
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 8479–8484,
November 16–20, 2020. c©2020 Association for Computational Linguistics

8479

Deconstructing word embedding algorithms

Kian Kenyon-Dean†∗
BMO AI Capabilities Team

Bank of Montreal - Toronto, Ontario
kian.kenyon-dean@bmo.com

Edward Newell∗, Jackie Chi Kit Cheung
Mila - Québec AI Institute

McGill University - Montréal, Québec
edward.newell@gmail.com
jcheung@cs.mcgill.ca

Abstract

Word embeddings are reliable feature repre-
sentations of words used to obtain high qual-
ity results for various NLP applications. Un-
contextualized word embeddings are used in
many NLP tasks today, especially in resource-
limited settings where high memory capacity
and GPUs are not available. Given the histor-
ical success of word embeddings in NLP, we
propose a retrospective on some of the most
well-known word embedding algorithms. In
this work, we deconstruct Word2vec, GloVe,
and others, into a common form, unveiling
some of the common conditions that seem to
be required for making performant word em-
beddings. We believe that the theoretical find-
ings in this paper can provide a basis for more
informed development of future models.

1 Introduction

The advent of efficient uncontextualized word em-
bedding algorithms (e.g., Word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014)) marked
a historical breakthrough in NLP. Countless re-
searchers employed word embeddings in new mod-
els to improve results on a multitude of NLP prob-
lems. In this work, we provide a retrospective anal-
ysis of these groundbreaking models of the past,
which simultaneously offers theoretical insights for
how future models can be developed and under-
stood. We build on the theoretical work of Levy
and Goldberg (2014), proving that their findings
on the relationship between pointwise mutual in-
formation (PMI) and word embeddings go beyond
Word2vec and singular value decomposition.

In particular, we generalize several word embed-
ding algorithms into a common form by proposing
the low rank embedder framework. We decon-
struct each algorithm into its constituent parts, and

∗ Kian and Edward contributed equally. † This work was
pursued while Kian was a member of Mila.

find that, despite their many different hyperparam-
eters, the algorithms collectively intersect upon the
following two key design features. First, vector-
covector dot products are learned to approximate
PMI statistics in the corpus. Second, modulation of
the loss gradient, directly or indirectly, is necessary
to balance weak and strong signals arising from the
highly imbalanced distribution of corpus statistics.

These findings can provide an informed basis
for future development of both new embedding
algorithms and deep contextualized models.

2 Fundamental concepts

We begin by formally defining embeddings, their
vectors and covectors (also known as “input” and
“output” vectors (Rong, 2014; Nalisnick et al.,
2016)), and pointwise mutual information (PMI).

Embedding. In general topology, an embedding
is understood as an injective structure preserving
map, f : X → Y , between two mathematical struc-
tures X and Y . A word embedding algorithm (f )
learns an inner-product space (Y ) to preserve a lin-
guistic structure within a reference corpus of text,
D (X), based on a vocabulary, V . The structure in
D is analyzed in terms of the relationships between
words induced by their co-appearances, according
to a certain definition of context. In such an analy-
sis, each word figures dually: (1) as a focal element
inducing a local context; and (2) as elements of the
local contexts induced by focal elements. To make
these dual roles explicit, we distinguish two copies
of the vocabulary: the focal, or term, words VT ,
and the context words VC .

Word embedding consists of two maps:

VC −→ R1×d VT −→ Rd×1

i 7−→ 〈i| j 7−→ |j〉.

We use Dirac notation to distinguish vectors |j〉,
associated to focal words, from covectors 〈i|, asso-



8480

ciated to context words. In matrix notation, |j〉 cor-
responds to a column vector and 〈i| to a row vector.
Their inner product is 〈i|j〉. We later demonstrate
that many word embedding algorithms, intention-
ally or not, learn a vector space where the inner
product between a focal word j and context word
i aims to approximate their PMI in the reference
corpus: 〈i|j〉 ≈ PMI(i, j).

Pointwise mutual information (PMI). PMI is
a commonly used measure of association in com-
putational linguistics, and has been shown to be
consistent and reliable for many tasks (Terra and
Clarke, 2003). It measures the deviation of the
cooccurrence probability between two words i and
j from the product of their marginal probabilities:

PMI(i, j) := ln
pij
pipj

= ln
NNij

NiNj
, (1)

where pij is the probability of word i and word j
cooccurring (for some notion of cooccurrence), and
where pi and pj are marginal probabilities of words
i and j occurring. The empirical PMI can be found
by replacing probabilities with corpus statistics.
Words are typically considered to cooccur if they
are separated by no more than w words; Nij is
the number of counted cooccurrences between a
context i and a term j;Ni,Nj , andN are computed
by marginalizing over the Nij statistics.

3 Word embedding algorithms

We will now introduce the low rank embedder
framework for deconstructing word embedding al-
gorithms, inspired by the theory of generalized low
rank models (Udell et al., 2016). We unify several
word embedding algorithms by observing them all
from the common vantage point of their global loss
function. Note that this framework is used for theo-
retical analysis, not necessarily implementation.

The global loss function for a low rank embedder
takes the following form:

L =
∑

(i,j)∈VC×VT

fij

(
ψ(〈i|, |j〉), φ(i, j)

)
, (2)

where ψ(〈i|, |j〉) is a kernel function of learned
model parameters, and φ(i, j) is some scalar func-
tion (such as a measure of association based on
how often i and j appear in the corpus); we denote
these with ψij and φij for brevity. As well, fij are
loss functions that take ψij and φij as inputs; all

fij satisfy the property:

∂fij
∂ψij

= 0 at ψij = φij . (3)

The design variable φij is some function of
corpus statistics, and its purpose is to quantita-
tively measure some relationship between words
i and j. The design variable ψij is a function of
model parameters that aims to approximate φij ;
i.e., an embedder’s fundamental objective is to
learn ψij ≈ φij , and thus to train embeddings that
capture the statistical relationships measured by φij .
The simplest choice for the kernel function ψij , is
to take ψij = 〈i|j〉. But the framework allows
any function that is symmetric and positive defi-
nite, allowing the inclusion of bias parameters (e.g.
in GloVe) and subword parameterization (e.g. in
FastText). We later demostrate that skip-gram with
negative sampling takes φij := PMI(i, j) − ln k
and ψij := 〈i|j〉, and then learns parameter values
that approximate 〈i|j〉 ≈ PMI(i, j)− ln k.

To understand the range of models encompassed,
it is helpful to see how the framework relates (but
is not limited) to matrix factorization. Consider φij
as providing the entries of a matrix: M := [φij ]ij .
For models that take ψij = 〈i|j〉, we can write
M̂ = WV, where W is defined as having row i
equal to 〈i|, and V as having column j equal to |j〉.
Then, the loss function can be rewritten as:

L =
∑

(i,j)∈VC×VT

fij

(
(WV)ij , Mij

)
.

This loss function can be interpreted as matrix re-
construction error, because the constraint in Eq. 3
means that the gradient goes to zero as WV ≈M.

Selecting a particular low rank embedder in-
stance requires key design choices to be made: we
must chose the embedding dimension d, the form
of the loss terms fij , the kernel function ψij , and
the association function φij . The derivative of fij
with respect to ψij , which we call the characteristic
gradient, helps compare models because it exhibits
the action of the gradient yet is symmetric in the
parameters. In the Appendix we show how this
derivative relates to gradient descent.

In the following subsections, we present the
derivations of ∂fij

∂ψij
, ψij , and φij for SVD (Levy

and Goldberg, 2014; Levy et al., 2015), SGNS
(Mikolov et al., 2013), FastText (Joulin et al., 2017),
GloVe (Pennington et al., 2014), and LDS (Arora
et al., 2016). The derivation for Swivel (Shazeer



8481

Model ∂fij
∂ψij

ψij φij 〈i|j〉 ≈

SVD 2 ·
[
ψij − φij

]
〈i|j〉 PMI(i, j) PMI(i, j)

SGNS (Nij +N−ij ) ·
[
σ(ψij)− σ(φij)

]
〈i|j〉 ln

Nij

N−
ij

PMI(i, j)− ln k

GloVe 2h(Nij) ·
[
ψij − φij

]
〈i|j〉+ bi + bj lnNij PMI(i, j)

LDS 4h(Nij) ·
[
ψij − φij + C

]
‖〈i|+ |j〉ᵀ‖2 lnNij dPMI(i, j)− dγ

Swivel

√
Nij ·

[
ψij − φij

]
〈i|j〉

PMI(i, j) PMI(i, j)

1 · σ
(
ψij − φij

)
PMI∗(i, j) PMI∗(i, j)

Table 1: Comparison of low rank embedders. Final column shows the value of 〈i|j〉 at ∂fij
∂ψij

= 0. GloVe and
LDS set fij = 0 when Nij = 0; h(Nij) is a weighting function sublinear in Nij . Swivel takes one form when
Nij > 0 (first row) and another when Nij = 0 (second row). N−

ij is the number of negative samples; in SGNS,
N−
ij ∝ NiNj , and both Nij and N−

ij are tempered by undersampling and unigram smoothing.

et al., 2016) as a low rank embedder is trivial, as it
is already posed as a matrix factorization of PMI
statistics. We summarize the derivations in Table 1.

3.1 SVD as a low rank embedder

Singular value decomposition (SVD) of the
positive-PMI (PPMI) matrix is used by Levy and
Goldberg (2014); Levy et al. (2015) to produce
word embeddings that perform more or less equiv-
alently to SGNS and GloVe. Converting the PMI
matrix into PPMI is a trivial preprocessing step; φ
is augmented according to a factor α = 0 such that
φij = 0 ∀φij ≤ α. We now prove why SVD of
the PMI matrix results in word embeddings with
dot products 〈i|j〉 ≈ PMI(i, j), noting that this
proof naturally holds for all augmentations of φ
according to the α factor, including PPMI.

Proof. Truncated SVD provides an optimal so-
lution to problem minD ‖D − A‖F for some in-
teger K less than the dimensionality of matrix
A such that rank(D) = K (Udell et al., 2016).
The solution is the truncated SVD of A where
D =

∑K
k=1 σkukv

ᵀ
k with σ being the kth singu-

lar value and uk and vk as the kth left and right
singular vectors.

Within our framework, the truncated SVD of the
PMI matrix thus solves the following loss function
(note Aij = φij = PMI(i, j)):

L = −
∑

(i,j)∈VC×VT

(
ψij − PMI(i, j))2, (4)

where ψij = uᵀiΣvj . Allowing the square matrix of
singular values Σ to be absorbed into the vectors (as
in Levy et al. (2015)), we have 〈i| = ui and |j〉 =

Σvj . Thus, taking the derivative ∂fij
∂ψij

(noting that
fij here is simply the squared difference between
ψij and φij) and setting it equal to zero we observe:

〈i|j〉 = PMI(i, j). (5)

3.2 SGNS as a low rank embedder
Mikolov et al. (2013) proposed skip-gram with
negative sampling with the following loss function:

L = −
∑

(i,j)∈D2

{
lnσ〈i|j〉+

k∑
`=1

E
[

ln(1−σ〈i′`|j〉)
]}
,

where σ is the logistic sigmoid function,D2 is a list
containing each cooccurrence of a context-word i
with a focal word j in the corpus, and the expec-
tation is taken by drawing i′` from the (smoothed)
unigram distribution to generate k “negative sam-
ples” for a given focal-word (Mikolov et al., 2013).
We will demonstrate that SGNS is a low rank em-
bedder with 〈i|j〉 ≈ PMI− ln k.

Proof. We can transform the loss function by
counting the number of times each pair occurs in
the corpus, Nij , and the number of times each pair
is drawn as a negative sample, N−ij , while indexing
the sum over the set VC×VT :

L = −
∑

(i,j)∈VC×VT

{
Nij lnσ〈i|j〉+N−ij ln(1− σ〈i|j〉)

}
.



8482

The global loss is almost in the required form
for a low rank embedder (Eq. 2), and the appropri-
ate setting for the model approximation function is
ψij = 〈i|j〉. Calculating the partial derivative with
respect to the model approximation function ψij ,
following algebraic manipulation (using the iden-
tity a ≡ (a+ b)σ(ln a

b )), we arrive at the following
definition of the characteristic gradient for SGNS
as a low rank embedder, where ∂fij

∂ψij
= ∂L

∂〈i|j〉 :

∂L
∂〈i|j〉

= N−ij σ〈i|j〉 −Nij(1− σ〈i|j〉)

= (Nij +N−ij )

[
σ
(
〈i|j〉

)
− σ

(
ln
Nij

N−ij

)]
= (Nij +N−ij )

[
σ
(
ψij
)
− σ

(
φij
)]
. (6)

This provides that the association function for
SGNS is φij = ln(Nij/N

−
ij ), since the derivative

will be equal to zero at that point (Eq. 3). How-
ever, recall that negative samples are drawn ac-
cording to the unigram distribution (or a smoothed
variant (Levy et al., 2015)). This means that
N−ij = kNiNj/N . Therefore, in agreement with
Levy and Goldberg (2014), we find that:

φij = ln
NijN

NiNjk
= PMI(i, j)− ln k. (7)

3.3 FastText as a low rank embedder

Proposed by Joulin et al. (2017), FastText’s moti-
vation is orthogonal to the present work. Its pur-
pose is to provide subword-based representation of
words to improve vocabulary coverage and general-
izability of word embeddings. Nonetheless, it can
also be understood as a low rank embedder .

Proof. FastText uses a loss function that is iden-
tical to SGNS except that the vector for each word
is taken as the sum of embeddings for all character
n-grams appearing in the word, with 3 ≤ n ≤ 6.
Therefore, define |j〉 by |j〉 ≡

∑
g∈z(j) |g〉, where

|g〉 is the vector for n-gram g, and z(j) is the set
of n-grams in word j. Covectors are accorded to
words directly, so need not be redefined. The loss
function and the derivation of entries for Table 1 is
then formally identical to those for SGNS. This pro-
vides that ψij = 〈i|j〉, and, φij = PMI(i, j)− ln k.

3.4 GloVe as a low rank embedder

GloVe was proposed as an algorithm halfway be-
tween sampling methods and matrix factorization

10 5 0 5 10
PMI(i, j)

250k

200k

150k

100k

50k

Nu
m

be
r o

f p
ai

rs
 (i

,j) mean = -0.99A)

0 2 4 6 8
lg Ni

N

2

0

2

4

6

8

b i b i=
lg
N i

N

B)

Figure 1: A) Histogram of PMI(i, j) values, for all
pairs (i, j) with Nij > 0. B) Scatter plot of GloVe’s
learned biases. Both from a Wikipedia 2018 corpus.

(Pennington et al., 2014). Ignoring samples where
Nij = 0, GloVe uses the following loss function:

L =
∑
ij

h(Nij)
(
〈i|j〉+ bi + bj − lnNij

)2
(8)

where bi and bj are learned bias parameters, and
h(Nij) is a weighting function sublinear in Nij .

GloVe can be cast as a low rank embedder by
using the model approximation function as a kernel
with bias parameters, and setting the association
measure to simply be the objective:

ψij =
[
〈i|1 · · · 〈i|d bi 1

]
·
[
|j〉1 · · · |j〉d 1 bj

]ᵀ
,

and φij = lnNij .

Proof. Observe an optimal solution to the loss
function, when ∂fij

∂ψij
= 0:

∂fij
∂ψij

= 2h(Nij)
[
〈i|j〉+ bi + bj − lnNij

]
= 0

=⇒ 〈i|j〉+ bi + bj = lnNij .

Multiplying the log operand by 1:

〈i|j〉+ bi + bj = ln

(
NiNj

N

N

NiNj
Nij

)
(9)

= ln
Ni√
N

+ ln
Nj√
N

+ PMI(i, j).

(10)

On the right side, we have two terms that depend
respectively only on i and j, which are candidates
for the bias terms. Based on this equation alone,
we cannot draw any conclusions. However, em-
pirically the bias terms are in fact very near Ni√

N

and Nj√
N

, and PMI is observed to be normally dis-
tributed, as can be seen in Fig. 1. This means that
Eq. 10 provides 〈i|j〉 ≈ PMI(i, j).



8483

Analyzing the optimum of GloVe’s loss func-
tion yields important insights. First, GloVe can be
added to the list of low rank embedders that learn a
bilinear parameterization of PMI. Second, we can
see why such a parameterization is advantageous.
Generally, it helps to standardize features of low
rank models (Udell et al., 2016), and this is essen-
tially what transforming cooccurrence counts into
PMI achieves. Thus, PMI can be viewed as a pa-
rameterization trick, providing an approximately
normal target association to be modelled.

3.5 LDS as a low rank embedder
Arora et al. (2016) introduced an embedding per-
spective based on generative modelling with ran-
dom walks through a latent discourse space (LDS).
LDS provided a theoretical basis for the perfor-
mant SIF document embedding algorithm, devel-
oped soon afterwards (Arora et al., 2017). We now
demonstrate that LDS is also a low-rank embedder.

Proof. The low rank learning objective for LDS
follows directly from Corollary 2.3, in Arora et al.
(2016):

PMI(i, j) =
〈i|j〉
d

+ γ +O(ε).

∂fij
∂ψij

can be found by straightforward differentia-
tion of LDS’s loss function:

L =
∑
ij

h(Nij)
[

lnNij − ‖〈i|+ |j〉ᵀ‖2 − C
]2
,

where h(Nij) is as defined by GloVe. The
quadratic term is a valid kernel function because:

∂fij
∂ψij

= ‖〈i|+ |j〉ᵀ‖2 = 〈̃i|j̃〉,

where

〈̃i| =
[√

2〈i|1 · · ·
√

2〈i|d 〈i|〈i|ᵀ 1
]
,

˜|j〉 =
[√

2|j〉1 · · ·
√

2|j〉d 1 |j〉ᵀ|j〉
]ᵀ
.

4 Related work

Our derivation of SGNS’s solution is inspired by
the work of Levy and Goldberg (2014), who proved
that skip-gram with negative sampling (SGNS)
(Mikolov et al., 2013) was implicitly factorizing
the PMI − ln k matrix. However, they required
additional assumptions for their derivation to hold.
Li et al. (2015) explored relations between SGNS

and matrix factorization, but their derivation di-
verges from Levy and Goldberg’s result and masks
the connection between SGNS and other low rank
embedders. Other works have also explored theo-
retical or empirical relationships between SGNS
and GloVe (Shi and Liu, 2014; Suzuki and Nagata,
2015; Levy et al., 2015; Arora et al., 2016).

5 Discussion

We observe common features between each of the
algorithms (Table 1). In each case, ∂fij∂ψij

takes the
form (multiplier) · (difference). The multiplier
is always a “tempered” version of Nij (or NiNj);
that is, it increases sublinearly with Nij .

For each algorithm, φij is equal to PMI or a
scaled log of Nij . Yet, the choice of ψij in com-
bination with φij provides that every model is op-
timized when 〈i|j〉 tends toward PMI(i, j) (with
or without a constant shift or scaling). We demon-
strated that the optimum for SGNS (and FastTest)
is equivalent to the shifted PMI (§3.2). For GloVe,
we showed that incorporation of the bias terms cap-
tures the unigram counts needed for PMI (§3.4). A
similar property is found in LDS with regards to
the L2 norm in its learning objective (Arora et al.,
2016). Thus, these algorithms all converge on two
key points: (1) an optimum in which model pa-
rameters are bilinearly related to PMI; and, (2) the
weighting of ∂fij

∂ψij
by some tempered form of Nij .

6 Conclusion

Our low rank embedder framework has evoked the
commonalities between many word embedding al-
gorithms. We believe a robust understanding of
these algorithms is a prerequisite for theoretically
motivated development of deeper models. Indeed,
we offer the following conjectures: deep embed-
ding models would benefit by incorporating PMI
statistics into their training objective; such models
will also benefit from sub-linear scaling of frequent
word pairs during training; and, lastly, such models
would benefit by learning representations with a
dual character, as all of the embedding algorithms
we described do by learning vectors and covectors.

Acknowledgements

This work is supported by the Fonds de recherche
du Québec – Nature et technologies and by the Nat-
ural Sciences and Engineering Research Council
of Canada. The last author is supported in part by
the Canada CIFAR AI Chair program.



8484

References
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,

and Andrej Risteski. 2016. A latent variable model
approach to pmi-based word embeddings. Transac-
tions of the Association for Computational Linguis-
tics, 4:385–399.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. International Conference on Learning
Representations.

Armand Joulin, Edouard Grave, and Piotr Bo-
janowski Tomas Mikolov. 2017. Bag of tricks for
efficient text classification. European Association
for Computational Linguistics 2017, page 427.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems,
pages 2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Yitan Li, Linli Xu, Fei Tian, Liang Jiang, Xiaowei
Zhong, and Enhong Chen. 2015. Word embedding
revisited: a new representation learning and explicit
matrix factorization perspective. In Proceedings of
the 24th International Conference on Artificial Intel-
ligence, pages 3650–3656. AAAI Press.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and
Rich Caruana. 2016. Improving document ranking
with dual word embeddings. In Proceedings of the
25th International Conference Companion on World
Wide Web, pages 83–84. International World Wide
Web Conferences Steering Committee.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on Empirical Methods in Natural Language Process-
ing, pages 1532–1543.

Xin Rong. 2014. Word2vec parameter learning ex-
plained. arXiv preprint arXiv:1411.2738.

Noam Shazeer, Ryan Doherty, Colin Evans, and
Chris Waterson. 2016. Swivel: Improving embed-
dings by noticing what’s missing. arXiv preprint
arXiv:1602.02215.

Tianze Shi and Zhiyuan Liu. 2014. Linking glove with
word2vec. arXiv preprint arXiv:1411.5595.

Jun Suzuki and Masaaki Nagata. 2015. A unified learn-
ing framework of skip-grams and global vectors. In
Proceedings of the 53rd Annual Meeting of the ACL
and the 7th IJCNLP (Volume 2: Short Papers), vol-
ume 2, pages 186–191.

Egidio Terra and Charles LA Clarke. 2003. Frequency
estimates for statistical word similarity measures. In
Proceedings of the 2003 Conference of NAACL-HLT
- Volume 1, pages 165–172. Association for Compu-
tational Linguistics.

Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen
Boyd, et al. 2016. Generalized low rank mod-
els. Foundations and Trends in Machine Learning,
9(1):1–118.

A Appendix

A.1 On the characteristic gradient
The relationship between ∂fij

∂ψij
and the gradient de-

scent actions taken during learning requires simply
taking the next step in the chain rule during dif-
ferentiation. For simplicity of exposition, we will
assume, like SGNS and Swivel, that ψij = 〈i|j〉,
although the motivation of taking this derivative
holds for any definition of ψij , provided that it is a
kernel function of the model parameters.

By examining the derivative ∂fij
∂〈i|j〉 we observe

the primary objective of the model (to approximate
dot products), and how this objective symmetrically
updates vectors and covectors during learning.

Consider the generic update that occurs for a
single (i, j) pair with the pairwise loss function fij .
The gradient descent rule for a single update to the
vector for word j, using some learning rate η, is:

|j〉 ← |j〉 − η∂fij
|j〉

, (11)

However, since fij is a function of 〈i|j〉 and not of
the vectors or covectors independently, we can use
the chain rule to arrive at the following:

|j〉 ← |j〉 − η ∂fij
∂〈i|j〉

∂〈i|j〉
∂|j〉

(12)

|j〉 ← |j〉 − η ∂fij
∂〈i|j〉

〈i|ᵀ, (13)

since ∂〈i|j〉
∂|j〉 = 〈i|. Symmetrically, we also arrive at,

for the updates to covectors:

〈i| ← 〈i| − η ∂fij
∂〈i|j〉

|j〉ᵀ. (14)

Therefore, taking ∂fij
∂〈i|j〉 (more generally, ∂fij∂ψij

) to be
the focal point of analysis in determining the objec-
tives of the low rank embedders is well grounded.


