for all beam sizes k and discount factors λ tested. Bold font indicates the configuration reported in Table 3.

k λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1

1 22.07± 0.03 22.17± 0.03 22.07± 0.03 22.10± 0.05 22.07± 0.03 22.03± 0.03
2 22.40± 0.05 22.43± 0.05 22.50± 0.05 22.40± 0.00 22.43± 0.03 22.30± 0.05
3 22.50± 0.05 22.33± 0.03 22.50± 0.05 22.43± 0.03 22.40± 0.00 22.37± 0.03
4 22.43± 0.07 22.37± 0.03 22.57± 0.05 22.43± 0.05 22.33± 0.03 22.27± 0.03
5 22.50± 0.09 22.30± 0.00 22.50± 0.09 22.47± 0.07 22.33± 0.03 22.27± 0.05
6 22.43± 0.07 22.27± 0.03 22.47± 0.10 22.37± 0.05 22.30± 0.00 22.20± 0.05
7 22.43± 0.07 22.20± 0.00 22.43± 0.07 22.40± 0.05 22.30± 0.00 22.17± 0.03
8 22.37± 0.10 22.20± 0.00 22.40± 0.05 22.33± 0.05 22.20± 0.00 22.13± 0.05

Table 14: Mean SacreBLEU and Standard Error (n=3) of TeaFor3 on the WMT12 English-German benchmark,
for all beam sizes k and discount factors λ tested. Bold font indicates the configuration reported in Table 3.



8717

k Teacher-forcing TeaForN Top-4 Top-V

1 41.83± 0.05 42.17± 0.07 42.23± 0.11 41.90± 0.08
2 42.20± 0.09 42.60± 0.05 42.50± 0.16 42.27± 0.05
3 42.37± 0.07 42.67± 0.03 42.73± 0.12 42.47± 0.05
4 42.40± 0.05 42.73± 0.05 42.77± 0.14 42.47± 0.05
5 42.30± 0.08 42.80± 0.05 42.77± 0.10 42.47± 0.05
6 42.37± 0.07 42.77± 0.03 42.80± 0.12 42.47± 0.05
7 42.33± 0.07 42.73± 0.05 42.73± 0.12 42.47± 0.07
8 42.33± 0.07 42.73± 0.05 42.73± 0.12 42.43± 0.07

Table 15: Mean SacreBLEU and Standard Error (n=3) of TeaFor2 (λ = .2) on the WMT14 English-French
benchmark using different approximation methods, for all beam sizes k.

k Teacher-forcing TeaForN Top-4 Top-V

1 28.10± 0.08 28.17± 0.07 27.83± 0.10 28.03± 0.10
2 28.67± 0.07 28.67± 0.07 28.57± 0.10 28.73± 0.07
3 28.97± 0.10 28.97± 0.07 28.80± 0.05 29.00± 0.00
4 29.07± 0.10 29.07± 0.07 28.90± 0.05 29.13± 0.03
5 29.20± 0.12 29.13± 0.10 28.97± 0.05 29.23± 0.03
6 29.30± 0.12 29.17± 0.07 29.00± 0.08 29.30± 0.05
7 29.23± 0.12 29.20± 0.05 29.00± 0.08 29.23± 0.07
8 29.20± 0.12 29.20± 0.05 29.00± 0.05 29.30± 0.05

Table 16: Mean SacreBLEU and Standard Error (n=3) of TeaFor2 (λ = .2) on the WMT14 English-German
benchmark using different approximation methods, for all beam sizes k.

k Transformerbig Pdrop = .01 Pdrop = .02 Pdrop = .03

1 41.83± 0.05 41.63± 0.07 41.73± 0.12 41.47± 0.03
2 42.20± 0.09 41.93± 0.07 41.93± 0.07 41.80± 0.08
3 42.37± 0.07 42.13± 0.05 42.10± 0.09 41.83± 0.07
4 42.40± 0.05 42.17± 0.07 42.07± 0.12 41.87± 0.07
5 42.30± 0.08 42.10± 0.05 42.07± 0.07 41.90± 0.09
6 42.37± 0.07 42.10± 0.05 42.10± 0.08 41.93± 0.07
7 42.33± 0.07 42.07± 0.07 42.03± 0.05 41.97± 0.10
8 42.33± 0.07 42.03± 0.07 42.00± 0.08 41.97± 0.12

Table 17: Mean SacreBLEU and Standard Error (n=3) on the WMT14 English-French benchmark using word drop
regularization, for all beam sizes k.

Transformerbig Pdrop = .01 Pdrop = .02 Pdrop = .03

1 28.10± 0.08 28.60± 0.12 28.37± 0.07 28.20± 0.08
2 28.67± 0.07 29.13± 0.15 28.90± 0.00 28.77± 0.07
3 28.97± 0.10 29.23± 0.20 29.13± 0.03 28.93± 0.05
4 29.07± 0.10 29.43± 0.17 29.20± 0.05 29.07± 0.03
5 29.20± 0.12 29.47± 0.10 29.33± 0.03 29.13± 0.03
6 29.30± 0.12 29.50± 0.12 29.30± 0.00 29.23± 0.03
7 29.23± 0.12 29.47± 0.12 29.30± 0.00 29.20± 0.05
8 29.20± 0.12 29.47± 0.10 29.33± 0.03 29.20± 0.05

Table 18: Mean SacreBLEU and Standard Error (n=3) on the WMT14 English-German benchmark using word
drop regularization, for all beam sizes k.


