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Abstract

Open attribute value extraction for emerging
entities is an important but challenging task. A
lot of previous works formulate the problem
as a question-answering (QA) task. While the
collections of articles from web corpus pro-
vide updated information about the emerging
entities, the retrieved texts can be noisy, ir-
relevant, thus leading to inaccurate answers.
Effectively filtering out noisy articles as well
as bad answers is the key to improving ex-
traction accuracy. Knowledge graph (KG),
which contains rich, well organized informa-
tion about entities, provides a good resource
to address the challenge. In this work, we pro-
pose a knowledge-guided reinforcement learn-
ing (RL) framework for open attribute value
extraction. Informed by relevant knowledge in
KG, we trained a deep Q-network to sequen-
tially compare extracted answers to improve
extraction accuracy. The proposed framework
is applicable to different information extrac-
tion system. Our experimental results show
that our method outperforms the baselines by
16.5 - 27.8%.

1 Introduction

Numerous entities are emerging everyday. The
attributes of the entities are often noisy or incom-
plete, even missing. In the field of electronic com-
merce, target attributes (e.g., brand, flavor, smell)
of new products are often missing (Zheng et al.,
2018). In medical analysis, attributes like trans-
mission, genetics and origins of a novel virus are
often unknown to people. Even in DBpedia, a
well-constructed and large-scale knowledge base
extracted from Wikipedia, half of the entities con-
tain less than 5 relationships (Shi and Weninger,
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2018). A method that is capable of supplementing
reliable attribute values for emerging entities can
be highly useful in many applications.

Although information extraction methods have
been extensively studied, the task of open attribute
value extraction remains challenging. First, the
emerging entities may have new attribute values
that are absent in the existing KG. Under such
circumstances, the prediction methods under the
closed-world assumption and the methods that can-
not utilize external information are not well suited
due to their limited recalls. Second, while web
corpus can be used as a good resource to provide
relatively updated and relevant articles for large
varieties of emerging entities, the articles retrieved
from web corpus can be noisy and/or irrelevant,
which in turn leads to a limited precision. Finally,
even when articles are relevant, the extracted an-
swers might still be inaccurate due to the error-
prone information extraction model.

To effectively filter out noisy answers that are
obtained either due to the irreverent articles or the
errors incurred by the information extraction sys-
tem, we pose the following two questions: First,
how many articles should we collect from the enor-
mous web corpus? Second, how to select the most
reliable value out of the pool of all the possible
answers extracted from the articles?

There is no common answer to the first question
that works for all triplets because of the inconsis-
tent degrees of difficulties in finding the correct at-
tribute values. The decision of when to stop query-
ing more external articles needs to be made after
successive evaluations of the candidate answers.
Thus the decision making process is inherently se-
quential.

Reinforcement learning (RL) is a commonly
adopted method to deal with sequential decision
problems and has been widely studied in the field
of robotic and game (Sutton et al., 1998). But
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Figure 1: Illustration of overall process. The inputs are pairs of entities and attributes. Relevant articles are
retrieved via search engines. The articles together with the KG are fed into the RL agent to inform the selection
between candidate answers and the stopping decisions. When the RL agent decides to stop, it will output the best
extracted answer.

there are not many researches on open attribute
value extraction with RL. One existing literature
of RL-based method for value extraction is pro-
posed by (Narasimhan et al., 2016). In their work,
a RL framework is designed to improve accuracy
of event-related value extraction by acquiring and
incorporating external evidences. However, their
approach requires a great amount of context infor-
mation about the specific event of interest during
the training process. It is not trivial to extend their
framework for open attribute value extraction, be-
cause we would need to collect context words and
train a new model with annotated data for each
emerging attribute. Therefore, their framework
cannot be generalized to open attribute value ex-
traction task when various entities and attributes
are involved.

While using the context words to construct the
states in RL is not suitable in our task, our solution
is to leverage the rich, well-organized information
in KG, which is not only informative but also gen-
eralizable. Such information can be leveraged in
answer comparisons, which addresses our second
question. For example, to fill the incomplete triplet
< iPhone 11, display resolution, ?>, from the KG
we may find that the attribute values “display reso-
lutions” of an entity that is under category “Phone”
is commonly expressed in the format of “xxx by
xxxx Pixels”, where x stands for some digit. The
typical instances of the attribute values for entities
under the same category provide valuable back-
ground information.

In this paper, we propose a knowledge-guided

RL framework to perform open attribute value ex-
traction. The RL agent is trained to make good
actions for answer selection and stopping time de-
cision. Our experiments show that the proposed
framework significantly boosts the extraction per-
formance.

To the best of our knowledge, we are the first
to integrate KG in a RL framework to perform
open attribute value extraction In summary, our
contribution are in three folds:

• We construct a novel knowledge-guided RL
framework for open attribute value extraction
task.

• We provide a benchmark data set for open
attribute value extraction task.

• Our method achieves a significantly better per-
formance than the state-of-the-art methods.

2 Overview

Problem Definition
We denote the entity-attribute-value triplet as

< e, r, v >. The goal is to find the attribute value
in an incomplete triplet < e, r, ? >. To achieve
this purpose, we pose a question generated with
a pre-defined template to search engine to obtain
relevant articles. For example, to fill the incomplete
triplet < GTX1080, Core code, ?>, we retrieve
articles with the query “What is the core code of
GTX1080?”.

An information extraction system, such as
QANet (Yu et al., 2018), is used to extract a candi-
date answer with a certain confidence score from
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an article. However, due to the inconsistent quali-
ties of the online articles and the inevitable errors
caused by the information extraction system, the
results of extracted from only one online article
is not satisfactory in many cases. Another source
of information that can be leveraged help to fulfill
such a task is a KG. While it is hard to find out the
attribute values for an emerging entity given the
existing ones, the KG can serve as the background
knowledge about the attributes. We approach the
problem using a reinforcement learning framework
that is illustrated in the next section.

System Overview

Our procedure is summarized in Figure 1. We
use <GTX1180, core code, ?> as an example for
illustration. The query “What is the core code of
GTX1180?” is posed to the search engine to obtain
a collection of relevant articles by downloading the
top M headlines and bodies in the searching page.
M is a pre-determined parameter that controls the
maximum capacity of the retrieved articles. For
each of the retrieved articles, we use an informa-
tion extraction system to extract a candidate answer.
In our example, RTX2080 is extracted with a con-
fidence score of 0.30 from the first queried article
and GV104 is extracted with a confidence score of
0.25 from the second article. Given the first two
candidate answers, the RL decides on which an-
swer to pick and whether more articles need to be
retrieved.

To make such decisions, in addition to the con-
fidence evidence from the information extraction
system, the relevant facts in the KG will be fed into
the RL agent to serve as the background knowledge
about the attribute. For a triplet < e, r, ? >, we
consider vr as a reference value with respect to the
attribute r if there is a triplet < e′, r, vr > and e,
e′ belong to the same category1 in the KG. In our
example, since GTX1180 belongs to the category
NVIDIA GPU, and so does GTX1080 and GTX980,
the reference values are retrieved from the fact that
the core code of GTX1080 is GP104 and the core
code of GTX980 is GM204. Guided by the KG, the
RL agent makes successive evaluations and finally
outputs the predicted candidate attribute value via
a policy network such as DQN (Mnih et al., 2015).

1The category information is obtained from concept of CN-
DBpedia. The knowledge base contains multi-level hierarchy
of categories. We use the lowest-level (most specific) category
in the hierarchy to derive the reference values.

3 Reinforcement Learning for Open
Attribute Value Extraction

The attribute value extraction task is modeled as
a Markov decision process (MDP), where the RL
agent is actively engaged in the decision making
process to maximize the reward, which measures
the correctness of the extracted attribute values.

The MDP is modeled as a tuple (S,A, T,R),
where S = {s} is the space of all possible real-
valued vector states; A = {a} is the set of actions;
T (s′|s, a) refers to a transition function that maps
the domain of state and action to a probability dis-
tribution of states; R(s, a) is a reward function that
maps the domain of state and action to a real num-
ber, which is encoded such that the higher value
the better. We describe our RL methodology by
illustrating these components as follows.

Action and transition At each decision stage,
the agent will observe two candidate answers from
two articles and make decisions to answer the two
questions: (i) which answer is better out of the two?
(ii) should the agent stop at the current best answer
or continue querying more articles? At the initial
decision point, two candidate answers are obtained
from two articles simultaneously queried from the
web, where we arbitrarily assign one of them to
be the current best answer and the other the new
candidate answer.

We define the following three actions in A:

1. Retain: (i) retain the current best answer and
discard the new answer; (ii) query next.

2. Replace: (i) replace the current best answer
with the new answer; (ii) query next.

3. Stop: (i) select the current best answer as the
final answer; (ii) stop the query.

At all subsequent decision points, we will retain
or replace the current best answer and continue
comparing with the new candidate answers queried
from the web until the action is “Stop”.

State At each decision point, the state is con-
structed by concatenating the following three com-
ponents, where different sources of information are
combined.

(1) State variables associated with the confi-
dence scores. The first component is the confi-
dence scores associated with the two candidate
answers, which are defined by the information ex-
traction system. We consider this part as the signal
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Figure 2: An example of reinforcement learning framework and state embedding. On the left panel, the inputs are
the emerging entities and attributes. The current best answer and the next candidate answer are extracted from the
retrieved articles with an information extraction system. The extracted answers are embedded into a state vector
from the state embedding process. The state vector is fed into a policy network (DQN). The policy network selects
the optimal actions and outputs the current best result. On the right panel, it presents the state embedding process.
The extracted candidate answers are embedded into a state vector via similarity metrics and confidence scores.

of the goodness of the extracted answers related to
the articles.

(2) State variables informed by the KG. The
second component leverages knowledge from the
reference values. For a given attribute, we expect
the attribute values to be similar to each other in
lexical sense. In order to capture such informa-
tion, we first construct 7 features based on 2 string
lexical similarity metrics. For each of the 7 fea-
tures, we take the average and maximum of the
features for each of the two candidate answers as
state variables.

String similarity metrics The two string lexical
similarity metrics as follows:

L Sim(s1, s2) = 1− L(s1, s2)

max(|s1|, |s2|)
,

LCS Sim(s1, s2) =
|LCS(s1, s2)|
max(|s1|, |s2|)

,

where L(s1, s2) refers to Levenshtein distance
(Levenshtein, 1966). It measures how different two
strings are by counting the number of deletions,
insertions or substitutions required to transform
s1 into s2. L Sim(s1, s2) is known as the Lev-
enshtein similarity and LCS(s1,s2) stands for the
longest common sub-string of s1 and s2 (Gusfield,
1997).

Features based on similarity We define the fol-
lowing 7 features to capture the similarity between
two strings from different aspects:

• f1: L Sim between s1 and s2;

• f2: LCS Sim between s1 and s2;

• f3: L Sim between s1 and s2 with numbers
removed from s1, s2;

• f4: LCS Sim between s1 and s2 with numbers
removed from s1, s2;

• f5: L Sim between s1 and s2 with s1, s2 wild-
card masked2;

• f6: LCS Sim between s1 and s2 with s1, s2
wildcard masked;

• f7: The difference in the length of s1 and s2
in characters.

Construction of state variables by the KG For
each of the 7 features, given the reference values
in V r and the two candidate answers, answer1 and
answer2, we form the 28 state variables in this
part by taking averages and maximums, which is
specified as follows:

1
|V r|

∑|V r|
`=1 fi(answer1, v

r
` ),

max
|V r|
`=1 fi(answer1, v

r
` ),

1
|V r|

∑|V r|
`=1 fi(answer2, v

r
` ),

max
|V r|
`=1 fi(answer2, v

r
` ),

for i = 1, . . . , 7. This is the part of the state where
knowledge from KG is used to inform the decision
of the RL agent.

2Wildcard mask means masking the numbers in the string.
For example, a string “750 by 1334 Pixels” will be masked to
“xxx by xxxx Pixels”.
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(3) State variables based on the candidate an-
swers The third component contains the Leven-
shtein similarity between the two candidate an-
swers. Intuitively, when the confidence scores of
both candidate answers are high and they are very
similar to each other, then it shows some positive
signal for stopping.

The components (1) - (3) are concatenated to-
gether to construct the 31-dimensional state vector
to carry information from different perspectives.

Reward The reward is set to 0 when the query
process is ongoing; only at the final stage when the
query is terminated, a nonzero reward is received,
which measures the similarity between the final
answer and the correct answer.

R(s, a) =

{
L Sim(v̂, v) a is Stop,
0 otherwise,

where v̂ is the selected best attribute value and v is
the true attribute value.

Method Since the state defined in our frame-
work is from a continuous space, we adopt a
deep Q-network (DQN) to approximate Q(s, a)
with a deep neural network denoted by Q(s, a; θ).
Specifically, we parameterize an approximate value
function Q(s, a; θ) using a three-layer deep neu-
ral network. The network takes the continuous
31-dimensional state vector s as input and predict
Q(s, a). We use the rectified linear unit (ReLU)
activation functions in the hidden layers. The ar-
chitecture is illustrated in Figure 2.

Algorithm 1 provides complete details of our
MDP framework for the DQN training phase.

4 Experiments

In this section, we compare our proposed RL frame-
work to the state-of-the-art extraction-based base-
lines, demonstrating its robustness and ability to
obtain accurate answers for missing attribute val-
ues. Our codes are publicly available online.3

4.1 Data

The dataset is generated from existing triplets using
the largest public Chinese knowledge base, CN-
DBpedia (Xu et al., 2017), with a corresponding
taxonomy CN-Probase. 4 Specially, the number of

3https://github.com/yeliu0930/Knowledge-guided-Open-
Attribute-Value-Extraction-with-Reinforcement-Learning

4As far as we know, there is no public benchmark dataset
suitable for our open attribute value extraction task with la-
beled values.

Algorithm 1 The full details of our training Phase
for the DQN agent with ε-greedy exploration.

1: Initialize a set of training triplets
xi =< ei, ri, vi >∈ X

2: Initialize parameters θ randomly
3: Initialize replay memory D
4: for xi ∈ X do
5: Download M articles by searching with

query “[ei]′s[ri]”
6: Queue the downloaded articles in Ci

7: Identify reference values from the KG and
save them in V r

i

8: for epoch = 1, . . . ,E do
9: for i = 1, . . . , |X| do

10: Pop the first two articles in Ci and obtain
answer1 with confidence1 and answer2
with confidence2

11: Form the state s1 given answer1, confi-
dence1, answer2, confidence2, V r

i

12: for t = 1, . . . ,M − 1 do
13: With probability 1 − ε select at =

argmaxaQ(st, a; θ) otherwise select
at randomly

14: if at is not “Stop” then
15: rt ← 0
16: Pop next article from Ci and obtain

answernew with confidencenew
17: if at is “Retain” then
18: answer2← answernew
19: confidence2← confidencenew
20: if at is “Replace” then
21: answer1← answer2
22: confidence1← confidence2
23: answer2← answernew
24: confidence2← confidencenew
25: Form a new state st+1

26: else
27: v̂i ← answer1
28: rt = L Sim(v̂i, vi)
29: st+1 ← NULL
30: Store transition (st, at, rt, st+1) in D
31: Sample random mini batch of transi-

tions (st, at, rt, st+1) from D
32: yt = rt if at is ”Stop”

else rt + γmaxa′Q(st+1, a
′; θ)

33: Update parameter θ on the loss L(θ) =
(yt −Q(st, at; θ))

2

34: if at is “Stop” then break
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training triplets is 1022. The selected entities in the
experiment are from four different fields, including
GPU, game, movie and phone. The testing data
contains 75 triplets for each field, hence the total
number of triplets in the testing is 300. For each
triplet in the training and testing data, we download
articles from top M = 10 links obtained from the
Baidu search engine. The CN-DBpedia is used as
our external KG with the triplets in training and
testing masked and to provide reference values.

4.2 Reinforcement Learning Implementation
In the RL setting, we use DQN to train the pol-
icy. Specifically, the DQN contains three layers of
multilayer perceptron (MLP). The dimensions of
hidden layers in MLP are chosen as 10 and 5 re-
spectively. The dimension for the output is 3 which
represents the three actions. In our experiments,
the DQN model is trained 100 epochs where each
epoch contains 1,000 transitions. We use a decreas-
ing learning rate with epochs during the training
process5. The ε in ε-greedy exploration is annealed
from 1 to 0.02 over 10,000 transitions. The replay
memory D is of size 10,000. We deploy our RL
model in RLlib (Liang et al., 2017) for efficiently
distributed computation.

4.3 Information Extraction System
Different information extraction methods are imple-
mented during the experiment. Sequence labeling
methods including Bi-LSTM labeling, Bi-LSTM-
CRF labeling (Huang et al., 2015), CNN label-
ing (Collobert et al., 2011), CNN-att-CRF labeling
(Tan et al., 2018), and OpenTag labeling (Zheng
et al., 2018) are used. We also consider three
Machine Comprehension (MC) models, includ-
ing BiDAF (Seo et al., 2016), QANet and a Bert-
based model(Devlin et al., 2018). The SQuAD-like
Chinese open-domain MC datasets including We-
bQA (Li et al., 2016b) and CIPS-SOGOU factoid
question-answering subtask dataset 6 are used to
train the extraction systems with distant supervi-
sion.

4.4 Competitors
We experimented with three traditional aggrega-
tion methods and four variants of RL agents as the
competitors during the experiment.

Traditional Aggregation Methods
5The learning rate schedule is set to [[0, 0.05], [20, 0.01],

[30, 0.005], [50, 0.001]].
6http://task.www.sogou.com/cips-sogou qa/

1. Random choice (Random): We randomly
select an article out of M articles and extract an an-
swer from it with the information extraction system
as the final answer.

2. First article (First): We use the answer ex-
tracted from the article that ranked first in the
search engines.

3. Majority aggregation (Majority): We use a
majority vote strategy over all the extracted an-
swers.

4. Confidence aggregation (Confidence): The
answer with the highest confidence score out is cho-
sen as the final answer. This aggregation method is
only feasible when each candidate answer is asso-
ciated with a confidence score.

Variations of the RL framework
1. RL-NK: (No KG included) The RL agent do

not leverage the information from KG. The KG-
dependent part (i.e. the component (2) in state
construction) is omitted from the state.

2. RL-NR: (No retain or replace actions) The
only action in the RL framework is Stop. The final
answer is the one with the highest confidence score
among candidate answers seen before stop.

3. RL-NS: (No stop action) The RL agent do
not make Stop decisions. All of the M extracted
candidate answers are compared.

4. RL-KG: Our proposed RL framework.
Since the sequence labeling methods cannot pro-

vide valid confidence scores associated with the
candidate answers, the answers extracted with these
methods are aggregated using Random and Ma-
jority strategies. For the MC models, we imple-
mented all the aggregation strategies including our
RL-based methods.

4.5 Results

Our evaluating metric is the Levenshtein similar-
ity between the final answer and the ground truth,
which ranges from 0 to 1 and higher score repre-
sents better performance. The results are summa-
rized in Table 1 when different information extrac-
tion systems are combined with different aggrega-
tion strategies. The results are evaluated separately
under each field and the combined results are also
reported in the tables. All results reported are av-
eraged over 3 independent runs. The oracle per-
formances are provided to differentiate the error
incurred by imperfect decisions and the inherent
errors caused by the information extraction system.
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Evaluating Dataset
GPU Games Movie Phone All

Baselines: Sequence labeling methods with traditional aggregations
Random(OpenTag) 0.222 0.220 0.238 0.244 0.231
Majority(OpenTag) 0.282 0.334 0.321 0.320 0.314
Random(Bi-LSTM) 0.291 0.322 0.184 0.418 0.304
Majority(Bi-LSTM) 0.307 0.334 0.194 0.462 0.324
Random(Bi-LSTM-CRF) 0.349 0.273 0.287 0.336 0.311
Majority(Bi-LSTM-CRF) 0.517 0.388 0.360 0.494 0.440
Random(CNN) 0.409 0.333 0.356 0.381 0.370
Majority(CNN) 0.534 0.419 0.430 0.508 0.473
Random(CNN-att-CRF) 0.399 0.272 0.304 0.310 0.321
Majority(CNN-att-CRF) 0.626 0.413 0.481 0.506 0.507

BiDAF with traditional aggregations, RL methods and Oracle strategy.
Random(BiDAF) 0.259 0.155 0.267 0.223 0.226
First(BiDAF) 0.451 0.498 0.533 0.632 0.528
Majority(BiDAF) 0.488 0.321 0.539 0.415 0.441
Confidence(BiDAF) 0.799 0.488 0.645 0.560 0.623
RL-NK(BiDAF) 0.679 0.602 0.609 0.658 0.637
RL-NR(BiDAF) 0.751 0.655 0.622 0.644 0.668
RL-NS(BiDAF) 0.759 0.732 0.673 0.680 0.711
RL-KG(BiDAF) 0.786 0.692 0.686 0.739 0.726
Oracle(BiDAF) 0.902 0.793 0.846 0.812 0.838

QANet with traditional aggregations, RL methods and Oracle strategy
Random(QANet) 0.261 0.167 0.259 0.236 0.230
First(QANet) 0.507 0.533 0.531 0.675 0.561
Majority(QANet) 0.484 0.325 0.500 0.469 0.444
Confidence(QANet) 0.691 0.493 0.689 0.546 0.605
RL-NK(QANet) 0.640 0.592 0.596 0.645 0.618
RL-NR(QANet) 0.687 0.717 0.549 0.631 0.646
RL-NS(QANet) 0.801 0.695 0.686 0.771 0.738
RL-KG(QANet) 0.786 0.687 0.731 0.790 0.749
Oracle(QANet) 0.932 0.840 0.878 0.868 0.880

BERT with traditional aggregations, RL methods and Oracle strategy
Random(BERT) 0.374 0.234 0.361 0.287 0.314
First(BERT) 0.507 0.533 0.531 0.675 0.561
Majority(BERT) 0.620 0.438 0.626 0.530 0.553
Confidence(BERT) 0.727 0.600 0.552 0.540 0.605
RL-NK(BERT) 0.716 0.682 0.565 0.687 0.662
RL-NR(BERT) 0.775 0.652 0.707 0.723 0.714
RL-NS(BERT) 0.773 0.673 0.769 0.831 0.762
RL-KG(BERT) 0.817 0.637 0.777 0.837 0.767
Oracle(BERT) 0.925 0.857 0.887 0.909 0.895

Table 1: Accuracy of the baseline methods and our
proposed methods. Bold indicates best baseline per-
formances with a sequence labeling methods and best
results achieved with BiDAF/QANet/BERT. The Ora-
cle performance shows the best possible performance
when perfect decisions are made. Our proposed RL-
KG improves the extraction performances substan-
tially.

From Table 1, we have the following observa-
tions. First, the RL based methods outperform all
the competing baseline methods. By adopting the
RL framework instead of traditional aggregation
methods, the accuracies are boosted substantially.
It demonstrate the effectiveness of the RL frame-
work. Second, compared to the RL framework
without the guide of KG (RL-NK), our proposed
RL-KG framework achieves significantly better re-
sults. This suggests that the KG does provide valu-
able information in the task of the attribute value
extraction. Third, the RL-KG framework outper-
forms all the other variants of the RL framework. It

shows that considering answer selection and stop-
ping decisions at the same time achieves the best
performances.

We also conduct an experiment to see how our
method performs when the KG is not able to pro-
vide information for some triplets, which is a com-
mon situation in reality. During the experiment, we
randomly set the reference values for 0− 100 (in-
cremented by 10) percent of triplets in the training
and testing as empty. For those triplets that do not
have reference values, the state variables associated
with the KG (i.e. the component (2) in our state
construction) are set to 0. Figure 3 displays how
the performances change when information from
KG is leveraged with different levels of frequency.
It can be seen that for all the three information ex-
traction models, the performances are getting better
as the KG is used at higher frequencies.

Figure 3: Extraction accuracy when KG is used with
different levels of frequency. Better extraction results
are achieved when KG is used with higher frequen-
cies.

4.6 Case Study

By incorporating information from KG, RL agent
is able to rule out some unreasonable answers and
boost the extraction accuracy.

In Table 2, we present some cases where the
trained RL agent helps to correct the information
extraction errors. More details for the first two
examples are included in Table 3. For the first ex-
ample in Table 3, the emerging entity is Founder
r680-470 and the attribute of interest is operating
system. The reference values retrieved from the KG
include values like IOS, DOS, Andriod, EMUI. The
trained RL agent stops after querying the six raw
corpus and selects the answer DOS over the previ-
ous candidate values, which is exactly one of the
reference values. In the second example in Table 3,
we are interested in the release date for the emerg-
ing entity super puzzles game. The reference val-
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Entity Attribute Truth RL-KG(BERT) Confidence(BERT)
Founder r680-470 Operating system DOS DOS T2410
Super puzzles game Release date 12/25/2007 12/25/2007 43.75
Madea’s Witness Protection Rating system USA:PG-13 pg-13 6.4
Tequila Works, S.L Number of endings 2 2 ConsoleGame

Table 2: Case studies (translated)

Example 1
< e, r, ? > <Founder r680-470, Operating system, ? >
... ... 7

Raw corpus 4 Intel Pentium dual-core T2410 is an entry level processor based on the Merom-2M... 7

Raw corpus 5 ...Founder Q680 high shot instrument scanner 5 million pixels A4 on... 7

Raw corpus 6 ...The latest R680 series laptop, Operating system DOS with ... !
... ...
Reference values <..IOS, DOS, Andriod, EMUI..>
Example 2
< e, r, ? > <Super puzzles game, Release date, ? >
Raw corpus 1 ...announced release date of super puzzles is 12/25/2007. It was published by... !
Raw corpus 2 ...Super Puzzle HD v2.1.2 - Size: 43.75 MB...
... ...
Reference values <..02/24, 03/27/2018, 05/07/2016..>

Table 3: Detailed examples where the trained RL agent helps to select the candidate answers from raw corpus.
Blue words represent the extracted answers from BERT. The check-marks denote the selected answers.

ues are dates like 02/24, 03/27/2018, 05/07/2016,
etc. The trained RL agent stops after one step, and
outputs the candidate answer 12/25/2007. By lever-
aging the reference values, our proposed method
demonstrated its advantages in answer selection.

5 Related Work

5.1 Machine reading comprehension
Machine reading comprehension (MRC) and au-
tomated question (QA) answering are important
and longstanding topic in NLP research due to its
huge potentials in wide variety of applications. An
end-to-end MRC QA models are expected to have
the ability to read a piece of text and then answer
questions about it. Significant progress has been
made with the machine reading and QA task in
recent years. Some notable works include BiDAF
(Seo et al., 2016), SAN (Liu et al., 2017), QANet,
ALBERT (Lan et al., 2019).

Our proposed framework can also be regarded
an end-to-end MRC QA model that is built on top
of an existing MRC QA model, which is used as
the information extraction system in our extraction
process. Different from most of the previous works,
our focus is to enhance the performance of an ex-

isting model by utilizing external information from
KG and by acquiring more articles when the agent
does not feel confident about the extracted answer.

5.2 Open-world knowledge graph completion

Attribute value extraction under the open world
assumption has received many attentions in NLP
community recently. There has been quite a few
works on open attribute value extraction. Open-
Tag (Zheng et al., 2018) formalized the extrac-
tion problem as a sequence tagging task and pro-
posed an end-to-end framework for open attribute
value extraction. The open-world KGC (Shi and
Weninger, 2018) used a complex relationship de-
pendent content masking architecture to mitigate
the presence of noisy text descriptions and extract
the attribute value from the denoised text. TXtract
(Karamanolakis et al., 2020) incorporated the cat-
egorical structure into the value tagging system.
However these methods suffer from irrelevant arti-
cles and is not able to filter out noisy answers.

5.3 NLP with reinforcement learning

RL (Sutton et al., 1998) is a framework that enables
agents to reason about sequential decision making
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as an optimization process. It has been widely ap-
plied in NLP tasks, including article summarization
(Paulus et al., 2017; Li et al., 2018; Celikyilmaz
et al., 2018), dialogue generation (Li et al., 2016a;
Serban et al., 2017; Li et al., 2019), and question
answering (Xiong et al., 2017; Wang et al., 2018;
Das et al., 2019) and so on. To the best of our
knowledge, we are the first to integrate informa-
tion from KG into a RL framework to fulfill the
attribute extraction task.

6 Conclusion and discussion

This paper presents a novel RL framework to per-
form open attribute value extraction. Through a
set of experiments, we observe that the most of the
computation cost is incurred by training the infor-
mation extraction system. The remaining computa-
tion cost from RL framework is comparably small
during both the training and the prediction process.
Specifically, during our experiments, we trained a
three-layer deep neural network model, which has
much fewer parameters compared to the informa-
tion extraction system. The proposed RL method
demonstrates promising performance, where the
KG showed its ability to provide guidance in open
attribute extraction task. Our framework also con-
tributes to areas of knowledge graph completion
and automatic question-answering for attribute val-
ues.

KG has huge potential to provide rich back-
ground information in many NLP applications. Our
solution for attribute value extraction can be ex-
tended to other NLP tasks. A potential attempt
might be to use KG to design the reward in the RL
framework to provide weak supervision. We leave
this as our future work.
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