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Abstract

In this work, we present a dual learning ap-
proach for unsupervised text to path and path
to text transfers in Commonsense Knowledge
Bases (KBs). We investigate the impact of
weak supervision by creating a weakly su-
pervised dataset and show that even a slight
amount of supervision can significantly im-
prove the model performance and enable
better-quality transfers. We examine different
model architectures, and evaluation metrics,
proposing a novel Commonsense KB comple-
tion metric tailored for generative models. Ex-
tensive experimental results show that the pro-
posed method compares very favorably to the
existing baselines. This approach is a viable
step towards a more advanced system for au-
tomatic KB construction/expansion and the re-
verse operation of KB conversion to coherent
textual descriptions.

1 Introduction

The automatic construction of Knowledge Bases
(KBs) from text and the reverse operation of sen-
tence generation from KBs are dual tasks that are
both active research topics.

The first task of automatic KB construction re-
mains a significant challenge due to the difficulty
of detecting parts of text representing meaningful
facts and summarizing them in a systematic form.
A simpler sub-task of KB completion, i.e., extend-
ing or filling-in missing nodes or edges, has also
attracted the attention of the research community.
For both tasks, the system needs to generate new or
complete existing graph entities coherently, possi-
bly matching to the already existing graph structure.
The dual task of decoding the information from KB
back to text is a valuable functionality. This enables
knowledge transfer from potentially large complex
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[1]  aperson can voice an opinion [2] a person can captain a ship
[3] aperson can taste food [4]  person can cross the street
[S]  person can thank another person  [6]  a person can water a plant
[7]  person can wash cloths [8] person can eat
[9] you eat food [10] a person can think

[11] a person can sleep

[12] if you want to sleep then you should close eyes

[13] sleep would make you want to snore

[14] if you want to sleep then you should close your eyes
[15] you sleep to rest.

Figure 1: Text to Path. Part of a larger graph generated
from test sentences from our dataset. Sentences below
the graph were a subset of inputs provided to the model.

graphs into a more descriptive, human-friendly out-
put. This conditional generation is often seen as a
step towards learning using KB as prior knowledge.

In this work, we address the problem of KB con-
struction/completion and the reverse task of KB
decoding, but aim at a simpler objective: transfer-
ring a single sentence to a path, and generating
text from a single KB path as its dual task. In
terms of data, our focus will be on Commonsense
KBs, derived from sets of commonsense facts ex-
pressed in natural language sentences (Lenat, 1995;
Cambria et al., 2014; Speer et al., 2017; Sap et al.,
2019). They are represented as graphs where each
edge is expressed as a tuple (ep, r, €;) with head
and tail nodes e;, and e; composed of free-form
text, connected with a relationship operator r; see
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ConceptNet from Speer et al. (2017) or ATOMIC
in Sap et al., 2019 for recent and commonly used
examples of commonsense KBs.

We observe that to train such transfer model,
an additional challenge comes from the lack of
datasets with parallel text and KB facts, i.e.,
where text sentences and KBs edges are explicitly
paired/labeled from one to another. However, there
exist many datasets for each individual transfer
domain. Therefore, successful approaches trans-
ferring text to KB and KB to text must be able
to operate in unsupervised or (at best) weakly-
supervised settings. We address this challenge
by proposing a model trained under dual learn-
ing of translation/transfer from text to KB and
from KB to text, we name DualTKB. This is sim-
ilar in philosophy to dual learning in Neural Ma-
chine Translation (He et al., 2016), or unsuper-
vised style transfer (Shen et al., 2017; Tian et al.,
2018; Dai et al., 2019). We design our model to be
trained in completely unsupervised settings. How-
ever, we observed that even a slight supervision
significantly boosts model performance and en-
ables better-quality transfers. Therefore, we also
describe a simple heuristic methodology to create
weakly-supervised datasets given a text corpus and
a commonsense KB.

We must emphasize that our proposed dual learn-
ing method is not limited to commonsense KBs and
can generalize to other domains/types of KBs such
as biomedical KBs. Commonsense KBs, and partic-
ularly ConceptNet, are good starting points due to
the nature of their composition. Since ConceptNet
was partly extracted from free-form text originat-
ing from the Open Mind Common Sense (OMCS)
list of commonsense fact sentences, its nodes are
often composed of parts of sentences from OMCS.
This allowed us to first explore whether the pro-
posed method worked at all before evaluating a
semi-supervised approach by creating a weak su-
pervision from a mapping between ConceptNet
triples and the original OMCS sentences. While
KBs are often dense with short named entity de-
scriptions for nodes, many nodes for commonsense
KBs are parts of sentences, making them inher-
ently sparse which impacts their performance as
empirically studied by Malaviya et al. (2020).

The evaluation of this type of transfer models is
a challenge in itself. For this purpose, we selected a
set of metrics to examine different facets of the sys-
tem using our created weakly-supervised dataset.
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[1]  something you find on a shelf is a book [2]
[3]  something you find to find desk is a book [4]
[5]  you are likely to find a book in a classroom 6]
[7]  you are likely to find a card catalog in a library (8]
[9]1  paper is is for making paper airplane [10] paper is white

[11] abook is a book of paper [12]  one can read a book
[13] you can read to learn [14]  you can write a book
[15] something you thing you do when you write is think

a book is have knowledge

one can use a classroom to teach
something can be at the library
paper is be made of wood

Figure 2: Path to Text. Sentences generated by our sys-
tem from a subgrapth of the ConceptNet dataset. The
paths shown in the graph are the inputs to the model.

For path generation, we rely on a conventional
KB completion task where the goal is to maximize
the validity score of a tail entity e; given the pair
(e, 7). For example, Malaviya et al. (2020) ad-
dresses the challenges unique to commonsense KB
completion due to sparsity and large numbers of
nodes resulting from encoding commonsense facts.
However, KB completion does not always equate
generation of edges, with the exception of COMET
from Bosselut et al. (2019) that generates tail node
et given the pair (e, 7).

Since repurposing generative models for con-
ventional KB completion evaluation is difficult
(Malaviya et al., 2020; Bosselut et al., 2019), we
propose a new commonsense KB completion evalu-
ation task for generative models. It is close in spirit
to conventional KB completion, but comes with its
own set of challenges. Moreover, we employ the
Graph Edit Distance (GED) to examine the quality
of the generated graph as a whole. For text gener-
ation, we rely on traditional NLP metrics such as
BLEU and ROUGE.

Following is a list of highlights of our paper
contributions: (1) Propose a dual learning bridge
between text and commonsense KB. Implement
approach as unsupervised text-to-path and path-to-
text transfers; (2) Construct a weakly-supervised
dataset, and explore weak-supervision training. (3)
Define a novel Commonsense KB completion met-
ric tailored for generative models. (4) Investigate
successfully multiple model architectures.
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Finally, in Fig. 1 and Fig. 2 we present a few
examples generated by our proposed model. Fig. 1
is a text to KB translation. Each sentence below the
graph is independently transferred to a path, con-
sisting of one edge tuple (e, r, ;). The whole path
tuple is generated at once, with ey, 7, and e; taking
a free-form not restricted to any predefined sets of
entities or relations. This contrasts with many ex-
isting works operating on a limited discrete set of
already-defined edges in a dense conventional KB.
Once all the sentences are transferred, we observe
that this set of generated edges forms a connected
structure, implicitly merging some nodes to form a
prototype of a Knowledge Graph (KG).

Fig. 2 shows the transfer from KB to text. Each
path in the graph is converted to a sentence. There
is overall diversity in the generated sentences styles.
Moreover, the samples show that the generation
process is more sophisticated than just a trivial
path flattening (i.e., merging text from all edge
parts followed by minimal edits). Therefore, the
proposed approach can eventually become a part of
a more sophisticated system converting graphs to
a coherent textual story and vice versa. Additional
examples are presented in Appendix A.4.

2 Dual Learning

In this work we propose to use a dual learning
approach to build a model performing two distinct
but complementary generative tasks described in
Fig. 3, and using notations from Tab. 1:

Task 1 (text-path): Given a sentence x,, gener-
ate a path x,5 with well-formed entities and re-
lation, that can either belong to an already con-
structed KB, or extend it in a factually meaning-
ful way. This conditional generation is framed
as a translation task referred to as T,z where
TaB = TAB(xA>-

Task 2 (path-text): Given a KB path xy, gener-
ate a descriptive sentence x,, coherently merging
entities and relation from the path. This conditional
generation is a translation task referred to as Tj,,
where gy = Tpa(x3).

From the above two tasks follows the definition
of back-translation tasks Tyap (path-text—path)
and T, (text—path-text). Reconstruction tasks
T and Ty are trivially defined as generating the
same text/path from itself.

In an unsupervised setting, where sentences z »
and paths xy are not paired, the reconstruction tasks
Txa, Tsp and back-translation tasks Txga, Tpap are

Ts sentence, where type S can be

A, A™ sentence, masked sentence

AA given A, reconstructed sentence

BA given B, generated sentence

ABA  given AB, back-translated sentence
Tp path, where type P can be

B,B™ path, masked path

BB given B, reconstructed path

B™B  given B™, reconstructed path

AB given A, generated path

BAB given BA, back-translated B
w edge w = (ep, r, e;) with (entity, rel. op., entity)
masked edge/tuple, e.g., (e, ,.), (., 7, e, etc.

Ty Translation task with direction D
Thg Translation from A to B. zag = Tap(2a)
Tsa Translation from B to A. xgy = Tya(xs)

Thsa Back-Translation from AB, back to A

where T aps = Tga (il'AB) = Tpa (TAB (lA))
Tsas  Back-Translation from BA to B

where zpap = TAB(IBA) = TAB(TBA(IB))
Tgmp  Generation from masked path xp = Tymg (z}?)

Table 1: Notations used throughout the paper.

the only ones available to define training losses.
The back-translation tasks define the so-called cy-
cle/consistency losses, which implicitly control the
quality of the first transfers (743, T5a), by checking
the reconstruction after the second transfers (Thga,
Tgsas). By themselves, these cycle losses are effec-
tive in training good transfer model. However, as
we show in Section 5, even a small weak supervi-
sion (by pairing some x, to xp) can significantly
improve our model performance.

As shown in Fig. 3, our model uses an encoder-
decoder architecture with a common encoder and
two specialized decoders (A, generating sentences
Za, and B, generating paths ). The reason for a
single encoder is to force the embeddings of path
and text to lie in the same space, encoding a fact
regardless of modality. It then becomes the job of
each specific decoder to recover either one of the
modalities. Note that the decoders share the same
architecture, but not their parameters.

2.1 Un/Weakly-supervised Setups

For data source, we used the standard 600K set
from Li et al. (2016) (CN-600K). It is a curated
version of ConceptNet 5 (Speer et al., 2017), a well-
known commonsense KB, which partly originated
from the Open Mind Common Sense (OMCS) list
of commonsense fact sentences. Despite no ex-
plicit pairing between sentences from OMCS and
paths from CN-600K, both datasets cover a re-
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Figure 3: Our Encoder-Decoder model with translation and back-translation represented as a sequence of steps.
Encoder and decoders are shared for both steps. The Encoder provides a representation of inputs x, (text) and xy
(path) in a common embedding space. Decoders A and B are specialized to generate only sentences and paths (re-
spectively) from these embeddings. Losses are indicated close to the generated values they require. Reconstruction
loss Ziec, back-translation loss % are available in unsupervised learning, with %, only available in supervised
learning. Generation of x5, from x, means two passes through our model: First pass, with x, as input. Second
pass, with z,5 = T5(x,). The same model can accommodate path or text generation.

lated set of facts making them good candidates
for our unsupervised and weakly-supervised train-
ing. ATOMIC (Sap et al., 2019) was created from
many data sources (books, n-grams, etc.) not easily
accessible, leaving us with no relevant text corpora
to pair with. Therefore, we only use CN-600K.

The weakly-supervised dataset was obtained by
doing fuzzy matching of sentences x, to paths xp.
Each sentence is mapped to a list of paths, and
each path to a list of sentences. Note that KB and
text set do not align exactly; noise and mislabelling
are inherently present. Despite these constraints,
we can investigate the effects of weak supervision
on model performance, and vary the amount of it
by changing the fraction of available paired data.
More details about how this weakly-supervised
dataset! was created are in Section 5.1.

3 Model

Given a dataset X of paths and sentences, let 2} be
its k-th random sample of type ¢, fork =1,..., N
and type t € {A, B}, where x, is a sentence and
ry is a path in the KG. Given the input z¥ to the
model, the corresponding generated output will
be denoted as a:ft,, where tt' is the transfer direc-
tion, i.e., tt’ € {AA, AB,BB,BA}. For example,
given path 2f, 2% = Ty, («F) denotes the corre-
sponding generated sentence. Similarly, given azft/
as input, :v,’ft,t,, denotes additional possible trans-
fer directions, out of which we will be only inter-
ested in tt't” € {ABA,BAB}, as they represent

"We plan on releasing this dataset publicly.

the back-translations of a sample from a type ¢
back to itself, since ¢ = t. Given input sentence
zk 2k . denotes its generated back-translation
such that z%, . = Tup(28,) = Thp(Ta(zk)). A
model with perfect generation and back-translation
would yield 2%, . = x% as T\ (T4 (2)) would be
the identity function. Note that to reduce clutter,
we drop the dataset index k from the notations.

3.1 Losses

There are three types of losses we employ in our
training. The reconstruction loss is defined as

Zrec=E [*IOgPAA(HfA)] + E

xa~vX xp~X

[-log pss(z5)]

where paa(z,) is the distribution for the recon-
structed sentences xoy = Taa(x4), and ppp(xp)
for paths zgg = Tpp(zp). To enable model to
perform transfers, we also employ the so-called
back-translation, or cycle loss:

Ly = . IE [*IngABA(ﬂUA‘xAB)]
+ . IEX [*IOgPBAB(fUB‘fUBA)] . (D

Unsupervised training minimizes the combined
loss Zrec + Zsr. When supervised data is avail-
able, we can additionally impose a supervision loss
for the paired data:

ZLsop = E _[-logpas(zs|za)]
Ta,xp~X
+ - PN [-log pea(xalzs)] - (2)
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Supervised training minimizes the combined loss
Lrec + Lot + ZLsup. We explore the impact of
Zrec, ZLar, and Zsyp on training with an abla-
tion study detailed in Section 5.3. Note that when
the supervised data is limited, i.e., the sentence-
path correspondence is only known for some pairs
(24, ), the loss in (2) is adjusted accordingly and
averaged only over the available pairs. As we show
in Section 5.4, this modification enables us to ex-
amine the effect of the amount of supervision on
the model performance.

4 Experimental Setup

In this Section, we provide details about model ar-
chitecture, training procedure, and data processing.
Model Architectures. We explored several archi-
tectures for our encoder and decoder: GRU (Chung
et al., 2014), Transformer (Vaswani et al., 2017),
and BERT (Devlin et al., 2019).

All possible pairings of encoder and decoder,
provide a total of nine different combinations.
Some of them, such as Transformer-BERT, GRU-
BERT, or BERT-BERT are not valid, since BERT
can only serve as an encoder model. Other config-
urations were rejected based on their performance
on our validation set. In particular, we found that
GRU-Transformer and BERT-Transformer just did
not perform well, setting them aside. In the end,
we selected the following three combinations: (1)
GRU-GRU, since GRU is a simple, well-known
RNN architecture, relatively easy and fast to train;
(2) BERT-GRU, selected to leverage potentially
better encoding representation from BERT, a well-
known encoder; (3) Transformer-Transformer (or
Trans-Trans), chosen to explore another seq2seq
architecture. All models parameters are trained,
while for BERT we fine-tune the pre-trained model.
Teacher Forcing. During training, in the recurrent
generation steps, we employ teacher forcing by
feeding the ground truth tokens only 20% of the
time, using the model output otherwise. We found
this strategy very effective at preventing overfitting
and increasing the overall generation quality.
Back-Translation. Traditionally, when using the
back-translation loss in (1), gradients are back-
propagated through the encoder-decoder structure
twice to reflect the two transfers being done (e.g.,
To—Tap—Tapa). HoOwever, we observed better
training behavior and model performance by de-
taching the gradients after the first pass through
the system. The model still sees both back-

propagations but the training becomes more stable.
Data processing. In our dataset, a path such as
(en,m,er) = (Cyeast”, ”is a”, “ingredient in bread”)
will be encoded as ’[SEP] yeast [SEP] is a [SEP]
ingredient in bread [SEP]”, including the special
token [SEP], as done in Yao et al. (2019). Similar to
Devlin et al. (2019), we mask a token by replacing
it with a special token [MASK]. For a path, we re-
place either the head/tail by the mask token 50% of
the time, e.g., ("[MASK]”, 7, ¢;) for head masking.
For text, we replace a randomly picked token with
the mask token 10% of the time. For more robust
training, we mask tokens in both text and paths
input sequences and reconstruct the original. This
is in the same spirit as recently proposed masked
language modeling techniques (Devlin et al., 2019;
Liu et al., 2019). While this technique helps learn-
ing robust encoder-decoder, it also inherently pre-
pares the model for the link-predictions of KB com-
pletion evaluation.

5 Results and Discussions

In this Section we discuss in detail our dataset con-
struction, evaluate the proposed models, and com-
pare performances to existing baselines.

5.1 Datasets

We designed our own dataset due to the lack of
available resources of paired text corpus and com-
monsense KBs. For KB, we started from CN-600K
(Li et al., 2016) derived from ConceptNet (Speer
et al., 2017). As mentioned earlier, we define a
path as composed of two nodes and a directed edge
connecting them. We only keep paths from CN-
600K with confidence score greater than 1.6 for a
total of 100K edges. Sentences in our dataset come
directly from OMCS free-text sentences, removing
those with detectable profanity.

Note that as is, this dataset can only be used for
unsupervised training since its path-sentence pairs
are not matched. To enable weak supervision, we
map paths to sentences (and sentences to paths)
using fuzzy matching directly on their sequence of
tokens. Fuzzy matching uses term-frequency (tf)
and inverse document frequency (idf) with n-grams
to compute a cosine similarity score between two
sets of strings (van den Berg, 2017).

Only the top matching pair is kept if its similar-
ity score is greater than 0.6 to ensure a minimum
quality for our matches. This score of 0.6 (from a
range of -1 to 1) was chosen empirically after notic-
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Conventional KB Completion MRR HITS@1 HITS@3 HITS@10 GED]
DISTMULT (Yang et al., 2015) 8.97 4.51 9.76 17.44 -
COMPLEX (Trouillon et al., 2016) 11.40 7.42 12.45 19.01 -
CONVE (Dettmers et al., 2018) 20.88 13.97 2291 34.02 -
CONVTRANSE (Shang et al., 2019) 18.68 7.87 23.87 38.95 -
S+G+B+C (Malaviya et al., 2020) 51.11 39.42 59.58 73.59 -
Generative KB Completion

DUALTKBgru.gru, p = 0.5 63.10 55.38 69.75 74.58 12.5
DUALTKBBERT_GRU, p = 0.2 61.32 53.79 67.62 72.29 12.0
DUALTKB Tans-Trans, p = 0.5 50.54 44.54 55.12 59.67 10.0
DUALTKB gy grys P = 0.5 50.87 44.58 55.46 60.12 9.0
DUALTKBggrr.gru» # = 0.5 57.79 50.25 63.75 69.54 11.0
DUALTKBZ, 6. Trans: 2 = 1.0 40.93 35.67 44.38 48.79 8.0

Table 2: Conventional and generative KB completion results for ConceptNet test set for (filtered) MRR, HITS and
GED metrics. Models in training w/ best MRR evaluations were selected for testing. Models with asterisk * were
selected based on best BLEU2 score for BA text generation task. Supervision ratio is indicated as p. Results from
conventional KB completion methods quoted at the top of the table are as reported in their respective papers.

B, B3 Rp Bpm
DUALTKBgru-grU 032 024 046 0.89
DUALTKBggrrgry 0.32 025 046 0.88
DUALTKBrranstrans 045 0.37  0.56 0.91
DUALTKBYp qpy 049 042 0.61 0.92
DUALTKB}pprory 037 030 051 0.89
DUALTKB? 047 039 0.57 091

Trans-Trans

Table 3: BA text generation evaluation results for
BLEU2 (B;), BLEU3 (Bs3), RougeL. (Rp), and F1
BERT-score (Br1). Models correspond to the ones in
Tab. 2. Models with * are selected by best B2 scores.

ing that the path-sentence pairs quality degraded
quickly for lower scores, as some sentences did
not have a good match. Indeed, not all OMCS
sentences were used to create ConceptNet.

We create dataset splits train (240K) and dev
(10K) under the strict policy that no path nor sen-
tence in dev can exist in train, to ensure validation
on text and path unseen in training.

During training, we can vary the amount of weak
supervision available by applying the supervision
loss Zup in (2) to a subset of the data. Note that
for the pairs where .Z5yp is not applied, the training
becomes unsupervised since the remaining losses
Zrec +-ZLsr cannot exploit the presence of a match.
Therefore, by changing the size of the subset to
which Zup is applied we can go from full weak-
supervision to unsupervised training.

Evaluations are reported on 1200 positive tu-
ples of test set from the original split in Li et al.
(2016) as done in prior works on commonsense KB
(Malaviya et al., 2020). Irrespective of the choice
of encoder, we tokenize the entire dataset (paths
and sentences) using the BERT tokenizer.

5.2 Metrics and Results

The challenge in evaluating our models is that they
accomplish different generation tasks, each with
its own adequate metrics. Detecting an overall best
model is therefore ambiguous and should be poten-
tially application specific. Nevertheless, we present
a set of metrics and results for all the important
generation tasks for three model encoder-decoder
architectures: GRU-GRU, BERT-GRU, and Trans-
Trans, as well as discuss the model selection pro-
cess. Results are obtained over 40 epochs of train-
ing. We present both the best results for each met-
ric, and their averages over 4 models trained with
distinct random seeds in Appendix in Tab. 6. Note
that we refer to a generation task simply by its
direction, i.e., use ABA for T)g4.

AA, ABA: The performance on reconstruction task
AA is indicative of the quality of autoencoding,
while the back-translation task ABA, besides re-
construction also helps in evaluating implicitly the
quality of transfer. We use the following metrics
to evaluate generated sentence quality: BLEU2
(B2), BLEU3 (B3), ROUGEL (Ry,), and F1 BERT-
scoring metric (Br1) (Zhang et al., 2019) in Tab. 5
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Losses DualTKBgru.gcru DualTKBggrr.gru Dual TKBrans-Trans
MRR BLEU2 MRR BLEU2 MRR BLEU2
Lrec + Lt + Lsup 63.10 0.32 61.32 0.32 50.53 0.45
Lot + Lsup 17.09 0.48 0.14 0.07 45.42 0.46
Lt + Lrec 20.08 0.25 52.52 0.03 23.56 0.26
Lrec + Lsur 46.16 0.46 57.57 0.34 44.08 0.42

Table 4: Ablation study on different set of losses across various models

in Appendix. We observed that reconstruction AA
is almost perfect in all metrics, while ABA is lag-
ging as it must do first the translation and then
recover back the sentence, a more challenging task.
GRU-GRU is not as good for ABA as for AA, while
Trans-Trans provides strong ABA results. BERT-
GRU is ahead of the pack for ABA. Overall the
models can handle AA and ABA reasonably well.

B,.B: KB Completion: KB completion is a com-
mon task for comparing models. Previous work
established link prediction as the standard for eval-
uation relying on MRR (Mean Reciprocal Rank)
and HITS as evaluation ranking metrics (Yang et al.,
2015; Dettmers et al., 2018; Bordes et al., 2013).
For tail prediction, e; in all test tuples (ep, r, ;) are
replaced by other nodes é; to produce corrupted
tuples. A validity score is evaluated for all new
corrupted tuples (ep, , €;), and a ranking is pro-
vided for the tuple with ground truth e;. Head
prediction is done similarly, often by reversing the
relation 7 to 7~ and ranking ey, given (e;, 7). As
in Bordes et al. (2013), filtered versions of MRR
and HITS are preferred as they filter out corrupted
tuples present in training, dev, and test sets. We
use filtered MRR and HITS for all results in this
paper. We are aware of the recent critic of this
KB completion evaluation by Akrami et al. (2020).
However, since the community is yet to establish
another methodology, and to be able to relate to
previous work, we follow this procedure, albeit
with a twist. For commonsense KB, Malaviya et al.
(2020) mention the difficulty of repurposing gener-
ative models to ranking tuples for link-prediction.
Our model is trained to generate a path tuple, not
evaluate the quality score of its validity. Entities,
relationship are all sequences of tokens that need to
be generated properly, which does not fit well in the
conventional KB completion evaluation framework.
Therefore, we define a new meaningful common-
sense KB completion task for generative models,
and present the challenges that arise from it.

Since our models are trained from masked in-
puts, they can easily generate a new path z =
Tgmg(xy') from masked tuples z* = (ep, 7, .), or
gt = (.,r,e;). This B™B generation task can
be done from any masked tuple, allowing for tail
and head predictions without resorting to inverting
the relationship 7. For both predictions, the model
generates a complete edge, not just e, or e; as for
generative model COMET (Bosselut et al., 2019).
However, the generated edge may not be a proper
sequence of tokens for a (ep,, r, ;) tuple, especially
in early stages of training where the model is still
learning the tuple structure. For improper gener-
ated tuples, tail and head predictions become im-
possible as the generated sequences of tokens can-
not parse into correctly-formed tuples. For these
cases, a worst case ranking score is given since
no meaningful ranking is achievable, while their
rankings are still required by MRR and HITS met-
rics. Our results are therefore very sensitive to the
correct form of generated paths.

To summarize, for commonsense KB comple-
tion, we follow these steps: (1) Provide an input
triple w/ masked entity (tail’/head); (2) Generate a
complete triple from our model (including a can-
didate for the missing/masked entity); (3) Score
this predicted triple along with all corrupt triples
(where the masked entity was replaced with all pos-
sible node candidates from our data) using fuzzy
matching against the ground truth triple; (4) Re-
move corrupt triples before scoring if they already
exist in train, test, or dev (filtering).

Defining a scoring function brings also another
challenge. Indeed, even when producing proper tu-
ples from masked entries, our generative model
can still change some tokens in the unmasked
part of the input tuple, i.e., for z' = (ep,r,.),
we could get a generated Ty = Tpmp(zy’) with
g = (ép,7,6é), where ey, # ép and/or r # 7.
There is no guarantee that the original pair (ep, )
remains identical. The solution of using the origi-
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nal (ep, r) for scoring, regardless of (ép, ), is not
fair as it will provide better performance than re-
ally achieved by the generative model. Therefore,
for scoring function, we decided to compute the
ranking scores using fuzzy matching of corrupted
tuples, using the whole generated tuple sequence,
taking into account any potential flawed generation
of (éx,7). MRR and HITS computation is exactly
the same as in conventional KB completion.

We provide results for our KB completion in
Tab. 2 where we added results from previous re-
lated work. During training, if models with the
best MRR evaluation results are selected and used
for testing, then GRU-GRU shows overall better
performance. However, if BLEU2 metric is used
for the selection, then BERT-GRU achieves higher
scores. We observed that the overall performance
of Trans-Trans was behind in these evaluation met-
rics. It is to be expected that not all metrics are
strongly correlated and peak at the same time dur-
ing training. It also confirms that for model selec-
tion, a weighted composite of all metrics would be
a better approach.

BA: Sentence evaluation: The generation of sen-
tence from path is another important task. For
qualitative results, examples of such generation are
shown in Fig. 2 and in Appendix A.4. For quan-
titative results, we evaluated the sentences using
B2, B3, Ry, and B metrics, as reported in Tab. 3
for the same set of models as in Tab. 2. We com-
pute these metrics against our weakly-supervised
data, created using fuzzy matching. Selecting mod-
els solely on MRR has its shortcomings for other
tasks. Models selected on MRR have relatively
decent performances on KB completion metrics,
but lag behind when compared to the models se-
lected under text evaluation metrics. GRU-GRU
and Trans-Trans are particularly good at this task,
while BERT-GRU is in third place.

AB: Graph Edit Distance: In contrast to the
single-instance evaluation, examining each gener-
ated path independently from others, we propose
now to look at the generated graph as a whole and
compare it to the ground truth one (based on our
weakly-supervised dataset). In other words, given
input sentences x,, we generate the correspond-
ing paths z,z and compare them to the ground
truth xg. One of the metrics to compute graph
similarity is Graph Edit Distance (GED) (Chen
et al., 2019), which finds minimum cost path (con-
sisting of node/edge substitutions, deletions, and

GaB Ggp

Figure 4: GED computation based on local subgraphs.
GED is computed as an average of corresponding local
graphs. As the size of local graph increases, the com-
puted value better approximates the global GED. In our
experiments we used subgraphs consisting of 10 paths
due to computational cost. Larger numbers of paths re-
sult in prohibitive GED computation cost.

insertions) transforming one graph into another.
Since in general exact GED computation is NP-
hard and practically infeasible for large graphs,
we propose an approximation based on local sub-
graphs, as illustrated in Fig. 4. To define the cost
of matching nodes (corresponding to heads and
tails) and arcs (corresponding to relationship oper-
ators), we encode them into feature vectors using
BERT and compare the value of their euclidean dis-
tance to a predefined threshold to identify matching
nodes/edges. GED values are reported in Tab. 2 for
all of our models. Trans-Trans has the lowest GED
for all cases.

5.3 Ablation Study of Losses

In our ablation study, we evaluate the effect of each
loss Zrec, Lur, and Zsyp on the overall model per-
formance. As seen in Tab. 4, by removing any of
the losses, the MRR/HITS performance drops com-
pared to the full loss case. At the same time, for
different models, each loss has its own impact: e.g.,
s has more value for GRU-GRU model, while
the availability of weak supervision Zsyp is more
important for Trans-Trans architecture. Another
interesting conclusion is that although .Zyp explic-
itly and %5 implicitly both control the quality of
transfers (7,g and T3,), they remain complemen-
tary to each other, i.e., there is still a benefit of
using both in the same loss.

5.4 Impact of Supervision Ratio

The impact of weak-supervision on model perfor-
mance is illustrated in Fig. 5. For all the mod-
els, even a slight supervision amount leads to a
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Figure 5: Models MRR and BLEU2 performance for
supervision ratio 0, .2, .8 and 1.0. After gains from
slight supervision, full supervision degrades perfor-
mances, except for BLEU?2 for Trans-Trans models.

rapid improvement for both MRR and BLEU2 met-
rics, which vindicates our decision to use weak-
supervision. Importantly, model performance tends
to peak before reaching full supervision: only our
Trans-Trans model still sees an improvement for B2
scores at full supervision, while both GRU-GRU
and BERT-GRU trained at 50% weak-supervision
lead to better models. This can be explained by the
nature of weak supervision itself. Fuzzy matching
relies only on tf-idf and n-grams, which is not per-
fect when dealing with paths and sentences with
different grammar structures. This procedure is
inherently noisy and can pair sentences and paths
with related but, nevertheless, not exact semantic
matches. The full weak-supervision usually brings
noise into the training, thus harming it more than
helping. This conclusion is confirmed by the lower
performance of our models at full supervision.

6 Conclusion

In this paper we proposed to use a dual learning
bridge between text and commonsense KB. In this
approach, a generative model is trained to transfer
a sentence to a path and back. Assembling paths to-
gether results in a graph showing the presence of in-
herent structure, while generated sentences exhibit
coherent and relevant semantics. For evaluation,
we proposed a novel commonsense KB completion
task tailored to generative models. Although our
model is designed to work in unsupervised settings,
we investigated the impact of weak-supervision by
creating a weakly-supervised dataset and showed
that even a slight amount of weak-supervision im-
proves significantly model performance. The cur-
rent work is one step towards the overarching goal

of KB construction/completion and generation of
human-readable text from KBs. Future work can
focus on expanding the capabilities to generating
whole paragraphs of text from graphs in KB, as
well as converting large parts of text into coherent
graph structures.
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A Supplementary

A.1 Experimental Setup and Training

All our models were built using an NVIDIA V100
GPU, while validation was done with a CPU-
only setup (using 2 cores). Each training epoch
(240K samples) took between 1 hour for GRU-
GRU (fastest), just over 1 hour for BERT-GRU,
and 1.5h for Trans-Trans models (slowest). Our
validation (10K samples) takes about 1.5 hours to
evaluate as we need 2 passes for MRR and HITS
(head and tail predictions), as well as a third pass
for all NLP metrics for AA, ABA, and BA. Evalua-
tion on our test set (1.2K samples) takes a matter
of about 6 minutes for each head and tail predic-
tion for MRR and HITS, with a third pass for NLP
metrics, for a total of about 20 minutes. BLEU2
evaluation is relatively fast. GED evaluation can
take up to 40 minutes. During training, we evaluate
models at the end of each epoch, and use the best
model over 40 epochs for testing.

All our models were built using PyTorch. They
are trained with a batch size of 32 for a supervision
ratio of 0.5. Masking for sentences is performed
with a probability of 10% for each token while
masking for paths tuples entities are set at 50%
(when selected, all tokens of an entity are masked).

GRU models are trained with a learning rate of
either 1072 or 5 x 1072 (10~* yielded poor re-
sults) Transformer models were trained with a pre-
defined learning rate schedule called "NoamOpt”
providing a warm-up phase up to 20K training mini-
batches before a slow exponential decay. All our
Transformer models had three sub-layers with three
heads in the multi-head attention, while GRU mod-
els had a hidden size of 100 with a single recurrent
layer.

All trainings had a seeded random number gen-
erator to ensure repeatability. For instance, results
from Tab. 5 were obtained for one common seed
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for all models. For results in Tab. 6, 4 distinct
seeds were used to show performance based on the
average of the 4 individual model performances
(standard deviation is also provided).

MRR and HITS metrics are defined in details in
Dettmers et al. (2018) — code associated with the pa-
per provides implementations in Python. We reim-
plemented them for better integration in our own
codebase. BLEU metrics were used from NLTK
implementations.

When running multiple supervision ratio for
weak-supervision, hyper-parameters were all fixed
to the values provided above, only the supervision
ratio was changed.

A.2 AA, ABA: Reconstruction and
Back-Translation Tasks

Tab. 5 show results for our models GRU-GRU,
GRU-BERT, and Trans-Trans for BLEU2, BLEU3,
ROUGE, and F1 BERT score for both AA and
ABA tasks. AA is an easier task with excellent
while ABA is more difficult. GRU-GRU and Trans-
Trans excel at both AA and ABA.

A.3 Results for Multiple Random Generation
Seeds

In Tab. 6, we present results for our three model
architectures using MRR-HITS and BLEU metrics
as averages over 4 models for each architecture
built with distinct random generator seeds, trained
with our default hyper-parameters described in Sec-
tion A.1. We report average and standard deviation
for every metrics.

A.4 AB: Graph Generation

In this Section we present additional examples of
the text to path transfers, see Figures 6, 7 and 8, as
well as the reverse transfer from path to text, see
Figure 9.
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N
\\ [4] used for
read news AN [5] causes
- .
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read

[1] book can store knowledge [2] asomething you find on your desk is a book
[3] abook is part of library [4] book is to read
[5] toread is to learn [6] areader can turn a page

[7] you can read the news in a newspaper

Figure 6: Text to Path. A part of a larger graph gener-
ated by our system based on the test split of ConceptNet
dataset. The shown sentences are a subset of the inputs
provided to the model.
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[1]  something you find at a zoo is an animal [2] someone can be at museum
[3] someone can be at the theater [4]  someone can be at a job interview
[5] something can be at school [6] inschool, you can learn
[7] someone can be at a post office [8] someone can shop
[9]1 if you want to shop then you should have money [10] pianist play piano
[11]  play music [12] achild can play

[13] music can soothe

Figure 7: Text to Path. A part of a larger graph gener-
ated by our system based on the test split of ConceptNet
dataset. The shown sentences are a subset of the inputs
provided to the model.
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AA ABA

BLEU2 BLEU3 R; BERTy; BLEU2 BLEU3 R; BERTpg
DUALTKBGRru.GrU 0.97 0.96 0.98 1.00 0.54 0.48 0.69 0.93
DUALTKBgEgrT.GRU 0.71 0.64 0.74 0.93 0.53 0.45 0.63 0.91
DUALTKBTrans-Trans 0.95 0.94 0.96 0.99 0.57 0.50 0.69 0.92

Table 5: Results for text generation AB and ABA evaluation for BLEU2 (Bs), BLEU3 (B3), Rouge-L (R;), BERT
Score BERT i1

MRR HITS@1 Hits@3 HITS@10 BLEU2 BLEU3
DUALTKBgru.gru  51.13£5.59 44.78+£5.12 55.89£6.38 60.68+£6.38 0.52+0.07 0.4140.08
DUALTKBggrr.grU  57.494+4.29 50.05£3.80 63.59£4.95 68.57£4.90 0.464+0.02 0.34+0.01
DUALTKBTans-Trans 43.87£4.65 37.57£4.93 47.80£5.02 54.02+4.11 0.48+0.08 0.384+0.05

Table 6: Results (Mean+SD) of various models across 4 different seeds for our random number generator. MRR,
HITS metrics corresponds for KB completion task, whereas BLEU scores are shown for BA text generation task
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[1]1 ahuman can eat [2] if you want to sate your hunger then you should eat

[3] monkey like to eat banana [4] a person can eat
[5] apigcaneat [6] amouse can eat

[7]1 you eat food [8] you can use a fork to eat food

[9] banana is fruit

Figure 8: Text to Path. A part of a larger graph gener-
ated by our system based on the test split of ConceptNet
dataset. The shown sentences are a subset of the inputs
provided to the model.
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[9] something you find in the refrigerator is food [

a vegetable is a kind of food

soup is a kind of food

something you find on table is food

something you find at the supermarket is food
] a refrigerator is for keeping food cold

SESIEE

Figure 9: Path to Text. A set of sentences generated
by our system from a subgrapth of the ConceptNet
dataset. The paths shown in the graph are the inputs
to the model.
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