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Abstract

Books are typically segmented into chap-
ters and sections, representing coherent sub-
narratives and topics. We investigate the task
of predicting chapter boundaries, as a proxy
for the general task of segmenting long texts.
We build a Project Gutenberg chapter segmen-
tation data set of 9,126 English novels, using
a hybrid approach combining neural inference
and rule matching to recognize chapter title
headers in books, achieving an F1-score of
0.77 on this task. Using this annotated data
as ground truth after removing structural cues,
we present cut-based and neural methods for
chapter segmentation, achieving an F1-score
of 0.453 on the challenging task of exact break
prediction over book-length documents. Fi-
nally, we reveal interesting historical trends in
the chapter structure of novels.

1 Introduction

Text segmentation (Hearst, 1994; Beeferman et al.,
1999) is a fundamental task in natural language
processing, which seeks to partition texts into se-
quences of coherent segments or episodes. Segmen-
tation tasks differ widely in scale, from partitioning
sentences into clauses to dividing large texts into
coherent parts, where each segment is ideally an
independent event occurring in the narrative.

Text segmentation plays an important role in
many NLP applications including summarization,
information retrieval, and question answering. In
the context of literary works, event detection is a
central concern in discourse analysis (Joty et al.,
2019). In order to obtain representations of events,
it is essential to identify narrative boundaries in the
text, where one event ends and another begins.

In novels and related literary works, authors of-
ten define such coherent segments by means of
sections and chapters. Chapter boundaries are typ-
ically denoted by formatting conventions such as
page breaks, white-space, chapter numbers, and

titles. This physical segmentation improves the
readability of long texts for human readers, provid-
ing transition cues for breaks in the story.

In this paper, we investigate the task of identi-
fying chapter boundaries in literary works, as a
proxy for that of large-scale text segmentation. The
text of thousands of scanned books are available in
repositories such as Project Gutenberg (Gutenberg,
n.d.), making the chapter boundaries of these texts
an attractive source of annotations to study text
segmentation. Unfortunately, the physical manifes-
tations of the printed book have been lost in the
Gutenberg texts, limiting their usefulness for such
studies. Chapter titles and numbers are retained in
the texts but not systematically annotated: indeed
they sit as hidden obstacles for most NLP analysis
of these texts.

We develop methods for extracting ground truth
chapter segmentation from Gutenberg texts, and
use this as training/evaluation data to build text
segmentation systems to predict the natural bound-
aries of long narratives. Our primary contributions
1 include:

• Project Gutenberg Chapter Segmentation
Resource: To create a ground-truth data set
for chapter segmentation, we developed a hy-
brid approach to recognizing chapter format-
ting which is of independent interest. It com-
bines a neural model with a regular expression
based rule matching system. Evaluation on
a (noisy) silver-standard chapter partitioning
yields a mean value F1 score of 0.77 of a test
set of 640 books, but manual investigation
shows this evaluation receives an artificially
low recall score due to incorrect header tags
in the silver-standard.

Our data set consists of 9,126 English fiction
books in the Project Gutenberg corpus. To

1All code and links to data are available at https://
github.com/cpethe/chapter-captor.

https://github.com/cpethe/chapter-captor
https://github.com/cpethe/chapter-captor
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encourage further work on text segmentation
for narratives, we make the annotated chapter
boundaries data publicly available for future
research.

• Local Methods for Chapter Segmentation:
By concatenating chapter text following the
removal of all explicit signals of chapter
boundaries (white space and header notations),
we create a natural test bed to develop and
evaluate algorithms for large-document text
segmentation. We develop two distinct ap-
proaches for predicting the location of chap-
ter breaks: an unsupervised weighted-cut
approach minimizing cross-boundary cross-
references, and a supervised neural network
building on the BERT language model (Devlin
et al., 2019). Both prove effective at identify-
ing likely boundary sites, with F1 scores of
0.164 and 0.447 respectively on the test set.

• Global Break Prediction using Optimiza-
tion: Social conventions encourage authors to
maintain chapters of modest yet roughly equal
length. By incorporating length criteria into
the desired optimization criteria and using dy-
namic programming to find the best global
solution enables us to control how important
it is to keep the segments equal. We find that
a balance between equal segments and model-
influenced segments gives us the best segmen-
tation, with minimal error. Indeed, augment-
ing the BERT-based local classifier with dy-
namic programming yielded an F1 score of
0.453 on the challenging task of exact break
prediction over book-length documents, while
simultaneously beating challenging baselines
on two other error metrics.

Incorporating chapter length criteria require
an independent estimate of the number of
chapters in a given text. We demonstrate that
there are approximately five times as many
likely break candidates as there are chapter
breaks in the weighted cut approach, reflect-
ing the number of sub-events within an aver-
age book chapter.

• Historical Analysis of Segmentation Con-
ventions – We exploit our data analysis of seg-
mented books in two directions. We demon-
strate that novels grew in length to an average
of roughly 30 chapters/book by 1800, and re-
tained this length until 1875 before beginning

a steady decline. Second, an analysis of reg-
ular expression patterns reveal the wide vari-
ety of chapter header conventions and which
forms dominate.

2 Previous Work

Many approaches have been developed in recent
years to address variants of the task of identifying
structural elements in books.

McConnaughey et al. (2017) attempt this task
at the page-level, by assigning a label (e.g. Pref-
ace, Index, Table of Contents, etc.) to each page
of the book. Wu et al. (2013) address the task
of recognizing and extracting tables of contents
from book documents, with a focus on identify-
ing its style. Participants of the Book Structure
Extraction competition at ICDAR 2013 (Doucet
et al., 2013) attempted to use various approaches
for the task. These include making use of the ta-
ble of contents, OCR information, whitespace, and
indentation. Déjean and Meunier (2005) present
approaches to identify a table of contents in a book,
and Déjean and Meunier (2009) attempt to struc-
ture a document according to its table of contents.

However, our approach relies only on text, and
does not require positional information or OCR
coordinates to extract front matter and headings
from book texts.

For text segmentation, many approaches have
been developed over the past years, suitable for
different types of data, such as news articles, sci-
entific article, Wikipedia pages, and conversation
transcripts.

The TextTiling algorithm (Hearst, 1994) makes
use of lexical frequency distributions across blocks
of a fixed number of words. Dotplotting (Reynar,
1994) is a graphical technique to locate discourse
boundaries using lexical cohesion across the entire
document.

Yamron et al. (1998) and Beeferman et al. (1999)
propose methods to identify story boundaries in
news transcripts.

The C99 algorithm (Choi, 2000) uses a global
lexical similarity matrix and a ranking scheme for
divisive clustering. Choi et al. (2001) further pro-
posed the use of Latent Semantic Analysis (LSA)
to compute inter-sentence similarity.

Utiyama and Isahara (2001) proposed a statis-
tical model to find the maximum probability seg-
mentation. The Minimum Cut model (Barzilay
and Malioutov, 2006) addresses segmentation as a
graph partitioning task.
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This problem has also been addressed in a
Bayesian setting (Eisenstein and Barzilay, 2008;
Eisenstein, 2009). TopicTiling (Riedl and Biemann,
2012) is a modification of the TextTiling algorithm,
and makes use of LDA for topic modeling.

Segmentation using sentence similarity has been
extensively explored using affinity propagation
(Kazantseva and Szpakowicz, 2011; Sakahara
et al., 2014). More recent approaches (Alemi and
Ginsparg, 2015; Glavaš et al., 2016) involve the use
of semantic representations of words to compute
sentence similarities. Koshorek et al. (2018) and
Badjatiya et al. (2018) propose neural models to
identify break points within the text.

Sims et al. (2019) address the slightly different,
but relevant task of event prediction using a neu-
ral model, on a human-annotated dataset of short
events.

3 Header Annotation

In order to create a ground-truth dataset for chapter
segmentation, we first build a system to recognize
chapter headings, using a hybrid approach com-
bining a neural model with a regular expression
(regex)-based rule matching system.

3.1 Data
In the absence of human-annotated gold standard
data with annotated front matter and chapter head-
ings, we derive silver-standard ground truth from
Project Gutenberg. We identify 8,400 English fic-
tion books available in HTML format, and extract
(noisy) HTML header elements from these books.
We use a train-test split of 90-10%.

3.2 Methodology

Figure 1: Header Annotation Pipeline

The annotation pipeline has five components, as
shown in Figure 1. First, we make use of white-
space cues and string matching for keywords such

as ‘Preface’, ‘Table of contents’ etc. to identify
front matter. We tag all such content up to the first
chapter heading as the front matter, and identify
the remaining content as body.

3.2.1 BERT Inference
We fine-tune a pretrained BERT model (Devlin
et al., 2019) with a token classification head, to
identify the lines which are likely to be headers.

Training: For each header extracted from the
Project Gutenberg HTML files, we append con-
tent from before and after the header, to generate
training sequences of fixed length. We empirically
select a sequence length of 120. We use a custom
BERT Cased Tokenizer with a special token for the
newline character, to tokenize the input sequences.
The training samples are of the format:

Sequence: [p1, ..., px, h1, ..., hk, q1, ..., qy]
Labels: [0, ......., 0, 1, ......., 1, 0, ......., 0]

where p1, ..., px are x tokens before the header,
h1, ..., hk are k tokens from the header, and
q1, ..., qy are y tokens after the header. x and y are
randomly generated numbers, such that x+k+y =
120. This is done in order to prevent header tokens
from appearing only in the center of the input se-
quence.

We fine-tune a pre-trained model for token clas-
sification using headers from 6,515 books in our
training set for 4 epochs using the BertAdam op-
timizer. A compute server with a 2.30 GHz CPU
and TeslaV100 GPU was used for all experiments.

Inference: For inference on a test set example,
we tokenize the text using the custom BERT Cased
Tokenizer, and use the model to generate a con-
fidence score for each token. We do this using a
sliding window approach, wherein we run infer-
ence on a text window of 120 tokens, and slide
the window forward by 60 tokens in each iteration.
We then perform token-wise max pooling to obtain
a single confidence score per token. Further, we
detokenize the output by concatenating sub-word
tokens and mean-pooling their confidence scores.

We choose the top 10% tokens with the high-
est confidence scores, and use the lines contain-
ing these tokens as potential header candidates for
regex matching.

3.2.2 Regex Rule Matching
We compile a list of regular expressions for con-
stituent elements in chapter headings:

• Keywords like ‘Chapter’, ‘Section’, ‘Volume’
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• Punctuation marks and whitespace

• Title (uppercase and mixed case)

• Roman numerals (uppercase and lowercase)

• Cardinal, ordinal, and digital numbers.

Using the rules for these constituent elements,
we further generate a list of 1,015 regex rules for
valid permutations of these elements.

For every potential header candidate generated
using the BERT model, we pick the best matching
regex rule as the longest rule that captures con-
stituent elements in order of priority, and discard
the candidate if there is no matching rule.

3.2.3 Missing Chapter Hunt
Once we have the list of candidates and their cor-
responding matching rules, we search for chapter
headings the BERT model may have missed. For
each matched rule that contains a number in some
format, we search for chapter headings in the same
format with the missing number. In order to ac-
count for chapter numbering restarts in different
sections of the book, we search for missing head-
ers within all increasing subsequences in the list of
chapter numbers found.

3.2.4 Refinement
We get rid of false positive matches, by remov-
ing headers between consecutive chapter numbers,
which do not match the same rule.

3.3 Evaluation

Table 1 shows the stage-wise performance of the
annotation pipeline. Stage 1 contains all candidates
generated using the BERT model, Stage 2 contains
headers predicted after applying regex rules and
searching for missing chapters, Stage 3 contains
headers after removing false positives.

Stage Precision Recall F1
1 0.02 0.67 0.05
2 0.75 0.79 0.76
3 0.78 0.78 0.77

Table 1: Stage-wise performance for header annotation

Figure 2 shows the distribution of evaluation
metrics on the test set of 640 books, evaluated on
the ground truth extracted from HTML files. The
mean value of the F1 score is 0.77. Manual inves-
tigation of a sub-sample of the test set shows that
several books get a low recall score due to false
negatives, caused due to incorrect header tags in the

Figure 2: F1 score distribution for 640 test set books

silver-standard ground truth. Thus we have even
greater confidence in our testbed than the F1-score
suggests.

3.4 Popularly used rule formats

Figure 3: Number of books in which the most frequent
header formats occur the most frequently

For each book, we count the number of occur-
rences of each header format. Figure 3 shows the
number of books in which the respective header
format occurs most frequently, namely “Chapter #
TITLE”.

3.5 Historical Trends

Figure 4: Trend in the number of chapters in a book

Figure 4 presents the number of chapters in
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each book as obtained by our annotation pipeline,
against the author’s year of birth. For authors born
before 1875, novels were roughly 30 chapters long,
after which there has been a steady decline in the
number of chapters per book.

4 Local Methods for Segmentation

After removing all explicit signals of chapter
boundaries from the texts, we now evaluate algo-
rithms for segmenting text into chapters.

We formulate our task as follows:
Given: Sentences S0, S1, ..., SN−1 in the book,
and P , the number of breaks to insert
Compute: P break points
B0, B1, ..., BP−1 ∈ {0, 1, ..., N − 1} correspond-
ing to chapter breaks.

4.1 Weighted Overlap Cut (WOC)

The motivation behind this technique is based
on the intuition that chapters are relatively self-
contained in the words that they use. For exam-
ple, consider a chapter that refers to a “cabin in
the woods”. We would expect references to this
cabin to be higher within the same chapter as com-
pared to other chapters. Hence, our hypothesis is
that there will be fewer words in common across a
break point separating two chapters, as compared
to words within the same chapter.

Considering sentences as nodes, and common
words as edges, we can compute the density of a
potential break point as the sum of the number of
edges going across it, weighted by their distance
from the break point. As per our hypothesis, we
expect the break point between two chapters to
appear as local minima in density as a function of
sentence number.

We restrict potential break points to the points
between paragraphs, and compute the local minima
in density. For each local minimum, we compute
its prominence as the vertical distance between the
minimum and its highest contour line. We then
pick the top P most prominent local minima as the
break points.

Note that the same hypothesis can also be made
at the paragraph level. However, a major limita-
tion of this approach is that paragraph sizes vary
widely, ranging from a single word to a consider-
ably huge block of text. Hence, we have taken the
approach of computing sentence-level density and
then restricting the potential break points to points
between paragraphs.

Preprocessing: We use the Stanford CoreNLP
pipeline (Manning et al., 2014) for sentence tok-
enization and lemmatization. We consider para-
graphs as text separated by two or more newline
characters.

Computation: For every potential break point i
between sentences Si and Si+1, we compute the
density of the break point, which is essentially a
weighted sum of the number of overlapping word
lemmas within a certain window before and after
the break point (weighted by the distance of the
word occurrence from the break point). We com-
pute the density di of break point candidate i as:

di =
i∑

x=i−w

(
x+w∑

y=max(x+1,i)

overlapxy
|i−x||i−y|

)
where w is the window size and overlapxy is the

number of common lemmas in sentences Sx and
Sy, excluding stopwords and punctuation. (Note
that we use only valid sentence indices during sum-
mation, considering the first and last sentences of
the book as cutoffs.)

Experiments: We perform experiments on 2,546
books in the test set, using window sizes of 50, 100,
150, and 200 sentences.

Figure 5a shows the computed densities and lo-
cal minima for window size 200, for a sample
book (“The Rover Boys Out West”, by Edward
Stratemeyer). The figure shows that chapter breaks
roughly correspond to prominent local minima in
density.

4.2 BERT for Break Prediction (BBP)

We fine-tune a pre-trained BERT model for the
Next Sentence Prediction task, to classify pairs of
sequences in which the second sequence is a co-
herent continuation of the first. Intuitively, for text
sequences which are separated by a chapter break,
we expect the second sequence to not be a continu-
ation of the first, i.e. the output label should be 0.
Whereas for consecutive text sequences within the
same chapter, the output label should be 1, denoting
that it is a logical continuation.

Training: We generate training sequences from
7,582 books in the training set. We generate train-
ing examples in the following format:
[CLS]<Seq A>[SEP]<Seq B>[SEP]

To generate negative training samples (i.e. class
0, meaning chapter break), we consider all the chap-
ter boundaries, and construct the input using the
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(a) WOC density (Local minima point sizes are proportional to their prominences)

(b) Processed BERT confidence scores

Figure 5: Breakpoint probability scores as a function of sentence number, for a sample book (“The Rover Boys
Out West”, by Edward Stratemeyer). Vertical red lines denote chapter breaks in ground truth. Predictions are

computed using the dynamic programming approach (described in Section 5) with α = 0.8.

text just before the chapter break as Seq A, and
text just after the break as Seq B. To generate
positive training samples (i.e. class 1, meaning no
break) we consider the break points between para-
graphs within the same chapter, and construct the
input sequence similarly. We use these sequence
pairs to fine-tune a pre-trained model for next sen-
tence prediction. Note that class 0 is of interest
to us in this task, as lack of continuity between
the sequences denotes the possibility of a chapter
break.

Inference: During inference on a book, we con-
sider all break points between paragraphs, and gen-
erate input sequences as described above. We run
each pair of input sequences through the classifier,
and generate confidence scores per class. We then
use the confidence score for class 0 as the proba-
bility of a break. We select the top P break points
with the highest confidence scores.

Experiments: We perform experiments using
the following variants of training sequences to fine-
tune the BERT model:

• Single paragraph: We use only one paragraph
from before, and one paragraph from after the
break point.

• Full window: We use 254 tokens each, from

before and after the break point. (If the para-
graph length exceeds 254 tokens, we cut off
the text before/after that point, depending on
which side the paragraph lies.)

Figure 5b shows the modified BERT scores for
the full window configuration, for a sample book
in the test set. The figure shows that BERT is able
to capture points close to chapter breaks in most
cases, indicating a good recall as well as precision.

4.3 Evaluation

We evaluate our algorithms using three metrics:

Pk (Beeferman et al., 1999): To compute this
metric, k is set to half of the average true segment
size. Using a moving window of length k, a penalty
is computed based on whether the two ends of
the window are in the same or different segments,
and whether the ground truth segmentation is in
agreement.

WindowDiff (WD) (Pevzner and Hearst, 2002):
This metric also uses a moving window, and com-
pares the number of ground truth segmentation
boundaries that fall in the window, with the number
of boundaries assigned by the algorithm. A penalty
is added if the counts are not equal.
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F1 score : We use the F1 score to evaluate ex-
act break prediction, and consider a match only if
the break matches with the ground truth exactly,
i.e. predictions near the true break points are not
counted.

Lower values of Pk and WindowDiff, and a high
value for F1 score are indicative of better perfor-
mance.

Table 2 shows the evaluation metrics Pk, WD
(WindowDiff), and the F1 score for the WOC and
BBP configurations described above.

Algorithm Pk WD F1
Equidistant breaks 0.482 0.492 0.052

TextTile (Hearst, 1994) 0.587 0.714 0.085
C99 (Choi, 2000) 0.493 0.517 0.049

P(Badjatiya et al., 2018) 0.485 0.555 0.111
L(Badjatiya et al., 2018) 0.493 0.569 0.087

WOC (window=50) 0.442 0.465 0.144
WOC (window=100) 0.425 0.450 0.158
WOC (window=150) 0.418 0.447 0.162
WOC (window=200) 0.416 0.446 0.164

BBP (single para.) 0.454 0.509 0.126
BBP (full window) 0.303 0.384 0.447

Table 2: Evaluation metrics for chapter break insertion
approaches (For Pk, WD: lower is better. For F1:

higher is better.)

We compare our approaches against the follow-
ing baselines:

• Equidistant: We divide the book into P +
1 segments, such that each segment has the
same number of sentences.

• TextTiling: We run the TextTiling algorithm
(Hearst, 1994), using mean words per sen-
tence as pseudosentence size, and number of
paragraphs as block size for each book. The
average number of breaks per book inserted
by this algorithm is 574, which clearly does
not reflect the actual number of chapters, re-
sulting in poor performance.

• C99: We run the C99 algorithm (Choi, 2000)
on our dataset, and choose the first P breaks
obtained while performing divisive clustering.

• Perceptron (P): We train a 3-layer baseline
perceptron model with 300 neurons in each
layer, for 10 epochs, as described by Bad-
jatiya et al. (2018). We use mean-pooled 300-
dimensional word2vec embeddings (Mikolov
et al., 2013) trained on the Google News
dataset, as input to the perceptron.

• LSTM (L): We train a neural model as de-
scribed by Badjatiya et al. (2018), using the
same pre-trained word2vec embedding matrix.
The network consists of an Embedding layer,
followed by an LSTM layer, a dropout layer,
a dense layer and finally, a sigmoid activation
layer.

Our models outperform the baselines on all met-
rics, with the BERT (full window) model for break
prediction model giving the best results. The ap-
proaches by Reynar (1994) and Utiyama and Isa-
hara (2001), and the neural models proposed by
Badjatiya et al. (2018) and Koshorek et al. (2018)
are global models, and are prohibitively expensive
on long documents.

5 Global Break Prediction

In the approaches described above, we simply se-
lect the highest scoring P points. However, this
selection does not conform to spatial constraints.
For example, the model may place two breaks close
to one another, when realistically, chapter breaks
are spaced fairly apart in practice.

To validate this, we compute the coefficient of
variance (CV) for each book, in terms of the num-
ber of sentences per chapter. Figure 6 shows the
distribution of the CV over all books in our dataset.
Most books in our dataset have a low CV (dis-
tributions with CV less than 1 are considered to
be low-variance), reflecting the fact that chapters
breaks are spaced fairly equally apart.

Figure 6: Frequency of distribution for the coefficient
of variance of number of sentences per segment

Hence, we propose a dynamic programming ap-
proach, in order to incorporate a weight for keeping
the chapter breaks equidistant.

We formulate the task in the same way as
described previously, with an additional parameter
α, which determines the importance of the
confidence scores as compared to equidistant
breaks. α ranges from 0 to 1, where 1 indicates
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that full weight is given to confidence scores, and
0 indicates that full weight is given to keeping the
breaks equidistant. We define the cost of inserting
a break at point n and inserting k breaks in points
0 to n− 1 recursively as:

cost(n, k) = min
i∈[0,n−1]

(
cost(i, k − 1) + (1− α) |n−i|L

)
− α · sn

where sn is the confidence score for n be-
ing a break point, and L is the ideal chapter length,
i.e. number of sentences in each chapter if the
book is split into P + 1 equal parts. At each
step, we use the break point which results in cost
minimization as the next break point, and repeat
the recursive call.

5.1 Experiments

We apply dynamic programming for global break
prediction, to both the approaches described above.
We conduct experiments for α from 0 to 1, with a
step increase of 0.2.

5.1.1 WOC
We use the prominences of local minima obtained
using WOC, with window sizes 50, 100, 150, and
200 respectively. We apply min-max normalization
on the prominences.

Figure 7: WindowDiff error metric for WOC

Figure 7 shows the WindowDiff error metric for
the WOC approach, with differing window sizes,
for different values of α. (Note that the window
sizes here are in terms of the number of neighboring
sentences used to compute density, and not used
while calculating the WindowDiff metric.) The
figure shows that an increase in window size results
in lower error, and for all window sizes, α = 0.8
shows the best performance.

5.2 BBP

We use the confidence scores for class 0 obtained
using the BERT model. We observe that confidence

scores are clustered close to 0 and 1. Higher confi-
dence scores are of more interest to us, as they are
indicative of potential chapter boundaries. Hence,
in order to distribute the values closer to 1 further
apart, we apply the log function and compute the
modified confidence score as − ln(1 − score)/c,
where c is a normalizing constant. In practice, we
use c = 10 to limit a majority of the values be-
tween 0 and 1. We optimize for the best value of
alpha independently of this constant.

Figure 8: WindowDiff error metric for BBP

Figure 8 shows the WindowDiff error metric
for the BERT-based approach for the single para-
graph and full window models respectively. We use
thresholds of 0.9 and 0.99 for each of the models,
meaning that we consider only those break points
with confidence scores above the threshold as po-
tential break point candidates.

The full window model shows the least error
at α = 0.8. Note that a higher threshold of 0.99
shows a performance almost equal to that of 0.9,
since a higher threshold means fewer potential
break point candidates, and hence a lower runtime.
Figures 5a and 5b depict predictions from the WOC
and BBP approaches respectively, with α = 0.8.

Algorithm Pk WD F1
Best BBP (local) 0.303 0.384 0.447

WOC (window=50) 0.443 0.456 0.144
WOC (window=100) 0.426 0.440 0.158
WOC (window=150) 0.421 0.434 0.162
WOC (window=200) 0.420 0.433 0.164

BBP (single para.) 0.441 0.455 0.128
BBP (full window) 0.284 0.305 0.453

Table 3: Metrics for global chapter break insertion

Table 3 shows the evaluation metrics for global
chapter break insertion. The dynamic program-
ming approach consistently improves the Win-
dowDiff and F1 metrics. The BERT model (full
window) gives the best performance in terms of all
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Algorithm MSE MAE R2 Pk WD F1
Baseline (# sent) 205.97 8.928 0.44 - - -
WOC (win=50) 203.26 8.797 0.45 0.46 0.50 0.13

WOC (win=100) 203.23 8.804 0.45 0.45 0.49 0.14
WOC (win=150) 203.19 8.805 0.45 0.44 0.49 0.14
WOC (win=200) 203.17 8.804 0.45 0.44 0.49 0.14

BBP (thr=0.9) 192.22 8.366 0.48 0.33 0.38 0.41
BBP (thr=0.99) 188.08 8.155 0.49 0.32 0.38 0.41

Table 4: Evaluation metrics for regression to predict number of
chapter breaks in a book (Window size [WOC] and threshold [BBP]

denoted in parentheses)

Figure 9: Error distribution over test set
using predictions for number of

chapters from BBP (threshold=0.99)

three metrics.

5.3 Estimating the Number of Breaks
The models described above require the number of
chapter boundaries to be specified. We now address
the independent question of estimating how many
chapter breaks to insert.

(a) WOC local minima
(window size 200)

(Slope = 0.045)

(b) BBP (full-window)
candidates (threshold = 0.99)

(Slope = 0.213)

Figure 10: Number of chapter breaks as a function of
the number of candidate break points

Figure 10 shows the number of chapters against
the number of break point candidates for both the
approaches. The number of local minima in WOC
are approximately 20 times the number of chapter
breaks, reflecting potential event boundaries within
chapters. The number of break point candidates
obtained using BERT are approximately 5 times the
number of chapter breaks. This can also be seen
in Figures 5a and 5b. Although the BBP model
performs better at exact break prediction, the WOC
model provides more information in terms of events
within chapters.

We now use a regression model to predict the
number of breaks, with the number of candidate
break points and the total number of sentences in
the book, as features. For the number of candidate
breaks, we use:

• WOC: The total number of local minima

• BBP: The number of candidate break points
above a certain threshold.

We perform experiments on 2,626 books in the
test set, so as to keep the results comparable for
both the approaches. We perform a train-test split
of 67-33%. We predict the number of chapter
breaks using this regression, and further evaluate
global break prediction with α = 0.8.

Table 4 shows the evaluation metrics on the
test set, for regression using the models described
above. The full-window BERT model shows the
best performance in predicting the number of chap-
ter breaks as well as break locations. Figure 9
shows the error distribution over the test set for the
best performing model.

6 Conclusion and Future Work

We build a chapter segmentation dataset resource
consisting of 9,126 English fiction novels, using
a hybrid approach combining neural inference
and regular expression-based rule matching. We
achieve and F1 score of 0.77 on this task. Further,
we use this dataset, remove structural cues, and ad-
dress the task of predicting chapter boundaries. We
present two methods for chapter segmentation. Our
supervised approach achieves the best performance
in exact break prediction, while our unsupervised
approach provides information about potential sub-
chapter break points.

Our work opens up avenues for further research
in text segmentation, with potential applications
in summarization and discourse analysis. Poten-
tial future work includes combining the neural and
cut-based approaches into a stronger method. Fi-
nally, it would be interesting to do a deeper dive
into variations of author strategies in chapteriza-
tion, focusing more intently on books with large
numbers of short chapters as being more reflective
of episode boundaries.
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Hervé Déjean and Jean-Luc Meunier. 2005. Structur-
ing Documents According to Their Table of Con-
tents. In Proceedings of the 2005 ACM symposium
on Document engineering, pages 2–9.
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