
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 8229–8239,
November 16–20, 2020. c©2020 Association for Computational Linguistics

8229

Universal Natural Language Processing with Limited Annotations:
Try Few-shot Textual Entailment as a Start

Wenpeng Yin1, Nazneen Fatema Rajani1,
Dragomir Radev1,2, Richard Socher1 and Caiming Xiong1

1Salesforce Research and 2Yale University
wyin@salesforce.com

Abstract

A standard way to address different NLP prob-
lems is by first constructing a problem-specific
dataset, then building a model to fit this dataset.
To build the ultimate artificial intelligence, we
desire a single machine that can handle diverse
new problems, for which task-specific annota-
tions are limited. We bring up textual entail-
ment as a unified solver for such NLP prob-
lems. However, current research of textual en-
tailment has not spilled much ink on the fol-
lowing questions: (i) How well does a pre-
trained textual entailment system generalize
across domains with only a handful of domain-
specific examples? and (ii) When is it worth
transforming an NLP task into textual entail-
ment? We argue that the transforming is un-
necessary if we can obtain rich annotations for
this task. Textual entailment really matters par-
ticularly when the target NLP task has insuffi-
cient annotations.

Universal NLP1 can be probably achieved
through different routines. In this work,
we introduce Universal Few-shot textual En-
tailment (UFO-ENTAIL). We demonstrate
that this framework enables a pretrained en-
tailment model to work well on new en-
tailment domains in a few-shot setting, and
show its effectiveness as a unified solver
for several downstream NLP tasks such
as question answering and coreference res-
olution when the end-task annotations are
limited. Code: https://github.com/

salesforce/UniversalFewShotNLP

1 Introduction

Nowadays, the whole NLP journey has been broken
down into innumerable sub-tasks. We often solve

1“Universal NLP” here means using a single machine to
address diverse NLP problems. This is different from using
the same machine learning algorithm such as convolution nets
to solve tasks because the latter still results in task-specific
models which can not solve other tasks.

each task separately by first gathering task-specific
training data and then tuning a machine learning
system to learn the patterns in the data. Constrained
by the current techniques, the journey has to be
performed in this way. By a forward-looking per-
spective, instead, a single machine that can handle
diverse (seen and unseen) tasks is desired. The rea-
son is that we cannot always rely on expensive hu-
man resources to annotate large-scale task-specific
labeled data, especially considering the inestimable
number of tasks to be explored. Therefore, a rea-
sonable attempt is to map diverse NLP tasks into
a common learning problem—solving this com-
mon problem equals to solving any downstream
NLP tasks, even some tasks that are new or have
insufficient annotations.

Textual entailment (aka. natural language in-
ference in Bowman et al. (2015)) is the task of
studying the relation of two assertive sentences,
Premise (P) and Hypothesis (H): whether H is true
given P. Textual entailment (TE) was originally
brought up as a unified framework for modeling
diverse NLP tasks (Dagan et al., 2005; Poliak et al.,
2018). The research on TE dates back more than
two decades and has made significant progress. Par-
ticularly, with the advances of deep neural networks
and the availability of large-scale human annotated
datasets, fine-tuned systems often claim surpassing
human performance on certain benchmarks.

Nevertheless, two open problems remain. First,
the increasing performances on some benchmarks
heavily rely on rich human annotations. There is
rarely a trained entailment system that can work
on benchmarks in other domains. Current textual
entailment systems are far from being deployed
in new domains where no rich annotation exists.
Second, there is an increasing awareness in the
community that lots of NLP tasks can be studied in
the entailment framework. But it is unclear when it
is worth transforming a target NLP tasks to textual

https://github.com/salesforce/UniversalFewShotNLP
https://github.com/salesforce/UniversalFewShotNLP

8230

entailment. We argue that textual entailment partic-
ularly matters when the target NLP task has insuffi-
cient annotations; in this way, some NLP tasks that
share the same inference pattern and annotations
are insufficient to build a task-specific model can
be handled by a unified entailment system.

Motivated by the two issues, we build UFO-
ENTAIL—the first ever generalized few-shot tex-
tual entailment system with the following set-
ting. We first assume that we can access a large-
scale generic purpose TE dataset, such as MNLI
(Williams et al., 2018); this dataset enables us to
build a base entailment system with acceptable per-
formance. To get even better performance in any
new domain or new task, we combine the generic
purpose TE dataset with a couple of domain/task-
specific examples to learn a better-performing en-
tailment for that new domain/task. This is a reason-
able assumption because in the real-world, any new
domain or new task does not typically have large
annotated data, but obtaining a couple of examples
is usually feasible.

Technically, our UFO-ENTAIL is inspired by
the Prototypical Network (Snell et al., 2017), a
popular metric-based meta-learning paradigm, and
the STILTS (Phang et al., 2018), a framework
that makes use of pretraining on indirect tasks
to help the target task. UFO-ENTAIL consists
of a RoBERTa (Liu et al., 2019) encoder and a
proposed cross-task nearest neighbor block. The
RoBERTa, pretrained on MNLI, provides a repre-
sentation space biased to the source domain; the
cross-task nearest neighbor block is in charge of
mitigating the distribution difference between the
source domain and the target task (given only a few
examples).

In experiments, we apply UFO-ENTAIL trained
on MNLI and k examples from the target do-
main/task to two out-of-domain entailment bench-
marks and two NLP tasks (question answering and
coreference resolution). Results show the effective-
ness of UFO-ENTAIL in addressing the challenges
set forth in the two questions. Overall, we make
two contributions:
• We are the first to systematically study textual

entailment in open domains, given only a couple of
domain-specific examples.
• We follow the argument of some literature

that textual entailment is a unified NLP framework.
Here, we make a step further by declaring that we
study textual entailment not because some NLP

tasks can be transformed into entailment, but be-
cause few-shot textual entailment can be a promis-
ing attempt for universal NLP when we can not
guarantee the accessibility of rich annotations.

2 Related Work

Textual Entailment. Textual entailment was
first studied in Dagan et al. (2005) and the main fo-
cus in the early stages was to study lexical and
some syntactic features. In the past few years,
the research on textual entailment has been driven
by the creation of large-scale datasets, such as
SNLI (Bowman et al., 2015), science domain Sc-
iTail (Khot et al., 2018), and multi-genre MNLI
(Williams et al., 2018). Representative work in-
cludes the first attentive recurrent neural network
(Rocktäschel et al., 2016) and its followers (Wang
and Jiang, 2016; Wang et al., 2017), as well as the
attentive convolutional networks such as attentive
pooling (dos Santos et al., 2016) and attentive con-
volution (Yin and Schütze, 2018), and self-attentive
large-scale language models like BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019). All
these studies result in systems that are overly tai-
lored to the datasets.

Our work differs in that we care more about few-
shot applications of textual entailment, assuming
that a new domain or an NLP task is not provided
with rich annotated data.

Generalization via domain adaptation. Two
main types of domain adaptation (DA) problems
have been studied in literature: supervised DA and
semi-supervised DA. In the supervised case, we
have access to a large annotated data in the source
domain and a small-scale annotated data in the
target domain (Daumé III, 2007; Kang and Feng,
2018). In the semi-supervised case, we have a
large but unannotated corpus in the target domain
(Miller, 2019).

In contrast to semi-supervised DA, our work
does not assume the availability of a large unla-
beled data from the target domain or task. We also
build more ambitious missions than the supervised
DA since our work aims to adapt the model to new
domains as well as new NLP tasks.

Generalization via few-shot learning. Few-
shot problems are studied typically in the image
domain (Koch et al., 2015; Vinyals et al., 2016;
Snell et al., 2017; Ren et al., 2018; Sung et al.,
2018). The core idea in metric-based few-shot

8231

learning is similar to nearest neighbors. The pre-
dicted probability of a test instance over a set of
classes (i.e., only a few supporting examples are
seen) is a weighted sum of classes for those sup-
porting samples. Vinyals et al. (2016) compare
each test instance with those supporting examples
by the cosine distance in a method named Match-
ing Networks. Snell et al. (2017) propose Pro-
totypical Networks which first build prototypical
representations for each class by summing up rep-
resentations of supporting examples, then compare
classes with test instances by squared Euclidean
distances. Unlike fixed metric measures, the Rela-
tion Network (Sung et al., 2018) implements the
comparison through learning a matching metric in
a multi-layer architecture.

In the language domain, Yu et al. (2018) com-
bine multiple metrics learned from diverse clusters
of training tasks for an unseen few-shot text classi-
fication task. Han et al. (2018) release a few-shot
relation classification dataset “FewRel” and com-
pare a couple of representative methods on it.

These few-shot studies assume that, in the same
domain, a part of the classes have limited samples,
while other classes have adequate examples. In this
work, we make a more challenging assumption that
all classes in the target domain have only a couple
of examples, and the training classes and testing
classes are from different domains.

Unified natural language processing. McCann
et al. (2018) cast a group of NLP tasks as question
answering over context, such as machine transla-
tion, summarization, natural language inference,
sequence modeling, etc. Raffel et al. (2019) study
transfer learning for broad NLP by converting ev-
ery language problem into a text-to-text format.
Keskar et al. (2019) unify question answering, text
classification, and regression via span extraction
to get rid of various output layers on top of BERT
for different tasks. A concurrent work with ours
(Bansal et al., 2019) studies few-shot learning in
NLP, but only text classification tasks are involved.

Their unification is mainly from the perspective
of system structure, i.e., some distinct NLP tasks
can be converted into a common training structure.
Rich annotations are still needed. Our entailment
paradigm, instead, is driven by the fact that there is
a common reasoning pattern behind (Dagan et al.,
2005). In addition, we care more about the chal-
lenges in realistic scenarios where we have to han-
dle problems with limited annotations.

RoBERTa

rep of token [CLS]

e n c

(premise, hypothesis)

hidden layer

logistic regression

RoBERTa

rep of token [CLS]

e n c

(premise, hypothesis)

hidden layer

cross-task
nearest neighbor

Figure 1: (Left) RoBERTa for textual entailment. “e”:
entailment, “n”: neutral, “c”: contradiction. (Right)
the skeleton of our UFO-ENTAIL system. It basically
replaces the logistic regression layer in RoBERTa clas-
sifier by a cross-task nearest neighbor block. RoBERTa
learns class representations implicitly in the weight ma-
trix of logistic regression, while UFO-ENTAIL first ex-
plicitly builds class representations for both source and
target tasks, then composes the cross-task probability
distributions to get the prediction.

3 Method

3.1 Problem formulation

Provided the large-scale generic textual entailment
dataset MNLI (Williams et al., 2018) and a few
examples from a target domain or a target task, we
build an entailment predictor that can work well in
the target domain/task even if only a few examples
are available.

The inputs include: MNLI, the example set (i.e.,
k examples for each type in {“entailment”, “non-
entailment”} or {“entailment”, “neutral”, “contra-
diction”} if applicable). The output is an entail-
ment classifier, predicting a label for each instance
in the new domain/task. Please note that we need
to convert those examples into labeled entailment
instances if the target task is not a standard entail-
ment problem. The entailment-style outputs can be
easily converted to the prediction format required
by the target tasks, as introduced in Section 4.2.

3.2 Our model UFO-ENTAIL

Hereafter, we refer to MNLI as S (source domain),
and the new domain or task as T . Before launching
the introduction of UFO-ENTAIL, we first give a
brief description: UFO-ENTAIL, shown in Figure

8232

Figure 2: Loss computation in cross-domain/task near-
est neighbor framework.

query examples
from S and T

example set

a batch of query examples
sample set

Class
1

Class
2

Class
1

Class
2

MNLI

random sampling remaining examples

sampled query examplesrandom sampling same size
from each class

Figure 3: Generating the example set in T , the sample
set in S and the query examples by both S and T . Here
we only show two classes in S and T just for simplicity.

1, is stacking a cross-task nearest neighbor block
over a RoBERTa encoder.

Encoder RoBERTa. For textual entailment,
RoBERTa, shown in Figure 1, takes the pair
(premise, hypothesis) as an input. RoBERTa first
outputs a representation vector (e.g., the one corre-
sponding to the token “CLS”) to denote the input
pair, then maps this representation into a new space
by a hidden layer, finally conducts classification
on that space through logistic regression. Overall,
RoBERTa works with the hidden layer together as
the encoder. For convenience, we still name this
“RoBERTa+HiddenLayer” encoder as “RoBERTa”.

We prepare RoBERTa by pretraining it on the
source data S. This pretrained entailment encoder
will act as a base system to deal with any new tasks
(with the help of k examples).

Cross-task nearest neighbor. Shown in Figure
2, the first step in the cross-task nearest neighbor
is to build representations for each class in the S
and T , then batches of query instances from S as
well as T compare with those class representations
by a matching function to compute loss and train
the system. The reason we emphasize “cross-task”
here is that both the classes and the query examples
cover the two tasks S and T . This is the core of
UFO-ENTAIL in dealing with any new NLP prob-
lems of scarce annotations from textual entailment.
• Class representations. We use pew, pnw and

pcw to denote the representations for the three
classes {“entailment”, “neutral”, “contradict”} in
w, w ∈ {S, T}. When the target task T can only
be converted into two classes, i.e., “entail vs. non-
entail”, we let pnT = pcT , both denoting the class
“non-entail”.

For the target T , each class has k labeled ex-
amples (example set). For the source domain S,
similar with the episode training in meta learning
(Snell et al., 2017), we randomly sample k exam-
ples (“sample set”) of each class in S. Then,

pjw =
1

k

k∑
i=1

RoBERTa(xin) (1)

where {xin}, i = 1 · · · k, are the labeled k examples
for class j ∈ {e, n, c} in T or S, RoBERTa(·) ∈
Rd and pjw ∈ Rd. Overall, UFO-ENTAIL keeps
representations for six classes.
• Query examples. As Figure 3 illustrates, a

query batch is composed of two sub-batches, one
from S, the other from T . For S, apart from its
“sample set”, the remaining labeled examples are
grouped as mini-batches. For T , since all the la-
beled examples it has are those k supporting ex-
amples per class, we randomly sample m exam-
ples from the k supporting examples for each class
(m < k), and finally incorporate them into a S’s
mini-batch as a bigger batch of queries.

Since UFO-ENTAIL is to cope with new tasks
given a textual entailment task. We assume that the
source entailment task provides valuable knowl-
edge to warm up the model learning. For a testing
instance in T , we want it to compose the reasoning
conclusions derived from both S and the example
set in T .

For training, we include examples from S as
queries because we treat the classes in S and T
equally, and the queries in S and T equally as well.
This leads to a higher-level abstract task in which

8233

Input: MNLI as DS , k × |C| examples from T
denoted as DT

Output: A 3-way entailment classifier
Sample k example from S’s class “e”, “n” and “c” as
De

S , Dn
S and Dc

S , respectively; remaining examples
in DS form minibatches BS = {Bi

S}.
while each mini-batch Bi

S do
build a mini-batch Bi

T ={D̂e
T ,D̂n

T , D̂c
T } from

DT , |D̂i
T | = m and m < k.

build class representation:
pjw =

∑
RoBERTa(Dj

w), w ∈ {S, T} and
j ∈ {e, n, c}

build a query batch Bi = {Bi
S , B

i
T }

while each query q in Bi
S do

compare q with class representations {pjw}
to get probability distribution g

get loss for q
end
loss lS is the mean loss in Bi

S

while each query q in Bi
T do

compare q with class representations {pjw}
to get probability distribution g

get loss for q
end
loss lT is the mean loss in Bi

T

loss l = lS + lT for this query batch Bi

update the RoBERTa and nearest neighbor block
end

Algorithm 1: UFO-ENTAIL algorithm.

S and T learns from each other to mitigate the
difference.

Matching function. Assuming a query example
gets its representation q through RoBERTa, then a
matching score, between this query example and
one class (class representation p), sp,q is learnt as
follows:

I = [p, q, p ◦ q, p− q] (2)

r1 = dropout(tanh(W1 × I)) + I (3)

r2 = dropout(tanh(W2 × r1)) + r1 (4)

r3 = dropout(tanh(W3 × r2)) (5)

r4 = dropout(tanh(W4 × r3)) (6)

sp,q = sigmoid(W5 × r4) (7)

where I ∈ R4d, W1 and W2 ∈ R4d×4d, W3 ∈
R4d×2d, W4 ∈ R2d×d and W5 ∈ Rd.

Probability distribution per query. A query ex-
ample will obtain three matching scores from S
(gS ∈ R3) and three matching scores from T
(gT ∈ R3). Now we try to combine them as a final
probability distribution of thee dimensions. Instead
of linear combination with artificial weights, we
let the system learn automatically the contribution
of gS and gT in a new space. Therefore, the fi-
nal probability distribution g ∈ R3 is learned as

follows:

ĝS = sigmoid(W6 × gS) (8)

ĝT = sigmoid(W6 × gT) (9)

λ = sigmoid(W7 × [gS , gT]) (10)

g = softmax(λ ◦ ĝS + (1− λ) ◦ ĝT) (11)

where W6 ∈ R3 and W7 ∈ R6. g is used to com-
pute loss to train the system in training and predict
the class in testing.

Training loss. In training, a query batch actually
contains two sub-batches, one from S, the other
from T . To balance the contribution, we first com-
pute the mean loss in S’s and T ’s sub-batches re-
spectively, obtaining lS and lT , then the overall
loss for that batch is l = lS + lT , demonstrated in
Figure 2,

The whole UFO-ENTAIL system is a stack of
the RoBERTa and the cross-task nearest neighbor
block. Its learning algorithm is summarized in the
Algorithm 1;. UFO-ENTAIL can be trained end-
to-end.

3.3 UFO-ENTAIL vs. other related models
• UFO-ENTAIL vs. Prototype. Net. Prototypi-
cal network (Snell et al., 2017) assumes that train-
ing tasks and test tasks are in the same distribution.
So, it focuses on the matching function learning
and hopes a well-trained matching function in train-
ing tasks (i.e., S in this work) works well in the tar-
get tasks (i.e., T here). However, the presumption
does not apply to the cross-domain/task scenarios
in this work.

Similarly, UFO-ENTAIL also builds class repre-
sentation by averaging the representations of some
class-specific labeled examples, as prototypical net-
work does. In training, prototypical network builds
class representations in training tasks and query
examples come from the training tasks only; in
testing, the query examples from the testing tasks
only compare with the few labeled examples spe-
cific to the testing task (training tasks do not par-
ticipate anymore). In short, prototypical network
only builds nearest neighbor algorithm within a
task. UFO-ENTAIL differs in that it is based on
cross-task nearest neighbor – keeping class repre-
sentations for both S and T in training as well as
in testing; query examples in training also comes
from S and T . Because of the mismatch of the dis-
tributions in S and T , the goal of UFO-ENTAIL is
to not only learn the matching function, but also
map the instances in S and T to the same space.

8234

UFO-ENTAIL vs. STILTS. Given the source
data S and a couple of labeled examples from the
target T , STILTS (Phang et al., 2018) first trains
RoBERTa on S, then fine-tune on the labeled ex-
amples of T . Both the pretraining and fine-tuning
use the same RoBERTa system in Figure 1. It has
been widely used as the state of the art technique
for making use of related tasks to improve target
tasks, especially when the target tasks have lim-
ited annotations (Liu et al., 2019; Sap et al., 2019;
Clark et al., 2019). By the architecture, STILTS
relies on the standard RoBERTa classifier which
consists of a RoBERTa encoder and a logistic re-
gression on the top; UFO-ENTAIL instead has a
cross-task nearest neighbor block on the top of the
RoBERTa encoder.

STILTS tries to learn the target-specific parame-
ters by tuning on the k labeled examples. However,
this is very challenging if k is over small, like val-
ues {1, 3, 5, 10} we will use in our problems. We
can also think STILTS learns class prototypical
representations implicitly (i.e., the weights in the
logistic regression layer), however, the bias term
in the logistic regression layer reflect mainly the
distribution in the source S, which is less optimal
for predicting in the target T .

4 Experiments

We apply UFO-ENTAIL to entailment tasks of
open domain and open NLP tasks.

Experimental setup. Our system is imple-
mented with Pytorch on the transformers package
released by Huggingface2. We use “RoBERTa-
large” initialized by the pretrained language model.

To mitigate the potential bias or artifacts (Gu-
rurangan et al., 2018) in sampling, all numbers of
k-shot are average of five runs in seeds {42, 16, 32,
64, 128}.

Due to GPU memory constraints, we only up-
date the nearest neighbor block, the hidden layer
and top-5 layers in RoBERTa. For other training
configurations, please refer to our released code.

Baselines. The following baselines are shared by
experiments on open entailment tasks and open
NLP tasks.
• 0-shot. We assume zero examples from tar-

get domains. We train a RoBERTa classifier3 on
2https://github.com/huggingface/

transformers
3Specifically, the “RobertaForSequenceClassification”

classifier in the Huggingface transformer.

MNLI, and apply it to the respective test set of
target domains without fine-tuning.
• Train on k examples. We build a RoBERTa

classifier on the k labeled examples directly. No
MNLI data is used. When k is increased to cover all
the labeled examples of the target domain or task,
this baseline is referred as “train on target data”.
• STILTs (Phang et al., 2018). This is a learn-

ing paradigm: for any target task, first pretrain
the model on intermediate tasks, then fine-tune
on the target task. Here, it means pretraining on
MNLI, then fine-tuning on k examples (k >= 1
until it reaches the full labeled data of the target
domain/task). When k = 0, “STILTS” equals to
“0-shot” baseline.
• Prototypical Network (Snell et al., 2017). It

is a representative episode-training algorithms for
few-shot problems, introduced in Section 2.
• State-of-the-art. STILTS is widely used as

the state-of-the-art technique to promote the perfor-
mance of a target problem with indirect supervision
and task-specific fine-tuning. According to the def-
inition of STILTS, its paradigm is applicable to
any Transformer-based models. Since RoBERTa
is used as the main Transformer model, applying
STILTS to RoBERTa, which pretrains on MNLI
then fine-tunes on the full target data, is the state of
the art for this work.

4.1 UFO-ENTAIL in open domains
We test the few-shot setting on two out-of-domain
entailment datasets: GLUE RTE (Wang et al.,
2019) and SciTail (Khot et al., 2018). Exam-
ples in GLUE-RTE mainly come from the news
and Wikipedia domains. SciTail is from the
science domain, designed from the end task of
multiple-choice QA. Our source dataset MNLI
covers a broad range of genres such as conver-
sation, news reports, travel guides, fundraising
letters, cultural articles, fiction, etc. RTE has
2,490/277/2,999 examples in train/dev/test; SciTail
has 23,596/1,304/2,126 respectively.

4.2 UFO-ENTAIL in open NLP tasks
In this section, we apply UFO-ENTAIL as a uni-
versal framework to other distinct NLP tasks with
limited annotations. An alternative approach to
handle a task in which the annotations are scarce
is to do transfer learning based on existing datasets
of rich annotations and high relevance. However,
we argue that this still results in “training separate
models for different tasks”, and it is unrealistic to

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

8235

open entailment tasks open NLP tasks
RTE SciTail QA Coref.

#entail-style pairs (2.5k) (23k) (4.8k) (4k)
majority or random 50.16 60.40 25.00 50.00

0-shot train on MNLI 83.36 81.70 58.00 61.76

1-shot

train on k examp. 50.02±0.27 48.14±8.00 25.31±2.56 51.14±0.42
prototype network 79.17±3.75 75.13±7.60 68.67±2.69 61.91±17.5
STILTs 83.86±0.25 81.64±0.13 63.20±3.55 64.31±1.71
UFO-ENTAIL 84.76±0.35 83.73±1.10 71.70±2.55 74.20±3.14

3-shot

train on k examp. 50.34±0.37 46.41±7.98 25.33±3.08 50.32±0.94
prototype network 81.89±1.75 80.01±2.66 67.90±1.53 63.71±21.1
STILTs 84.02±0.54 81.73±0.23 65.28±5.60 64.66±2.89
UFO-ENTAIL 85.06±0.34 83.71±1.17 73.06±2.76 74.73±2.61

5-shot

train on k examp. 50.20±0.23 49.24±6.82 24.50±2.77 50.18±0.85
prototype network 81.89±1.08 81.48±0.98 67.50±2.34 73.22±0.78
STILTs 84.15±0.47 82.26±0.56 66.10±6.72 68.25±3.49
UFO-ENTAIL 84.84±0.61 84.82±1.18 73.30±2.65 74.59±2.87

10-shot

train on k examp. 50.53±0.99 57.09±4.04 25.28±2.35 52.55±0.99
prototype network 82.12±0.70 81.83±0.54 68.48±2.40 73.28±1.51
STILTs 84.08±0.48 82.26±0.61 67.93±3.31 71.08±4.09
UFO-ENTAIL 85.28±0.27 86.19±1.10 74.23±2.48 77.58±2.50

full-shot
train on target data 79.98±0.72 95.55±0.14 80.47±3.00 90.20±0.45
STILTs (SOTA) 86.26±0.23 95.05±0.19 82.60±0.64 89.26±0.38

Table 1: Applying UFO-ENTAIL to two entailment benchmarks (RTE and SciTail) and two other NLP tasks
(question answering (QA) and coreference resolution (Coref.)), each providing k examples (k = {1, 3, 5, 10}).
Numbers for “STILTS (SOTA)” are upperbound performance while using full labeled data; bold numbers are our
top numbers when the few-shot hyperparamter k <= 10.

presume, for T , that a related and rich-annotation
dataset always exists. As we discussed, the final
goal of NLP (or even AI) is to develop a single
machine to solve diverse problems. To the end, we
try few-shot entailment here as an attempt.

For each downstream NLP task, we provide k
examples for helping the learning of the textual
entailment system. Next, we describe in detail how
some representative NLP problems are converted
to be textual entailment. Our work provides a new
perspective to tackle these NLP issues, especially
given only a couple of labeled examples.

Question Answering. We attempt to handle the
QA setting in which only a couple of labeled ex-
amples are provided. A QA problem can be formu-
lated as a textual entailment problem—the docu-
ment acts as the premise, and the (question, answer
candidate), after converting into a natural sentence,
acts as the hypothesis. Then a true (resp. false)
hypothesis can be translated into a correct (resp.
incorrect) answer. We choose the QA benchmark

MCTest-500 (Richardson et al., 2013) which re-
leases an entailment-formatted corpus. MCTest-
500 is a set of 500 items (split into 300 train, 50 dev
and 150 test). Each item consists of a document,
four questions followed by one correct answer, and
three incorrect answers.

Deep learning has not achieved significant suc-
cess on it because of the limited training data
(Trischler et al., 2016)—this is exactly our mo-
tivation that applying few-shot textual entailment
to handle annotation-scarce NLP problems.

For MCTest benchmark, we treat one question as
one example. K-shot means we randomly sample
k annotated questions (each corresponds to a short
article and has four answer candidates). We obtain
k entailment pairs for the class “entailment” and 3k
pairs for the class “non-entailment”. The official
evaluation metrics in MCTest include accuracy and
NDCG4. Here, we report accuracy.

Coreference Resolution. Coreference resolu-
tion aims to cluster the entities and pronouns that

8236

refer to the same object. This is a challenging task
in NLP, and greatly influences the capability of
machines in understanding the text.

We test on the coreference resolution benchmark
GAP (Webster et al., 2018), a human-labeled cor-
pus from Wikipedia for recognizing ambiguous
pronoun-name coreference. An example from the
GAP dataset is shown here:

“McFerran’s horse farm was named Glen View.
After his death in 1885, John E. Green acquired
the farm.”

For a specific pronoun in the sentence, GAP
provides two entity candidates for it to link. To
correctly understand the meaning of this sentence,
a machine must know which person (“McFerran”
or “John E. Green”) the pronoun “his” refers to.
GAP has such kind of annotated examples of sizes
split as 2k/454/2k in train/dev/test. Please note
that some examples have both entity candidates as
negative (201 in train, 62 in dev and 227 in testing).

In this work, we transform the coreference res-
olution problem into an entailment problem by re-
placing the pronoun with each entity candidate. For
example, the above example will lead to the follow-
ing two hypotheses:

“McFerran’s horse farm was named Glen View.
After McFerran’s death in 1885, John E. Green
acquired the farm.” [“entailment”]

“McFerran’s horse farm was named Glen View.
After John E. Green’s death in 1885, John E.
Green acquired the farm.” [“non-entailment”]

It is worth mentioning that we append a “’s” to
the person entity string if the pronoun is one of
{“his”, “His”, “her”, “Her”}. Otherwise, using the
entity string to replace the pronoun directly. Each
replacement will yield a hypothesis—the problem
ends up being predicting whether this hypothesis
is correct or not, given the original sentence.

We randomly choose k examples from train to
learn the entailment system; each example will pro-
duce two labeled entailment pairs. The GAP bench-
mark evaluates the F1 score by gender (masculine
and feminine) and the overall F1 by combining the
two gender-aware F1 scores. We use the official
evaluation script and report the overall F1.

4.3 Results and Analyses

Table 1 lists the numbers in k-shot settings (k =
{1, 3, 5, 10}) and the full-shot competitor which
uses the full labeled data of T . To start, the “0-
shot” setting, compared with the “majority or ran-

dom” baseline, indicates that using MNLI as train-
ing set and test on various target T has already
shown some transferability; but this is far behind
the SOTA. We are further interested in three main
comparisons:

• Comparing UFO-ENTAIL with the typical
metric-based meta learning approach: prototypical
networks. Interestingly, prototypical network is
worse than STILTS on the two entailment bench-
marks while mostly outperforming STILTS slightly
on QA and coreference tasks. Our system UFO-
ENTAIL consistently surpasses it with big margins.
Prototypical network is essentially a nearest neigh-
bor algorithm (Yin, 2020) pretrained on S only. A
testing example in T searches for its prediction by
comparing with the T -specific class representations
constructed by the k examples. A pretrained near-
est neighbor algorithm does not necessarily work
well if S and T are too distinct.

• Comparing UFO-ENTAIL with the SOTA
technique STILTs in k-shot settings. Our algorithm
outperforms the STILTs across all the tasks. Note
that STILTs trains on S and the k examples of
T sequentially. What STILTS does is to adapt
the pretrained space to the target space, guided by
k examples. In contrast, UFO-ENTAIL unifies
the RoBERTa encoder and the nearest neighbor
algorithm by building cross-task class prototypical
representations, then tries to train an unified space
on S and T .

• Comparing UFO-ENTAIL in k-shot settings
with the full-shot settings. “Full-shot” has two
systems: one pretrains on S then fine-tunes on T ,
the other fine-tune on T directly. Generally, we
notice that pretraining on S can finally promote the
performance (e.g., in RTE and QA) or get similar
numbers (e.g., in SciTail and Coreference tasks).
Our system by 10-shot even beats the “full-shot,
train on target data” with 5.3% in RTE and is very
close to the SOTA number by “full-shot STILTS”
(85.28 vs. 86.26). In other three tasks (SciTail,
QA, Coref.), although UFO-ENTAIL by 10-shot
hasn’t shown better performance than any full-shot
settings, its big improvements over other 10-shot
baselines across all the tasks (∼4% in SciTail,∼6%
in QA and >4% in coreference) demonstrate its
superiority of handling open NLP problems in few-
shot scenarios.

Please keep in mind that the UFO-ENTAIL sys-
tem for all the reported NLP tasks originated from
the same entailment classifier pretrained on MNLI.

8237

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of training data

50

55

60

65

70

75

80

85

90
Ov

er
al

l F
1

(%
)

(pronoun, entity) classify
entailment approach

Figure 4: Comparing “entailment” approach with non-
entailment approach (i.e., classify (pronoun, entity)
pairs in RoBERTa) in coreference’s benchmark GAP
when using different percentages of training data.

Our experiments indicate: to deal with any open
NLP tasks, instead of building large-scale datasets
for them separately and let models to fit each of
them, it is promising to employ a single entailment
system which can generalize well with only a few
annotated examples per task.

4.4 Reformulating NLP problems as textual
entailment: better or worse?

In Table 1, we reported performance of dealing
with open entailment and NLP tasks by entailment
approach always. We may have another question:
for any NLP task, is that better to reformulate it as
textual entailment? In this subsection, we compare
textual entailment with other popular systems in
modeling the coreference task which usually is not
modeled in an entailment framework.

To be specific, we feed each instance in the GAP
dataset into RoBERTa which will generate a rep-
resentation for each token in the instance. To ob-
tain representations for the pronoun and an entity
candidate, we sum up the representations of all to-
kens belonging to the pronoun or the entity string.
RoBERTa is able to provide the pronoun/entity rep-
resentations with context in the sentence. Finally,
we do binary classification for each (pronoun, en-
tity) pair. We compare this system with the entail-
ment approach (i.e., “train on target data”) when
using different sizes of training set: [10%, 20%,
· · · , 100%]. To keep a fair comparison, both sys-
tems do not pretrain on any other tasks. The result
for each percentage is the average of three runs
with different seeds.

Figure 4 demonstrates interesting findings: (i)

When using all the GAP training data, both en-
tailment and the (pronoun, entity) classification
system reach pretty similar results; (ii) When the
training size is below 30%, the non-entailment ap-
proach shows better performance. However, the
entailment system converges much earlier than the
competing system — starting with 40% training
data, it can get performance almost as good as us-
ing 100% data.

This coreference example shows that transform-
ing an NLP task as textual entailment may obtain
surprising advantages. There are more NLP tasks
that can fit the entailment framework easily, such as
text classification (Yin et al., 2019), relation extrac-
tion, summarization, etc. However, we also need
to admit that reformulating into entailment may
also need to fight against new challenges. Taking
text classification as an example, how to convert
classification labels into hypotheses influences the
results a lot. In addition, the hypothesis generation
from some NLP tasks may require human efforts
to guarantee the quality.

5 Summary

In this work, we studied how to build a textual
entailment system that can work in open domains
given only a couple of examples, and studied the
common patterns in a variety of NLP tasks in which
textual entailment can be used as a unified solver.
Our goal is to push forward the research and prac-
tical use of textual entailment in a broader vision
of natural language processing. To that end, we
proposed utilizing MNLI, the largest entailment
dataset, and a few examples from the new domain
or new task to build an entailment system via cross-
task nearest neighbor. The final entailment system
UFO-ENTAIL generalizes well to open domain
entailment benchmarks and downstream NLP tasks
including question answering and coreference res-
olution.

Our work demonstrates an example that explor-
ing the uniform pattern behind various NLP prob-
lems, enabling us to understand the common rea-
soning process and create potential for machines
to learn across tasks and make easy use of indirect
supervision.

Acknowledgments

The authors would like to thank the anonymous
reviewers for insightful comments and suggestions.

8238

References
Trapit Bansal, Rishikesh Jha, and Andrew McCal-

lum. 2019. Learning to few-shot learn across di-
verse natural language classification tasks. CoRR,
1911.03863.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP, pages 632–642.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceed-
ings of NAACL-HLT, pages 2924–2936.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges, Eval-
uating Predictive Uncertainty, Visual Object Classi-
fication and Recognizing Textual Entailment, First
PASCAL Machine Learning Challenges Workshop,
pages 177–190.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In ACL, pages 256–263.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. 2018. Annotation artifacts in natural
language inference data. In NAACL, pages 107–112.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. 2018. FewRel:
A large-scale supervised few-shot relation classifi-
cation dataset with state-of-the-art evaluation. In
EMNLP, pages 4803–4809.

Bingyi Kang and Jiashi Feng. 2018. Transferable meta
learning across domains. In UAI, pages 177–187.

Nitish Shirish Keskar, Bryan McCann, Caiming Xiong,
and Richard Socher. 2019. Unifying question an-
swering and text classification via span extraction.
CoRR, abs/1904.09286.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
SciTaiL: A textual entailment dataset from science
question answering. In AAAI, pages 5189–5197.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdi-
nov. 2015. Siamese neural networks for one-shot im-
age recognition. In ICML deep learning workshop,
volume 2.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language de-
cathlon: Multitask learning as question answering.
CoRR, abs/1806.08730.

Timothy A. Miller. 2019. Simplified neural unsuper-
vised domain adaptation. In NAACL-HLT, pages
414–419.

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. CoRR,
abs/1811.01088.

Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Ed-
ward Hu, Ellie Pavlick, Aaron Steven White, and
Benjamin Van Durme. 2018. Collecting diverse nat-
ural language inference problems for sentence repre-
sentation evaluation. In EMNLP, pages 67–81.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake
Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo
Larochelle, and Richard S. Zemel. 2018. Meta-
learning for semi-supervised few-shot classification.
In ICLR.

Matthew Richardson, Christopher J. C. Burges, and
Erin Renshaw. 2013. Mctest: A challenge dataset
for the open-domain machine comprehension of text.
In EMNLP, pages 193–203.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomás Kociský, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
In ICLR.

Cı́cero Nogueira dos Santos, Ming Tan, Bing Xiang,
and Bowen Zhou. 2016. Attentive pooling networks.
CoRR, abs/1602.03609.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le
Bras, and Yejin Choi. 2019. Social iqa: Common-
sense reasoning about social interactions. In Pro-
ceedings of EMNLP-IJCNLP, pages 4462–4472.

Jake Snell, Kevin Swersky, and Richard S. Zemel.
2017. Prototypical networks for few-shot learning.
In NeurIPS, pages 4077–4087.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,
Philip H. S. Torr, and Timothy M. Hospedales. 2018.
Learning to compare: Relation network for few-shot
learning. In CVPR, pages 1199–1208.

Adam Trischler, Zheng Ye, Xingdi Yuan, Jing He,
and Philip Bachman. 2016. A parallel-hierarchical
model for machine comprehension on sparse data.
In ACL.

8239

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray
Kavukcuoglu, and Daan Wierstra. 2016. Matching
networks for one shot learning. In NeurIPS, pages
3630–3638.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.

Shuohang Wang and Jing Jiang. 2016. Learning nat-
ural language inference with LSTM. In NAACL,
pages 1442–1451.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. In IJCAI, pages 4144–4150.

Kellie Webster, Marta Recasens, Vera Axelrod, and Ja-
son Baldridge. 2018. Mind the GAP: A balanced
corpus of gendered ambiguous pronouns. TACL,
6:605–617.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL-HLT, pages 1112–1122.

Wenpeng Yin. 2020. Meta-learning for few-shot
natural language processing: A survey. CoRR,
abs/2007.09604.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019.
Benchmarking zero-shot text classification:
Datasets, evaluation and entailment approach.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
3905–3914.

Wenpeng Yin and Hinrich Schütze. 2018. Attentive
convolution: Equipping cnns with rnn-style atten-
tion mechanisms. TACL, 6:687–702.

Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni
Potdar, Yu Cheng, Gerald Tesauro, Haoyu Wang,
and Bowen Zhou. 2018. Diverse few-shot text clas-
sification with multiple metrics. In NAACL-HLT,
pages 1206–1215.

