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Abstract

Analyzing the evolution of dialects remains a
challenging problem because contact phenom-
ena hinder the application of the standard tree
model. Previous statistical approaches to this
problem resort to admixture analysis, where
each dialect is seen as a mixture of latent an-
cestral populations. However, such ancestral
populations are hardly interpretable in the con-
text of the tree model. In this paper, we pro-
pose a probabilistic generative model that rep-
resents latent factors as geographical distribu-
tions. We argue that the proposed model has
higher affinity with the tree model because a
tree can alternatively be represented as a set
of geographical distributions. Experiments in-
volving synthetic and real data suggest that
the proposed method is both quantitatively and
qualitatively superior to the admixture model.

1 Introduction

How languages have changed over time is a ques-
tion that has attracted a lasting interest. Observing
the present state of a language, we typically want to
trace it back to the past. Historical-comparative lin-
guists have done this by systematically comparing
related languages and representing them as a tree.
The success of this approach led to the establish-
ment of language families such as Indo-European
and Austronesian (Campbell, 2004). The recent
adoption of computer-intensive statistical methods
offer additional insights (Gray and Atkinson, 2003;
Bouckaert et al., 2012; Chang et al., 2015).

When it comes to dialects, or closely-related lan-
guages,! the situation is very different. When we
draw an isogloss, or the geographical boundary of
a linguistic feature, and collect such isoglosses,
it often happens that they conflict with each
other (Kalyan and Francois, 2018). Conflicting

!The language/dialect distinction is not clear-cut. In this
paper, the two terms are used interchangeably.

isoglosses violate the assumption of the tree model,
where after a branching event, two daughter lan-
guages evolve without any contact.

Nevertheless, some historical-comparative lin-
guists have recently tried to apply the tree model to
dialects in intense contact, with the assumption that
at least some portion of observed data reflects tree-
like vertical inheritance while the rest may result
from horizontal contact (Lawrence, 2006; Pellard,
2009; Igarashi, 2017). While these efforts have
been met with some success, it seems to us that the
inherent difficulty in disentangling the two modes
of transmission remains unresolved. This motivates
us to turn to statistical modeling because computers
are better at handling uncertainty than humans.

As a statistical model to analyze the evolution
of dialects, admixture analysis has received atten-
tion in recent years (Bowern, 2012; Syrjinen et al.,
2016; Cathcart, 2020). It assumes that each di-
alect is generated from a mixture of latent ancestral
populations. Unfortunately, such ancestral popula-
tions can hardly be used for humans to infer a tree.
Covering all the dialects with varying degrees of
membership, an ancestral population only offers
vague information about subgrouping if it does.

In this paper, we propose a probabilistic gener-
ative model that represents latent factors as geo-
graphical distributions (Figure 1). The geographi-
cal distribution of an observed feature is assumed
to be stochastically generated from a weighted com-
bination of the latent geographical factors. These
factors are much more easier to interpret in the
context of the tree model than latent ancestral pop-
ulation of the admixture model because an internal
node of a tree can be geographically represented as
the set of its descendant leaves. Some latent factors
may be associated with vertical inheritance while
others reflect horizontal transfer. We revisit this
point in Section 5.3.

To evaluate the proposed method, we begin by
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Figure 1: An overview of the proposed method. There are L = 4 dialects, A, B, C, and D, on the island. The figure
focuses on one of N features, for which each dialect takes the value 4, 6, or 8 (bottom right). The proposed method
decomposes the observed data into K = 10 latent factors and the corresponding weights. Each latent factor has its
own geographical distribution (top). Filled circles indicates the dialects are covered by the latent factor, while the
dialects represented by hollow circles are not. Each feature value is tied to K weights (bottom left). Multiplying
the binary factors by the weights and normalizing the resultant scores, we obtain a probability distribution for each
dialect (bottom center). The value of each dialect is assumed to be drawn from the categorical distribution.

simulation experiments, where we know the ground
truth. We demonstrate that the proposed method
recovers tree-based and geographical clusters bet-
ter than the admixture model. We then switch to a
basic vocabulary database of Fijian dialects, whose
evolutionary history is yet to be uncovered. We
confirm that the proposed method detects major di-
alect groups. Although the proposed method in its
current form focuses on spatial inference, the quan-
tification it offers shows the potential of making
temporal reasoning. The code is available at https:
//github.com/murawaki/dialect-latgeo.

2 Background
2.1 Dialectology

It is important to note that although we
work on dialects, we methodologically lean to-
ward historical-comparative linguistics. While
historical-comparative linguistics is known for the
Neogrammarian doctrine of exceptionless sound
laws, dialectology is dominated by the dictum, “ev-
ery word has its own history.” In fact, the Atlas
linguistique de la France (Gilliéron and Edmont,
1902-1910) and subsequent linguistic atlases that
have been produced by dialectologists elaborate
“the geography not of dialects but of linguistic
traits” (Goebl, 2018).
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Nevertheless, there have been several attempts
in dialectology to aggregate over a large set of
features (see Nerbonne and Wieling (2018) for an
overview). Among the most popular ones are di-
mensionality reduction techniques such as principal
component analysis (PCA) and multidimensional
scaling (MDS). PCA is also routinely employed
in population genetics to infer population structure
from recombining genetic markers (Menozzi et al.,
1978; Patterson et al., 2006). For visualization,
each language is colored according to the value of
a selected principal component (PC). In typical ap-
plications, at most the first three PCs are examined
because subsequent PCs are hardly interpretable.

Recent applications of NLP techniques to dialec-
tology and sociolinguistics (Eisenstein et al., 2010,
2014) make use of geotagged social media. While
the big data allow us to analyze language variation
and language change to the fine details, our inter-
est lies in (1) applicability to unwritten languages
and (2) language change on the order of hundred
years or more. For these reasons, we work on data
manually complied by field linguists.

2.2 Historical-Comparative Linguistics

Historical-comparative linguistics is characterized
by careful manual selection of features (Sagart et al.


https://github.com/murawaki/dialect-latgeo
https://github.com/murawaki/dialect-latgeo

(2019) is a recent example). If two languages are
phylogenetically closely related, they must be sim-
ilar to each other, but not vice versa. It is because
there are at least four ways to explain the fact that
two languages share the same feature value: (1) in-
herited from a common ancestor (vertical inheri-
tance), (2) borrowed from one language into an-
other (horizontal transfer), (3) reflecting universal
tendencies, and (4) coincidence. Only the first
factor is a genuine phylogenetic signal. In order
to establish phylogenetic relationships, linguists
carefully count out features that have potential con-
nections to the remaining three factors.

When three or more languages are involved, their
subgroups need to be determined. To do so, lin-
guists focus on shared innovations (Hoenigswald,
1966). A shared innovation is a change that oc-
curred in an intermediate descendant from which
a subset of modern languages have descended and
that is not shared by the remaining languages. In
other words, shared retentions, or feature values in-
herited from the common ancestor, are disregarded
because they cannot be used as a criterion for sub-
grouping.

When the above-mentioned principle is applied
to dialects in intense contact, an even more strin-
gent feature selection is performed.? For example,
Lawrence (2006) and Pellard (2009) discard a set
of regular sound changes in favor of a conflicting
irregular sound change, arguing that the former
is more likely to occur in parallel (i.e., universal
tendencies). However, they appear to have so much
trouble distinguishing vertical inheritance from hor-
izontal transfer. In addition, a large number of dis-
carded features must constitute an important aspect
of evolutionary history that awaits description. For
these reasons, we choose a setting where no man-
ual feature selection is performed. At this stage of
research, our model is agnostic as to which factor
has led to the current distribution of a given feature
although we are much interested in tying some of
the latent factors to the tree model.

Igarashi (2017) manually searched for
matryoshka-like geographical distributions of
shared innovations to construct a phylogenetic
tree of dialects, with the assumption that if the
distribution of one innovation is nested inside that

YIgnoring the methodology of historical-comparative lin-
guistics, Lee and Hasegawa (2011) applied a computer-
intensive phylogenetic method to a lexical dataset of dialects.
Not surprisingly, the resulting phylogenetic tree is judged
totally unreliable by an expert linguist (Pellard, 2018).
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of another, it reflects a branching event within the
tree. We concur with his idea that spatial inference
forms the basis for temporal reasoning. We note
that an innovation that occurred in the past is not
necessarily directly observable because it can
be overshadowed by subsequent changes. As a
probabilistic model, the proposed method has the
potential to recover the original pattern given that
it is supported by other observed features.

2.3 Admixture Analysis

Originally borrowed from population genet-
ics (Pritchard et al., 2000; Alexander et al., 2009),
what we collectively refer to as admixture anal-
ysis has been employed in recent studies on di-
alects (Bowern, 2012; Syrjénen et al., 2016; Cath-
cart, 2020). The same technique was also used to
analyze typological features (Reesink et al., 2009;
Longobardi et al., 2013).

Like the more familiar latent Dirichlet allocation
(LDA) (Blei et al., 2003), an admixture model as-
sumes that each individual (document) is stochas-
tically generated from a mixture of K ancestral
populations (topics). A major difference is that
while LDA ties a single vocabulary distribution to
each topic, each ancestral population has N dis-
crete distributions, one per feature type.

We argue that this is not a natural assumption
for languages although it is for genetic data. A
population (a collection of individuals) normally
maintains multiple values for a genetic marker. In
contrast, a speech community would have trou-
ble communicating if it uses multiple values for
a single feature (e.g., multiple words for a given
concept). To guarantee efficient communication,
a language must take a single value for each fea-
ture, except for transitional periods. To address
this problem, Cathcart (2020) explicitly imposes
sparsity on his model.

2.4 Phylogenetic Networks

When horizontal transfer is non-negligible, a net-
work model is often used as an alternative to the
tree. NeighborNet (Bryant and Moulton, 2004) is
arguably the most famous implementation of the
idea and has been applied to dialect data (Lee and
Hasegawa, 2011; Saitou and Jinam, 2017).
However, it must be noted that NeighborNet
does not explicitly indicate any single evolutionary
scenario but simply visualizes multiple conflicting
trees as a single network. Nichols and Warnow



(2008) give warning against applying the model to
dialects under intense contact.

3 Proposed Method

3.1 Basic Idea

The key insight behind the proposed method is that
both vertical and horizontal signals can be repre-
sented as geographical distributions. If horizontal
contact occurs in a certain area, leading to multiple
feature values being shared by the dialects there, we
can identify the corresponding geographical clus-
ter. Similarly, a group of dialects that exclusively
share the same ancestor usually occupies a con-
tinuum geographical space. Because their shared
evolutionary history results in many shared feature
values, the corresponding geographical subspace
can be identified. Note, however, that we do not
necessarily observe geographical distributions in
their original forms because a state in the past can
be overshadowed by subsequent changes. There-
fore, our goal is to induct latent, typically clearer
geographical factors from observed geographical
distributions, as illustrated in Figure 1.

Each latent geographical factor is responsible for
spreading certain feature values. Ideally, a binary
variable should indicate the presence or absence
of a feature value in the latent geographical fac-
tor. However, observed data are too complex and
noisy to be explained by a deterministic generative
process, and we want to reserve clear-cutness for
latent geographical distributions. For these reasons,
we introduce soft membership to feature values:
A non-negative continuous weight indicates how
strong the feature value is associated with the latent
geographical factors.

3.2 Bayesian Generative Model

The proposed method is a Bayesian generative
model that is based on the model of Murawaki
(2019) even though at first glance, our task has
little in common with that of Murawaki (2019).
The differences between the two are summarized
in Appendix A.

Formally, the observed data® are an L x N matrix
X, where L is the number of languages and NV is
the number of features. Its element x; ,, represents
language I’s n-th feature. Features are categorical
and feature n takes one of F;, values.

We assume that X can be reorganized into an
L x K binary matrix Z, where K is the number

3To be precise, a language can have missing features.

of latent factors and is specified a priori. The la-
tent factor k is represented by the vector z, ;, =
(Zl,ka cee 7ZL,]C)7 in which 21k € {0, 1} indicates
whether the latent factor k is active for language .
Each latent factor has a geographical interpreta-
tion. Filled and hollow circles in the top of Figure 1
indicate one- and zero-valued z; ;’s, respectively.
To incorporate our prior expectation that nearby
languages are likely to take the same value for
each k, we use an autologistic model (Besag, 1974;
Towner et al., 2012). Relationships between lan-
guages are represented as a neighbor graph, which
is indicated by edges between dialects in Figure 1.
We use a weighted variant of the graph. The
probability of language [ taking the value b &
{0,1}, conditioned on the rest of the languages,

Zoik = (ZLk, " s 21 ks 21 ks " > ZLk)5 1S

Pz =bz_1p, i, up)

exp | hi Z wird (zp e =0)+ugb | . (1)
'eg(l)

The parameter hj > 0 controls the degree of in-
fluence from neighboring languages while uy, €
(—00, 400) serves as a bias term. Their prior dis-
tributions are: hy ~ Gamma(k,0) and ug ~
N(0,0%). G(I) returns a set of I’s neighbors and
wy > 0 indicates how strongly the pair is con-
nected. Both G(l) and w;; are given a priori.
Eq. (1) encodes our assumption that the more neigh-
boring languages take the value b, the more likely
language [ also takes the value b.

This model is called an autologistic model be-
cause the target variable z; ;, depends on explana-
tory variables of the same kind, zy ;’s. To solve
the chicken-and-egg problem, we define a joint
distribution, P(z, 1, | hi, u) (Besag, 1974).

The generation of Z is followed by that of
the weight matrix W € REXM where M =
27]2[:1 F,,. Suppose that feature n’s i-th value cor-
responds to the m-th weight. We map the two
indexes using f(n,7) = m. An element of W,
Wk, m 18 drawn from Gamma(1, 1).

Next, we compute © = ZW € RE*M and then
normalize © for each feature n using the softmax
function:

01, (ni) = SOftmaXi(él,f(n,l)a E 79~l,f(n7Fn))
_ osna)
S exp(0y fnin)

2
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Finally, z; ,, is drawn from the corresponding cate-
gorical distribution:

w1, ~ Categorical(6) r(n.1y, " 5 01 f(n,Fn))-
3)
To see how Z and W affect the generation of X,
we should note that 6; ;(, ;) indicates how likely
language [ takes the value ¢ for feature n. Re-
call that 0~l’ f(n,i)» the unnormalized counterpart of
01,7 (n,i) 1s calculated as

K

él,f(n,i) = Z 21 kW, f(n,i)- “4)
k=1

If 21, = 0, the latent factor k£ has no effect on
01,1 (n.i)> Otherwise wy, ¢, ;) raises the probability
of language [’s taking the value i for feature n. Let
O f(n,i) = (01, f(nsi)s 0L, f(n,i))- For eac~h latent
factor k, wy, f(n ) is added to the vector 0, r(, ),
but zero-valued z; ;,’s mask the operation.

To complete the generative story, we define the
joint distribution (hyperparameters are omitted for
brevity):

P(A,Z,W,X)=P(AP(Z|AP(W)P(X|Z,W),
(5)
where A = (H,U), H = (hy, - ,hg) and U =

(ur, -, ug).

3.3 Inference

Following Murawaki (2019), we use Gibbs sam-
pling to perform posterior inference. Given ob-
served values x; ,, we iteratively update z; x, hy,

U, and wg . = (wg1,- -, Wk ), and missing
values ; j,.
Update z;,, 1, is sampled from Eq. (3).

mis
1%

Update z;; and x We use the Metropolis-

Hastings algorithm to update z;; and X}n*is, the
missing portion of x;, = (21, -,z n). We
find that jointly updating x™® drastically improves

1,%
the mobility of 2 ;.

Update h; and u; We want to sample hy
(and uy) from P(hy | —) o< P(hg)P(zep |
hi, ug). Since this belongs to a class of problems
known as sampling from doubly-intractable distri-
butions (Mgller et al., 2006; Murray et al., 2006),
we adopt an approximate sampler (Liang, 2010).

Update wy, We block-sample wy . =
(wk,1,- -+, wg ) using Hamiltonian Monte Carlo
(HMC) (Neal, 2011).
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4 Simulation Experiments

4.1 Synthetic Data

Evaluating the proposed method is a tough chal-
lenge. Here we turn to synthetic data. While rare
in NLP, simulation is an established practice in
evolutionary biology as a means of quantitatively
evaluating statistical models.

Specifically, we consider a general scenario
where dialects follow tree-shaped evolutionary
paths but a high degree of borrowing obscures the
phylogenetic signal. The resultant leaf nodes (mod-
ern dialects) are given to the proposed model to per-
form inference while the tree is used for evaluation.
Our simulator is similar in spirit to the TraitLab
software package extended with lateral transfer,*
which is used extensively to test the robustness
of the tree model with respect to contact phenom-
ena (Greenhill et al., 2009; Kelly and Nicholls,
2017). There are, however, two important differ-
ences that make our simulation more realistic:

1. Instead of independently simulating the birth
and death of each trait along branches, we group
traits into features. Having a new trait born at a
branch, we randomly choose a feature type and
update the feature value of the dialect in question
to the new one (i.e., the old value dies there).

2. We simulate spatial diffusion using a 2D Brow-
nian random walk process. While the local borrow-
ing variant of the TraitL.ab model makes dialects
borrow traits from phylogenetically close dialects,
we control the degree of borrowing according to
spatial proximity.

We set the number of observed dialects to 50,
the number of features to 100, and the root date
to 1,000 BP (before present). The simulation was
repeated 5 times using different random seeds. We
removed features that had only one value (i.e., no
variation) and merged dialects that were too similar
to each other to be documented separately.

To make simulation experiments realistic, we
tuned hyperparameters by manually checking
neighbor-joining trees (Saitou and Nei, 1987) and
NeighborNets (Bryant and Moulton, 2004) drawn
from generated data, in addition to monitoring sev-
eral statistics. We found that only a small subspace
in the hyperparameter space led to realistic-looking
data. As a result, we obtained 44.4 + 2.6 languages

*https://github.com/lukejkelly/
TraitLabSDLT
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and 92.4 + 3.0 features with 524.6 + 86.8 unique
values.

To assess how realistic the synthetic data were,
we checked the § score (Holland et al., 2002).
Ranging from O to 1, the § score indicates how
tree-like the data are (lower is more tree-like). We
obtained the score of 0.246 £ 0.057, which was
roughly comparable to those calculated from real
datasets known for non-tree-like evolution (Mu-
rawaki, 2015).

4.2 Model Settings and Evaluation Metric

We compared the proposed method with an admix-
ture model. The settings for the proposed method is
described in detail in Appendix B. We implemented
a simple, fully Bayesian variant of admixture anal-
ysis, which is explained in Appendix C. For both
models, we varied the number of latent factors, K,
to be 2, 3, 4, 5, 10, and 20.

As the evaluation metric, we used a variant of
many-to-one mapping accuracy. The induced la-
tent factors were compared against gold standard
clusters, and more than one latent factor may be
mapped to the same gold standard cluster. Each
latent factor was first mapped to the gold standard
cluster that had the highest similarity score. We
used the Jaccard index as the similarity score. The
accuracy was then obtained by averaging each la-
tent factor’s score.

We considered two types of gold standard clus-
ters: (1) phylogenetic tree and (2) spatial hierarchi-
cal clustering. For the ground-truth phylogenetic
tree, each node was mapped to the set of its de-
scendant leaves, and it was used as a gold standard
cluster if it covered at least 10% of the leaves. We
also conducted spatial hierarchical clustering using
the UPGMA algorithm with the Euclidean distance,
and generated clusters in the same manner.

Although the proposed method assumes clear-
cut latent geographical distributions, posterior in-
ference entails uncertainty about membership. To
determine hard membership, we applied the thresh-
old of 0.5 to the posterior probability P(z; | —).
Obtaining clusters with hard membership from the
admixture model is non-straightforward because it
assumes soft membership by design. For each [, we
averaged the ancestral population assignment z; ,,
over N and over posterior samples, and applied the
threshold of 0.2. We confirmed that changing the
threshold did not have much impact on accuracy.
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0.8 Admixture
>
2 0.6
5 o - I\ —4
30.4
<
0.2
0.0
2345 10 20
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(a) Phylogenetic tree.
1.0
0.8 \/o//"

0.2{ —%— Proposed
Admixture

2345 10 20
K

Accuracy

(b) Spatial hierarchical clustering.

Figure 2: Many-to-one mapping accuracy of the in-
duced latent factors, with varying K.

4.3 Results

The results are shown in Figure 2. We can con-
firm that the proposed method consistently outper-
formed the admixture model. The proposed method
was particularly better at recognizing spatial pat-
terns. It is understandable given that the geography
is explicitly encoded to the proposed method while
it is ignored by the admixture model.

For the admixture model, the accuracy dropped
more noticeably as K increased. In contrast, the
proposed method retained a relatively high accu-
racy even with K = 20. It used additional latent
factors to capture minor but genuine patterns.

5 Analysis of Real Data

5.1 Fijian Basic Vocabulary Database

Next, we analyzed a dataset of Fijian dialects,
which was originally collected by Paul Geraghty
and is in process of digitization by the Fijian Lan-
guage GIS Project.’ The details of the dataset will
be published in the near future. We combined a
lexical dataset with coordinate data. For each di-
alect, the dataset contains word form(s) that de-
scribe each of 100 basic concepts. Coordinate data
were based on the Fiji Map Grid system, where the

Shttps://fijigis.github.io/
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Figure 3: Linguistic maps of Fiji. (a) Locations of Fijian dialects, with an approximate boundary between Eastern
and Western Fijian. (b) An example of features (seven more are shown in Figure A.1). The shape and color of a
language indicates the value it takes. We can see that the feature value indicated by cyan down-pointing triangles

(word form ka) transgresses the east—west boundary.

x- and y-axes correspond to local horizontal, and
local vertical coordinates, respectively. As a result
of preprocessing described in Appendix D.1, we
obtained data with L = 106 and N = 97. The §
score was 0.286.

Figure 3(a) shows the locations of Fijian dialects
in the dataset. It is well known that two major
dialect groups, Eastern and Western Fijian, are de-
marcated by a boundary crossing the largest island
of Viti Levu (Geraghty, 1983). As exemplified
by Figure 3(b), however, features do not necessar-
ily align with the boundary. Although Geraghty
(1983) proposed multiple subgroups of Fijian by
identifying shared innovations, he refrained from
constructing a phylogenetic tree, arguing that they
were likely to have resulted from intense contact. In
short, no ground-truth is known for Fijian language
history.

5.2 Qualitative Analysis

Due to lack of gold standard for the Fijian data,
we chose to perform qualitative analysis. To do
this, we first identify several desiderata for a model:
(d1) intuitive geographical visualization of patterns,
(d2) identification of Eastern and Western Fijian,
(d3) identification of many more common patterns,
and (d4) identification of conflicting patterns.

We performed posterior inference in the same
manner as in Section 4. Figures 4 and A.3 visual-
ize latent factors induced by the proposed method
(K = 20). The visualization is intuitive (d1)
and latent factors 20 and 6 (Figures 4(a—b)) cor-
rectly identified Western and Eastern Fijian, re-
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spectively (d2). At the same time, latent factor 2
(Figures 4(c)) covers Western Fijian and Kadavu
in the southwest, transgressing the the east—west
boundary (d4).

Impressionistically, other latent factors also ap-
pear to capture genuine patterns (d3), but the pro-
posed model’s superior performance with respect
to desideratum 3 becomes more apparent when it is
compared against other methods (Appendix D.2).
Most importantly, admixture analysis was inter-
pretable only with K < 4. Indeed, it is a standard
practice in admixture analysis that K is carefully in-
cremented from 2 until the output becomes uninter-
pretable. Confirming the result of the quantitative
evaluation, the proposed method had no problem
with K = 20. Although how to determine the
optimal number of latent factors is an unresolved
question, the proposed method safely allows us to
try a large K. It is also worth noting that in ad-
mixture analysis, ancestral populations obtained
with different K's are routinely compared although
they cannot necessarily be aligned in a consistent
manner. In contrast, the proposed method does not
necessitate incremental exploration.

In summary, only the proposed method satisfied
the four desiderata at the same time. Although this
does not necessarily guarantee the correctness of
the model, we believe that the proposed method is
worth further exploration.

5.3 Discussion

Our ultimate goal is to uncover spatio-temporal
dynamics of languages although in this paper we
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Figure 4: The visualization of four latent factors induced by the proposed method (/' = 20). Other eight latent
factors are shown in Figure A.3. The warmest color indicates that the latent factor k is active for language [
(21,5 = 1) while the coolest color corresponds to the opposite (z; ; = 0). Intermediate colors indicate uncertainty.

concentrate on spatial inference. How does the
proposed method provide a basis for temporal rea-
soning? To gain a toehold on this question, recall
that the proposed method piles up multiple, po-
tentially conflicting geographical clusters for each
feature n. Since their relative strengths are con-
trolled by wy, ¢(nq)’s, we expect that in case of
conflict, a newer feature value gets a larger weight
to supersede an older one.

Figure 6 shows a portion of the weight matrix W
corresponding to feature 4 in Figure 3(b). We can
see that although we did not explicitly impose spar-
sity on W, the overwhelming majority of elements
in it were close to zero.

The feature value indicated by gray diamonds
(word form i) was used by many, but not all, di-
alects on the southwestern island of Kadavu. Not
surprisingly, this group gave the largest weight to

latent factor 19, which also concentrated on Ka-
davu (Figures 4(d)). Interestingly, this conflicted
with the feature value indicated by red circles (word
form e) because it assigned a relatively large weight
to latent factor 18, which covered Kadavu in ad-
dition to southeastern Viti Levu, Vanua Levu and
some other small islands (Figure A.3(b)). However,
latent factor 19 for i had a much larger weight than
latent factor 18 for e, and as a result, the former
overwhelmed the latter.

This seems to suggest that e was once widely
used in Kadavu but was later replaced by i. Need-
less to say, however, a different run of the model
may provide a different interpretation. We need to
devise a statistical measure to quantify how likely
the hypothesis is.

At this stage of research, temporal reasoning is
left to human interpretation. Can we directly incor-
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Figure 5: A geographical representation of a phylogenetic tree. We assume that the four modern dialects in Figure 1
have followed evolutionary paths shown on the left. We label internal nodes as E,_F, and G. Each node X in the tree
can be uniquely mapped to the set of its descendant leaves, which we denote as X. A dotted arrow corresponds to

a branch in the tree.
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Figure 6: A portion of the weight matrix W correspond-
ing to feature 4 in Figure 3(b).

porate it to the model? A hint is given in Figure 5.
A node in a tree can be reinterpreted as a latent
factor of the proposed method because it can be
mapped to the set of its descendant leaves. All
we have to do is to force the set of latent factors
to satisfy the tree constraint: The two sets of ac-
tive dialects in the children are a partition of the
set of active dialects in their parent. As such, the
proposed model has the potential of incorporating
the tree model. With additional latent factors that
are outside of the tree, the extended model can
straightforwardly capture contact phenomena.’
Incorporating the tree constraint into the pro-
posed method, especially as a hard constraint, is
highly challenging. It is because each latent fac-
tor alone forms so complex a network that we re-
sort to approximate sampling (Mgller et al., 2006;
Murray et al., 2006). However, this extension de-

5To analyze typological data, Daumé IIT (2009) presented a
mixture model of a phylogenetic tree and a set of areal clusters.
Although we share similar motivations with Daumé III (2009),
our key idea is to represent vertical and horizontal signals in a
unified manner, rather than given them completely different
representations.

serves further investigation. If a trait is observed in
geographically fragmented regions and the possi-
bility of parallel innovation is ruled out, linguists
assume that it once had a wider geographical distri-
bution connecting them. The proposed method in
its present form has no mechanism to favor such a
scenario, but the tree constraint does.

A caveat is that the proposed model does not
keep track of the birth and death (or replacement by
a new trait) of traits but lets multiple layers of his-
torical changes simply pile up. This means that the
state of an ancestral node cannot be reconstructed.
This limitation appears inevitable especially if we
want to model both vertical inheritance and hori-
zontal contact, because it is hard to date contact
events relative to an ancestral node.

6 Conclusions

In this paper, we proposed a Bayesian generative
model to analyze dialectal variation. With this
model, we successfully induced a large number
of latent factors from a set of noisy surface features.
Each latent factor is associated with an intuitively
appealing geographical interpretation.

In the experiments, we used synthetic data and
Fijian lexical data. Future directions include the
incorporation of phonological and morphosyntactic
features, application to other languages, and most
importantly, a model extension to infer temporal
ordering.
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Appendix A A Comparison between the
Model of Murawaki (2019)
and the Proposed Method

The proposed method is a Bayesian generative
model that is based on the model proposed by
Murawaki (2019) even though at first glance, our
task has little in common with that of Murawaki
(2019). Table A.1 summarizes key differences be-
tween the two models. The most obvious differ-
ence is scale. While Murawaki (2019) worked on
languages around the world, our target is a group
of closely related dialects that usually occupies a
relatively small area of the globe.

The difference in scale leads to the difference in
the choice of features. In order to compare any pair
of languages, which may have no known phyloge-
netic relationships, one has a limited choice. For
this reason, Murawaki (2019) used features of lin-
guistic typology (Haspelmath et al., 2005; Bickel
et al., 2017). In contrast, we have a wide range
of options for comparing dialects. While we used
lexical features in the experiments, phonological
and morphosyntactic features can readily be incor-
porated into the model although these features may
be more prone to parallel innovation.

Both models encode our assumption that lan-
guages related to each other in some way tend to
take the same feature value. However, whereas
Murawaki (2019) used two neighbor graphs, one
for phylogenetic relations and the other for spatial
relations, we only use a spatial neighbor graph. It is
because we are interested in cases where no ground
truth is available for the internal phylogenetic clas-
sification of the languages in question.

The weight matrix W, which connects latent and
surface representations, also differs slightly. We
constrain wy, ,, to be positive whereas in Murawaki
(2019), wy,m can be negative. Negative weights
are hard to interpret in our task because we assume
that multiple layers of historical changes simply
pile up.

Finally, we look at © from a different angle.
Murawaki (2019) interpreted O row-wise (fixing
language ! and discussing how the feature values
(n1,41) and (ng, i3) depend on each other). On the
other hand, we present a column-wise interpreta-
tion (fixing the feature value (n,¢) and discussing
how [’s get their probabilities).

Appendix B  Settings of the Proposed
Method

We constructed the neighbor graph as follows. First,
we connected any pair of languages that are within
the distance of 300 km. The edge weight wy, ;, for
the pair of languages /1 and [l was then given as

max(dy, ;,/3,1) 72

o2, the hyperparameter for uy,, was set to 5. Re-
call that hy, is drawn from Gamma(k, #). We set
K = ﬁ/ 5 and 6 = 5. This means that the gamma
distribution had mean / and variance 5h. Using the
Fijian data, we estimated h using the autologistic
models for N surface features (Murawaki and Ya-
mauchi, 2018), with the assumption that the range
of the parameter for latent factors should not devi-
ate too much from the range for surface features.
Specifically, we tied a single single parameter h
to NN autologistic models, sampled h’s using an
MCMC algorithm, and calculated their geometric
mean. As a result, we obtained i = 0.009.

Before collecting posterior samples, we ran
1,000 burn-in iterations. Following Murawaki
(2019), we applied simulated annealing to the sam-
pling of 2, and x}"°. For the first 100 iterations,
the inverse temperature was increased from 0.1 to
1.0. After the burn-in iterations, we collected 100
samples, one per iteration.

Appendix C  Admixture Model

We implemented a simpler version of admixture
analysis (Pritchard et al., 2000; Alexander et al.,
2009). While population geneticists have devoted
much effort to make inference scale to large ge-
netic data, linguistic data are so small that a naive
Markov chain Monte Carlo algorithm suffices.

The generative story of the admixture model is
as follows:

1. For each ancestral
{17 e ’K}:

population k €

(a) For each feature type n € {1,--- ,N}:

i. Draw a categorical distribution from
a symmetric Dirichlet distribution

Pk ~ Dir(fBn).
2. For each language | € {1,--- ,L}:

(a) Draw a mixing proportion from a
symmetric Dirichlet distribution 6; ~
Dir(a).
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Murawaki (2019) | Proposed method
Target Worldwide Dialects
Linguistic domain Typology Lexicon
Neighbor graphs 1
Weight range (—00, +00) (0,400)
Interpretation of © Row-wise Column-wise

Table A.1: A summary of key differences between the model of Murawaki (2019) and the proposed method.

(b) Then for each feature type n €
{1,--, N}
i. Draw an ancestral population assign-
ment z; ,, ~ Categorical(6;).
ii. Draw a  feature
Categorical (¢, , ).

Tln ~

We marginalize out ¢y, and ¢; and run a col-
lapsed Gibbs sampler (Griffiths and Steyvers, 2004)
to draw posterior samples. In the experiments, we
ran 1,000 burn-in iterations and after that, collected
500 samples, one per iteration. As routinely done
in population genetics (Jones et al., 2015), we in-
creased the number of ancestral populations, K,
one by one, starting from 2.

Appendix D Fijian Dataset

D.1 Details of Preprocessing

The lexical data of Fijian dialects’ covered 100
basic concepts. The list was inspired by but is
not identical with Swadesh’s famous list (Swadesh,
1952) since it was tailored to Fijian.

We converted word forms into categorical fea-
tures. To do this, we adopted a sequence compari-
son tool named LingPy (List et al., 2018). For each
concept, it automatically clustered word forms into
cognate groups, to which we assigned unique num-
bers. We discarded 3 concepts that were covered
by single cognate groups. This means that each lan-
guage was represented as a sequence of 97 lexical
features. Note that since the proposed method only
requires features to be discrete, it can also deal with
phonological and morphosyntactic features.

Finally, we removed languages for which we
were unable to determine coordinates. As a result,
we chose 106 languages for further analysis. The
ratio of missing features was 17.4%.

The Fijian dataset is still a work in progress, and
a finished version is expected to be published in
the near future. Needless to say, automatic cognate

"Called communalects in Fijian language studies (Ger-
aghty, 1983).
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detection was not without errors, and the alignment
between lexical and coordinate data was a source of
additional complications. Nevertheless, we believe
that the result of preprocessing was good enough
to evaluate the proposed method, even if it may be
too early to draw Fijian-specific linguistic insights.

Figure A.1 visualizes the dataset. A high de-
gree of contact is evident from the NeighborNet
analysis (Bryant and Moulton, 2004).

D.2 Additional Analysis with Baseline
Methods

In addition to NeighborNet, several baseline meth-
ods were used to analyze the Fijian dataset.

Isogloss bundles The map is partitioned using a
Voronoi diagram. An edge is drawn between two
nearby languages, and its width is proportional to
the number of features over which they disagree.
Thus, thick lines indicate major dialect boundaries.

PCA Principal component analysis maps lan-
guages into lower dimensions (Nerbonne and Wiel-
ing, 2018). We visualize the first two principal
components (PCs).

Admixture The admixture model used in simu-
lation experiments in Section 4.

In NeighborNet (Figure A.1(a)), we can recog-
nize Eastern Fijian (right) and Western Fijian (left),
and also some of their subgroups. However, it is
not easy to draw insights from reticulations, except
for the obvious fact that the tree model does not fit
well. Also, since NeighborNet visualizes clusters
without reference to location, it does not provide
any intuitive geographical interpretation.

Isogloss bundles in Figure A.2(a) illuminated
so many dialect boundaries that even the most im-
portant east—west boundary got buried. The result
partly explains why dialectologists are reluctant to
generalize.

As for PCA, the first PC shown in Figure A.2(b)
clearly identified the east—west boundary. The in-



NeighborNet | Isoglosses | PCA | Admixture | Proposed
Aggregate & geographical X v v v v
Detect the east—west boundary v 2?2~V v v v
Detect many more factors 2?2~V 2~V X X~V v
Detect conflicts v 2~V X X v

Table A.2: A summary of the comparison of various methods.

termediate colors found in the middle of Viti Levu
suggest that the two groups are in contact. They
explain why isoglosses were not clearly bundled
together. It turns out, however, that PCA uncovered
only one factor since the second PC, visualized in
Figure A.2(c), discouraged any geographical inter-
pretation.

In admixture analysis (Figure A.2(d-f)), each
language is given a pie chart indicating the mixing
proportion of ancestral populations. At first glance,
admixture analysis generated a beautiful high-level
picture of the dataset although the outputs with
K > 5 were hard to interpret. With K = 2, it
identified Eastern and Western Fijian, again with
traces of contact in the middle of Viti Levu. With
K = 3, Eastern Viti Levu was separated from the
rest of Eastern Fijian, and with K = 4, Eastern Viti
Levu was further divided into the northeast and the
southeast.

However, a close examination reveals that ad-
mixture analysis went against our intuition. As Fig-
ure A.1 demonstrates, non-overlapping isoglosses
were the norm in the dataset, but admixture analysis
far too often assigned a single ancestral population
to a language. We conjecture that most conflicts
were absorbed by over-expressive ancestral popula-
tions and escaped detection.

Recall that in Section 5.2, we enumerated several
desiderata: (d1) intuitive geographical visualiza-
tion of patterns, (d2) identification of Eastern and
Western Fijian, (d3) identification of many more
common patterns, and (d4) identification of con-
flicting patterns. Based on the discussion above, we
summarize the comparison of various methods in
Table A.2. Now we can see that only the proposed
method satisfies all of the four desiderata.
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Feature 49: stomach ° Feature 61: bamboo A
(2) (h)

Figure A.1: (a) NeighborNet analysis visualizes the non-tree-like nature of the data. Leaves represent modern
languages. Branch lengths are proportional to distances, and reticulations indicate conflicting signals. (b—h) Seven

more examples of features, in addition to one shown in Figure 3(b). The shape and color of a language indicates
the value it takes.
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(a) Isogloss bundles.
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(c) PCA (color indicates the value of PC2).

(e) Admixture analysis (K = 3).
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(b) PCA (color indicates the value of PC1).

(d) Admixture analysis (K = 2).

(f) Admixture analysis (K = 4).

Figure A.2: The visualization of baseline methods.



[ ]
% < <
o ) : b o B ;)o
Q e Q e
© ©
v ° ¢ . 7 < .
e s T . ¥ L
°
(a) Latent factor 1. (b) Latent factor 18.
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(g) Latent factor 8. (h) Latent factor 5.

Figure A.3: The visualization of eight latent factors induced by the proposed method (K = 20). Figure 4 visualized
four other latent factors.
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