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Abstract

Text classification is a fundamental problem
in natural language processing. Recent stud-
ies applied graph neural network (GNN) tech-
niques to capture global word co-occurrence
in a corpus. However, previous works are
not scalable to large-sized corpus and ignore
the heterogeneity of the text graph. To ad-
dress these problems, we introduce a novel
Transformer based heterogeneous graph neu-
ral network, namely Text Graph Transformer
(TG-Transformer). Our model learns effec-
tive node representations by capturing struc-
ture and heterogeneity from the text graph.
We propose a mini-batch text graph sampling
method that significantly reduces computing
and memory costs to handle large-sized corpus.
Extensive experiments have been conducted
on several benchmark datasets, and the results
demonstrate that TG-Transformer outperforms
state-of-the-art approaches on text classifica-
tion task.

1 Introduction

Text classification is a widely studied problem
in natural language processing and has been ad-
dressed in many real-world applications such as
news filtering, spam detection, and health record
systems (Kowsari et al., 2019; Che et al., 2015;
Zhang et al., 2018). The objective is to assign
corresponding labels to textual units based on text
representations.

Deep learning models like Convolutional Neural
Networks (CNN) (Kim, 2014) and Recurrent Neu-
ral Networks (RNN) (Hochreiter and Schmidhu-
ber, 1997) have been applied for text representation
learning instead of traditional hand-crafted features,
such as n-gram and bag-of-words (BoW) (Joulin
et al., 2016). Researchers have recently turned to
Graph Neural Network (GNN) to exploit global fea-
tures in text representation learning, which learns

node embedding by aggregating information from
neighbors through edges. Defferrard et al. (2016)
first generalized CNN to graph for text classifica-
tion task. Then Yao et al. (2019) applied Graph
Convolution Network (GCN) (Kipf and Welling,
2016) on a corpus level heterogeneous text graph
and achieved state-of-the-art performance. Liu et al.
(2020) further improved classification accuracy by
expanding the text graph with semantic and syntac-
tic contextual information.

However, these GCN-based models on heteroge-
neous text graphs suffer from two practical issues.
Firstly, none of these models are scalable to large-
sized corpus due to high computation and memory
costs. Calculation of all the nodes in the graph is
required at each layer during training. Secondly, all
these models ignore the heterogeneity of the text
graph, which consists of both document and word
nodes. Distinguishing nodes of different types will
benefit node representation learning.

To address the above problems, we pro-
pose a novel Transformer-based heterogeneous
GNN model, namely Text Graph Transformer
(TG-Transformer). Instead of learning based on the
full text graph, we propose a text graph sampling
method that enables subgraph mini-batch training.
The significantly reduced computing and memory
costs make the model scalable to large-sized cor-
pus. Moreover, we utilize Transformer to aggregate
information in subgraph batch with two proposed
graph structural encodings. We also distinguish
the learning process of different type nodes to fully
utilize the heterogeneity of text graph. The main
contributions of this work are as follows:

1. We propose Text Graph Transformer, a het-
erogeneous graph neural network for text clas-
sification. It is the first scalable graph-based
method for the task to the best of our knowl-
edge.



8323

Figure 1: Overall Structure of TG-Transformer

2. We propose a novel heterogeneous text graph
sampling method that significantly reduces
computing and memory costs.

3. We perform experiments on several bench-
mark datasets, and the results demonstrate the
effectiveness and efficiency of our model.

2 Methodology

In this section, we introduce TG-Transformer in
great detail. First, we present how to construct a
heterogeneous text graph for a given corpus. Then,
we introduce our text graph sampling method,
which can generate subgraph mini-batch from the
text graph. These subgraph batches will be fed into
TG-Transformer to learn efficient node representa-
tions for classification. The overall structure of our
model is shown in Fig. 1.

2.1 Text Graph Building

To capture global word co-occurrence within cor-
pus, we build a heterogeneous text graph G =
(U ,V, E ,F). The text graph contains two types
of nodes: word nodes (U) representing all docu-
ments in the corpus and document nodes (V) rep-
resenting all the words in the corpus vocabulary.
The text graph also contains two types of edges:
word-document edges (E) and word-word edges
(F ). Word-document edges are built based on word
occurrence within documents with edge weights
measured by the term frequency-inverse document
frequency (TF-IDF) method. Word-word edges
are built based on local word co-occurrence within
sliding windows in the corpus, with edge weights

measured by point-wise mutual information (PMI):

PMI(wi, wj) = log
pi,j
pipj

= log
Ni,jN

NiNj
, (1)

where Ni, Nj , Ni,j are the number of sliding win-
dows in a corpus that contain word wi, word wj

and both wi, wj . N is the total number of sliding
windows in the corpus.

2.2 Text Graph Sampling
To reduce computing and memory cost, we propose
a text graph sampling method. Instead of learning
based on the entire text graph, TG-Transformer
is trained on sampled subgraph mini-batch, mak-
ing it scalable to large-sized corpus. We separate
sub-graph sampling as a pre-process step in an un-
supervised manner for controlling the time costs in
model learning.

We first calculate the intimacy matrix S of the
text graph based on pagerank algorithm:

S = α · (I− (1− α) ·A)−1, (2)

where factor α ∈ [0, 1] is usually set as 0.15.
A = D−

1
2AD−

1
2 is the normalized symmetric

adjacency matrix, A is the adjacency matrix of the
text graph, and D is its corresponding diagonal ma-
trix. Each entry Si,j measures the intimacy score
between node i and node j.

For any document target node vi ∈ V , we sample
its context subgraph C(vi) of size k by selecting its
top k intimate neighbour word nodes uj ∈ U .

Meanwhile, for any word target node ui ∈ U ,
we first calculate the ratios of two type incident
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Table 1: Statistics of the experiment datasets. V denotes the vocabulary size, C the number of classes, and W the
average number of words per document.

Dataset Train Test V C W
R8 5,485 2,189 7,688 8 65.72
R52 6,532 2,568 8,892 52 69.82

Ohsumed 3,357 4,043 14,157 23 135.82
IMDB 278,732 69,683 115,831 10 325.6

Yelp 2014 900,309 225,077 476,191 5 148.8

edge:

rw(ui) =
|F(ui)|

|F(ui)|+ |E(ui)|
, (3)

rd(ui) =
|E(ui)|

|F(ui)|+ |E(ui)|
, (4)

where F(ui), E(ui) are the sets of word-word
edges, word-document edges incident to ui with
intimacy score larger than threshold θ. We sample
its context subgraph C(ui) of size k by selecting
its top k · rw(ui) intimate neighbour word nodes
and its top k · rd(ui) intimate neighbour document
nodes, respectively.

2.3 Text Graph Transformer

Based on the sampled subgraph mini-batch,
TG-Transformer will update the text graph nodes’
representations iteratively for classification. We
build one model for each target node type (docu-
ment/word) to model heterogeneity. The input of
our model will be raw feature embeddings of nodes
in subgraph batch injected by the following two
extra structural encodings:

Heterogeneity Encoding The heterogeneity en-
coding can capture the document and word types
in the text graph. Similar to the segment encoding
in (Devlin et al., 2018), we use 0 and 1 to encode
document nodes and word nodes, respectively.

Weisfeiler-Lehman Structural Encoding We
adopt the WL Role Embedding by (Zhang et al.,
2020a) to capture the structure of text graph. The
Weisfeiler-Lehman (WL) algorithm (Niepert et al.,
2016) can label nodes according to their structural
roles in the graph. For node vj (document or word
node) in the sampled subgraph, we can denote its
WL code as WL(vj) ∈ N, and the encoding is

defined as:

[
sin

(
WL(vj)

10000
2l
dh

)
, cos

(
WL(vj)

10000
2l+1
dh

)]⌊ dh
2

⌋

l=0

.

(5)
These two encodings have the same dimension

(i.e., dh) as the original raw feature embeddings, so
we add them together as the initial node representa-
tion for the input subgraph, which can be denoted
as H(0).

Graph Transformer Layer The D layer graph
transformer will aggregate information from sub-
graph batch to learn the target node representa-
tion. Each graph transformer layer contains three
trainable matrices: WQ,WK ,Wv ∈ Rdh×dh and
queries Q, keys K and values V are generated by
multiplying the input correspondingly:

{Q,K,V} = H(l−1)
{
W

(l)
Q ,W

(l)
K ,W

(l)
V

}
. (6)

Then a TG-Transformer layer can be donated as:

H(l) = G-Transformer
(
H(l−1)

)
= softmax

(
QK>√
dh

)
V + G-Res,

(7)

where G-res refers to the graph residual
term in (Zhang and Meng, 2019) to solve the
over-smoothing issue of GNNs. The output of
the last layer H(D) will be averaged as the final
representations z of the target node and fed into
a softmax classifier:

z = softmax(average(H(D)) ∈ Rdy×1. (8)

Based on the sampled subgraphs for all the nodes
in the training set, e.g., T , we can define the cross-
entropy based loss function as:

` = −
∑
n∈T

dy∑
f=1

yn(f) log zn(f), (9)
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Table 2: Text classification accuracy results. Models with ”*” utilize pre-trained Glove word embeddings. For the
scores not reported in the existing works, we mark them with ‘-’ in the table.

Model R8 R52 Ohsumed IMDB Yelp 2014
CNN* 95.7±0.5 87.6±0.4 58.4±1.0 42.7±0.4 66.1±0.6

LSTM* 96.1±0.2 90.5±0.8 51.1±1.5 52.1±0.3 68.4 ±0.1
fastText* 96.1±0.2 92.8±0.1 57.7±0.5 45.2±0.4 66.2±0.6
Text GCN 97.0±0.1 93.7±0.1 67.7±0.3 - -

Text GNN* 97.8±0.2 94.6±0.3 69.4±0.6 - -
Tensor GCN* 98.0±0.1 95.0±0.1 70.1±0.2 - -

TG-Transformer* 98.1±0.1 95.2±0.2 70.4±0.4 53.4±1.2 69.8±0.6

where n ∈ T denotes the target word/document
nodes in the training set, dy is the label vector di-
mension, and yn represents the ground-truth label
vector of node n.

3 Experiment

3.1 Experimental Setup

Datasets We evaluate the effectiveness of our
model on five benchmarked datasets: R52 and R8
Reuters dataset1 for news documents classification,
Ohsumed dataset2 for medical bibliographic classi-
fication, and two large-scale review rating datasets:
IMDB and Yelp 2014. Detailed statistics of the
datasets are summarized in Table 1.

Baselines We compare our method with three
classical baseline models: CNN in (Kim, 2014),
LSTM in (Liu et al., 2016) and fastText in (Joulin
et al., 2016) using the average of word/n-grams
embeddings. In addition, we compare with three
state-of-the-art GNN-based models: TextGCN in
(Yao et al., 2019) using GCN, Text GNN3 in
(Huang et al., 2019) using text level graphs and
TensorGCN in (Liu et al., 2020) using semantic
and syntactic contextual information.

Implementation We set the node representation
dimension as 300 and initialize with Glove word
embeddings (Pennington et al., 2014). We train
a 2-layer graph transformer with a hidden size 32
and 4 attention heads. We use mini-batch SGD
with Adam optimizer (Kingma and Ba, 2014), and
the dropout rate is set as 0.5. The initial learning
rate as 0.001, and we decay it with weight decay
5e−4. 10 percent of the training set is randomly
selected as validation set, and we stop training if

1https://www.cs.umb.edu/ smimarog/textmining/datasets/
2http://disi.unitn.it/moschitti/corpora.htm
3We give this name for simplicity.

Table 3: Training time per epoch of GNN-based mod-
els.

Model R52 Ohsumed
Text GCN 2.64 3.48

Tensor GCN 4.32 5.13
TG-Transformer 0.83 1.17

the validation set loss does not decrease for 10
consecutive epochs.

3.2 Experiment Results

Table 2 presents the classification accuracy of our
model compared with baseline methods. GNN-
based models generally perform better than se-
quential and bag-of-word models due to its ability
to model global word co-occurrence in the cor-
pus, and TG-Transformer outperforms other graph
models with much less memory and computing
cost. This is likely due to the utilization of the text
graph’s heterogeneity and effective representing
learning by Graph Transformer Layers. Moreover,
TG-Transformer performs well on large-sized cor-
pus such as IMDB and Yelp 14. We also evaluate
model efficiency with training time per epoch, as
shown in Table 3. It can be observed that our text
graph sampling method reduces the computing cost
significantly and makes our model scalable to large
corpus, where previous GNN-based models such
as Text GCN are not applicable due to computing
power limit.

Hyperparameter Here we analyze the effects of
subgraph sizes k in sampling. We notice parameter
k has a large influence on the model performance
since it defines the number of neighbor nodes used
to update the target node representation. During pa-
rameter tuning, we notice the learning performance
improves steadily as k increases from 1 to an opti-
mal value (i.e.,23 for R8) and starts decreasing as
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Table 4: Ablation study results.

Settings R52 Ohsumed
Original 95.2 70.4

(1) Without structural encodings 94.8 69.6
(2) Without pre-trained Emb. 93.5 66.9

(3) Simultaneous updating 94.7 69.3

k further increases. The same trend is noticed for
all datasets. The computing cost to train the model
also increases as k goes larger, but is still less than
other GNN-based models.

Ablation Study We perform ablation studies to
analyze our model further, as shown in Table 4. In
(1), we remove the two structural encodings and
only use raw feature embeddings as input. The
decreased performance demonstrates that the struc-
tural encodings capture some useful heterogeneous
graph structure information. In (2), we remove
pre-trained word embeddings and initialize all the
nodes with random vectors. Model performance
has a larger decrease, demonstrating the signifi-
cance of pre-trained word embeddings and initial
node representations on our model. In (3), we train
one model to update and learn both subgraph batch
target node types. The slightly decreasing classifi-
cation accuracy reflects the importance of modeling
heterogeneity information of the text graph.

4 Related Work

4.1 Text Classification
Traditional text classification studies rely on hand-
crafted features like BoW (Zhang et al., 2010) and
n-gram (Wang and Manning, 2012). With the de-
velopment of deep learning, researchers applied
CNN (Kim, 2014; Zhang et al., 2015), LSTM (Tai
et al., 2015; Liu et al., 2016), word embedding tech-
niques (Joulin et al., 2016; Pennington et al., 2014),
attention mechanism (Yang et al., 2016; Wang et al.,
2016) in text classification models and kept improv-
ing accuracy. Recently, graph based text classifica-
tion models received growing attention due to its
ability to model global information in corpus (Yao
et al., 2019; Peng et al., 2018; Zhang et al., 2020b;
Nikolentzos et al., 2019). Our paper follows this
line of works on developing novel GNN for text
classification.

4.2 Graph Neural Network
Representative examples of GNN models pro-
posed by present include GCN (Kipf and Welling,
2016), Graph Attention Network (GAT)(Veličković

et al., 2017) and Graph SAGE (Hamilton et al.,
2017). GCN models are based on approximated
graph convolutional operator while GAT relies on
self-attention mechanism. Recently, Transformer
(Vaswani et al., 2017) models have been applied in
novel GNN designs (Hu et al., 2020; Zhang et al.,
2020a).

5 Conclusion

In this paper, we proposed a scalable heterogeneous
graph model, TG-Transformer, for text classifica-
tion. Experimental results prove its effectiveness
and efficiency compared to state-of-the-art meth-
ods. It also enables parallelization and pre-training
in GNN models for further research.
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