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Abstract

The underlying difference of linguistic pat-
terns between general text and task-oriented
dialogue makes existing pre-trained language
models less useful in practice. In this work,
we unify nine human-human and multi-turn
task-oriented dialogue datasets for language
modeling. To better model dialogue behav-
ior during pre-training, we incorporate user
and system tokens into the masked language
modeling. We propose a contrastive objec-
tive function to simulate the response selec-
tion task. Our pre-trained task-oriented dia-
logue BERT (TOD-BERT) outperforms strong
baselines like BERT on four downstream task-
oriented dialogue applications, including in-
tention recognition, dialogue state tracking, di-
alogue act prediction, and response selection.
We also show that TOD-BERT has a stronger
few-shot ability that can mitigate the data
scarcity problem for task-oriented dialogue.

1 Introduction

Pre-trained models with self-attention encoder ar-
chitectures (Devlin et al., 2018; Liu et al., 2019)
have been commonly used in many NLP appli-
cations. Such models are self-supervised based
on a massive scale of general text corpora, such
as English Wikipedia or books (Zhu et al., 2015).
By further fine-tuning these representations, break-
throughs have been continuously reported for vari-
ous downstream tasks, especially natural language
understanding.

However, previous work (Rashkin et al., 2018;
Wolf et al., 2019) shows that there are some defi-
ciencies in the performance to apply fine-tuning
on conversational corpora directly. One possible
reason could be the intrinsic difference of linguistic
patterns between human conversations and writing
text, resulting in a large gap of data distributions
(Bao et al., 2019). Therefore, pre-training dialogue

language models using chit-chat corpora from so-
cial media, such as Twitter or Reddit, has been
recently investigated, especially for dialogue re-
sponse generation (Zhang et al., 2019) and retrieval
(Henderson et al., 2019b). Although these open-
domain dialogues are diverse and easy-to-get, they
are usually short, noisy, and without specific chat-
ting goals.

On the other hand, a task-oriented dialogue
has explicit goals (e.g. restaurant reservation or
ticket booking) and many conversational interac-
tions. But each dataset is usually small and scat-
tered because obtaining and labeling such data is
time-consuming. Moreover, a task-oriented dia-
logue has explicit user and system behaviors where
a user has his/her goal, and a system has its be-
lief and database information, which makes the
language understanding component and dialogue
policy learning more important than those chit-chat
scenarios.

This paper aims to prove this hypothesis: self-
supervised language model pre-training using task-
oriented corpora can learn better representations
than existing pre-trained models for task-oriented
downstream tasks. We emphasize that what we care
about the most is not whether our pre-trained model
can achieve state-of-the-art results on each down-
stream task since most of the current best models
are built on top of pre-trained models, and ours can
easily replace them. We avoid adding too many
additional components on top of the pre-training
architecture when fine-tuning in our experiments.

We collect and combine nine human-human and
multi-turn task-oriented dialogue corpora to train
a task-oriented dialogue BERT (TOD-BERT). In
total, there are around 100k dialogues with 1.4M
utterances across over 60 different domains. Like
BERT (Devlin et al., 2018), TOD-BERT is formu-
lated as a masked language model and uses a deep
bidirectional Transformer (Vaswani et al., 2017)
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encoder as its model architecture. Unlike BERT,
TOD-BERT incorporates two special tokens for
user and system to model the corresponding dia-
logue behavior. A contrastive objective function
of response selection task is combined during pre-
training stage to capture response similarity. We
select BERT because it is the most widely used
model in NLP research recently, and our unified
datasets can be easily applied to pre-train any ex-
isting language models.

We test TOD-BERT on task-oriented dialogue
systems on four core downstream tasks, including
intention recognition, dialogue state tracking, dia-
logue act prediction, and response selection. What
we observe is: TOD-BERT outperforms BERT
and other strong baselines such as GPT-2 (Radford
et al., 2019) and DialoGPT (Zhang et al., 2019) on
all the selected downstream tasks, which further
confirms its effectiveness for improving dialogue
language understanding. We find that response
contrastive learning is beneficial, but it is currently
overlooked not well-investigated in dialogue pre-
training research. More importantly, TOD-BERT
has a stronger few-shot ability than BERT on each
task, suggesting that it can reduce the need for
expensive human-annotated labels. TOD-BERT
can be easily leveraged and adapted to a new task-
oriented dialogue dataset. Our source code and data
processing are released to facilitate future research
on pre-training and fine-tuning of task-oriented di-
alogue 1.

2 Related Work

General Pre-trained Language Models, which
are trained on massive general text such as
Wikipedia and BookCorpus, can be roughly di-
vided into two categories: uni-directional or bi-
directional attention mechanisms. GPT (Radford
et al., 2018) and GPT-2 (Radford et al., 2019) are
representatives of uni-directional language models
using a Transformer decoder, where the objective
is to maximize left-to-right generation likelihood.
These models are commonly applied in natural lan-
guage generation tasks. On the other hand, BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019),
and their variances are pre-trained using a Trans-
former encoder with bi-directional token prediction.
These models are usually evaluated on classifica-
tion tasks such as GLUE benchmark (Wang et al.,
2018) or span-based question answering tasks (Ra-

1github.com/jasonwu0731/ToD-BERT

jpurkar et al., 2016).

Some language models can support both uni-
directional and bi-directional attention, such as
UniLM (Dong et al., 2019). Conditional language
model pre-training is also proposed. For exam-
ple, CTRL (Keskar et al., 2019) is a conditional
Transformer model, trained to condition on control
codes that govern style, content, and task-specific
behavior. Recently, multi-task language model pre-
training with unified sequence-to-sequence gener-
ation is proposed. Text-to-text Transformer (T5)
(Raffel et al., 2019) unifies multiple text modeling
tasks and achieves the promising results in various
NLP benchmarks.

Dialogue Pre-trained Language Models are
mostly trained on open-domain conversational data
from Reddit or Twitter for dialogue response gener-
ation. Transfertransfo (Wolf et al., 2019) achieves
good performance on ConvAI-2 dialogue competi-
tion using GPT-2. DialoGPT (Zhang et al., 2019) is
an extension of GPT-2 that is pre-trained on Reddit
data for open-domain response generation. Con-
veRT (Henderson et al., 2019a) pre-trained a dual
transformer encoder for response selection task on
large-scale Reddit (input, response) pairs. PLATO
(Bao et al., 2019) uses both Twitter and Reddit data
to pre-trained a dialogue generation model with
discrete latent variables. All of them are designed
to cope with the response generation task for open-
domain chatbots.

Pretraining for task-oriented dialogues, on the
other hand, has few related works. Budzianowski
and Vulić (2019) first apply the GPT-2 model to
train on response generation task, which takes sys-
tem belief, database result, and last dialogue turn
as input to predict next system responses. It only
uses one dataset to train its model because few pub-
lic datasets have database information available.
Henderson et al. (2019b) pre-trained a response
selection model for task-oriented dialogues. They
first pre-train on Reddit corpora and then fine-tune
on target dialogue domains, but their training and
fine-tuning code is not released. Peng et al. (2020)
focus on the natural language generation (NLG)
task, which assumes dialogue acts and slot-tagging
results are given to generate a natural language re-
sponse. Pre-training on a set of annotated NLG
corpora can improve conditional generation quality
using a GPT-2 model.

github.com/jasonwu0731/ToD-BERT
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Name # Dialogue # Utterance Avg. Turn # Domain
MetaLWOZ (Lee et al., 2019) 37,884 432,036 11.4 47
Schema (Rastogi et al., 2019) 22,825 463,284 20.3 17

Taskmaster (Byrne et al., 2019) 13,215 303,066 22.9 6
MWOZ (Budzianowski et al., 2018) 10,420 71,410 6.9 7

MSR-E2E (Li et al., 2018) 10,087 74,686 7.4 3
SMD (Eric and Manning, 2017) 3,031 15,928 5.3 3

Frames (Asri et al., 2017) 1,369 19,986 14.6 3
WOZ (Mrkšić et al., 2016) 1,200 5,012 4.2 1

CamRest676 (Wen et al., 2016) 676 2,744 4.1 1

Table 1: Data statistics for task-oriented dialogue datasets.

3 Method

This section discusses each dataset used in our task-
oriented pre-training and how we process the data.
Then we introduce the selected pre-training base
model and its objective functions.

3.1 Datasets

We collect nine different task-oriented datasets
which are English, human-human and multi-turn.
In total, there are 100,707 dialogues, which con-
tain 1,388,152 utterances over 60 domains. Dataset
statistics is shown in Table 1.

• MetaLWOZ (Lee et al., 2019): Meta-Learning
Wizard-of-Oz is a dataset designed to help de-
velop models capable of predicting user re-
sponses in unseen domains. This large dataset
was created by crowdsourcing 37,884 goal-
oriented dialogs, covering 227 tasks in 47 do-
mains. The MetaLWOZ dataset is used as the
fast adaptation task for DSTC8 (Kim et al., 2019)
dialogue competition.

• Schema (Rastogi et al., 2019): Schema-guided
dialogue has 22,825 dialogues and provides a
challenging testbed for several tasks, in partic-
ular, dialogue state tracking. Each schema is
a set of tracking slots, and each domain could
have multiple possible schemas. This allows
a single dialogue system to support many ser-
vices and facilitates the simple integration of
new services without requiring much training
data. The Schema dataset is used as the dialogue
state tracking task for DSTC8 (Kim et al., 2019)
dialogue competition.

• Taskmaster (Byrne et al., 2019): This dataset
includes 13,215 dialogues comprising six do-

mains, including 5,507 spoken and 7,708 writ-
ten dialogs created with two distinct procedures.
One is a two-person Wizard of Oz approach that
one person acts like a robot, and the other is a
self-dialogue approach in which crowdsourced
workers wrote the entire dialog themselves. It
has 22.9 average conversational turns in a single
dialogue, which is the longest among all task-
oriented datasets listed.

• MWOZ (Budzianowski et al., 2018): Multi-
Domain Wizard-of-Oz dataset contains 10,420
dialogues over seven domains, and it has multi-
ple domains in a single dialogue. It has a detailed
description of the data collection procedure, user
goal, system act, and dialogue state labels. Dif-
ferent from most of the existing corpora, it also
provides full database information.

• MSR-E2E (Li et al., 2018): Microsoft end-to-
end dialogue challenge has 10,087 dialogues in
three domains, movie-ticket booking, restaurant
reservation, and taxi booking. It also includes an
experiment platform with built-in simulators in
each domain.

• SMD (Eric and Manning, 2017): Stanford multi-
domain dialogue is an in-car personal assistant
dataset, comprising 3,301 dialogues and three
domains: calendar scheduling, weather informa-
tion retrieval, and point-of-interest navigation.
It is designed to smoothly interface with knowl-
edge bases, where a knowledge snippet is at-
tached with each dialogue as a piece of simpli-
fied database information.

• Frames (Asri et al., 2017): This dataset com-
prises 1,369 human-human dialogues with an
average of 14.6 turns per dialogue, where users
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are given some constraints to book a trip and as-
sistants who search a database to find appropriate
trips. Unlike other datasets, it has labels to keep
track of different semantic frames, which is the
decision-making behavior of users throughout
each dialogue.

• WOZ (Mrkšić et al., 2016) and Cam-
Rest676 (Wen et al., 2016): These two corpora
use the same data collection procedure and same
ontology from DSTC2 (Henderson et al., 2014).
They are one of the first task-oriented dialogue
datasets that use Wizard of Oz style with text in-
put instead of speech input, which improves the
model’s capacity for the semantic understand-
ing instead of its robustness to automatic speech
recognition errors.

3.2 TOD-BERT

We train our TOD-BERT based on BERT archi-
tecture using two loss functions: masked language
modeling (MLM) loss and response contrastive
loss (RCL). Note that the datasets we used can
be used to pre-train any existing language model
architecture, and here we select BERT because it
is the most widely used model in NLP research.
We use the BERT-base uncased model, which is a
transformer self-attention encoder (Vaswani et al.,
2017) with 12 layers and 12 attention heads with
its hidden size dB = 768.

To capture speaker information and the under-
lying interaction behavior in dialogue, we add
two special tokens, [USR] and [SYS], to the byte-
pair embeddings (Mrkšić et al., 2016). We prefix
the special token to each user utterance and sys-
tem response, and concatenate all the utterances
in the same dialogue into one flat sequence, as
shown in Figure 1. For example, for a dialogue
D = {S1, U1, . . . , Sn, Un}, where n is the num-
ber of dialogue turns and each Si or Ui contains
a sequence of words, the input of the pre-training
model is processed as “[SYS] S1 [USR] U1 . . . ”
with standard positional embeddings and segmen-
tation embeddings.

Masked language modeling is a common pre-
training strategy for BERT-like architectures, in
which a random sample of tokens in the input se-
quence is selected and replaced with the special to-
ken [MASK]. The MLM loss function is the cross-
entropy loss on predicting the masked tokens. In
the original implementation, random masking and

replacement are performed once in the beginning
and saved for the training duration. Here we con-
duct token masking dynamically during batch train-
ing. TOD-BERT is initialized from BERT, a good
starting parameter set, then is further pre-trained
on those task-oriented corpora. The MLM loss
function is

Lmlm = −
∑M

m=1 logP (xm), (1)

where M is the total number of masked tokens and
P (xm) is the predicted probability of the token xm
over the vocabulary size.

Response contrastive loss can also be used for
dialogue language modeling since it does not
require any additional human annotation. Pre-
training with RCL can bring us several advantages:
1) we can learn a better representation for the [CLS]
token, as it is essential for all the downstream tasks,
and 2) we encourage the model to capture under-
lying dialogue sequential order, structure informa-
tion, and response similarity.

Unlike the original next sentence prediction
(NSP) objective in BERT pre-training, which con-
catenates two segments A and B to predict whether
they are consecutive text with binary classifica-
tion, we apply a dual-encoder approach (Hender-
son et al., 2019a) and simulate multiple nega-
tive samples. We first draw a batch of dialogues
{D1, . . . , Db} and split each dialogue at a ran-
domly selected turn t. For example, D1 will be
separated into two segments, one is the context
{S1

1 , U
1
1 , . . . , S

1
t , U

1
t } and the other is the response

{S1
t+1}. We use TOD-BERT to encode all the con-

texts and their corresponding responses separately.
Afterwards, we have a context matrix C ∈

Rb×dB and a response matrix R ∈ Rb×dB by tak-
ing the output [CLS] representations from the b
dialogues. We treat other responses in the same
batch as randomly selected negative samples. The
RCL objective function is

Lrcl = −
b∑

i=1
logMi,i,

M = Softmax(CRT ) ∈ Rb×b.

(2)

Increasing batch size to a certain amount can ob-
tain better performance on downstream tasks, es-
pecially for the response selection. The Softmax
function normalizes the vector per row. In our set-
ting, increasing batch size also means changing the
positive and negative ratio in the contrastive learn-
ing. Batch size is a hyper-parameter that may be
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Figure 1: Dialogue pre-training based on Transformer
encoder with user and system special tokens. Two ob-
jective functions are used: masked language modeling
and response contrastive learning.

limited by hardware. We also try different nega-
tive sampling strategies during pre-training such
as local sampling (Saeidi et al., 2017), but do not
observe significant change compared to random
sampling.

Overall pre-training loss function is the
weighted-sum of Lmlm and Lrcl, and in our exper-
iments, we simply sum them up. We gradually
reduce the learning rate without a warm-up period.
We train TOD-BERT with AdamW (Loshchilov
and Hutter, 2017) optimizer with a dropout ratio
of 0.1 on all layers and attention weights. GELU
activation functions (Hendrycks and Gimpel,
2016) is used. Models are early-stopped using
perplexity scores of a held-out development set,
with mini-batches containing 32 sequences of
maximum length 512 tokens. Experiments are
conducted on two NVIDIA Tesla V100 GPUs.

4 Downstream Tasks

We care the most in this paper whether TOD-BERT,
a pre-trained language model using aggregated task-
oriented corpora, can show any advantage over
BERT. Therefore, we avoid adding too many addi-
tional components on top of its architecture when
fine-tuning on each downstream task. Also, we
use the same architecture with a similar number of
parameters for a fair comparison. All the model
parameters are updated with a gradient clipping to
1.0 using the same hyper-parameters during fine-
tuning. We select four crucial task-oriented down-
stream tasks to evaluate: intent recognition, dia-
logue state tracking, dialogue act prediction, and
response selection. All of them are core compo-
nents in modularized task-oriented systems (Wen
et al., 2016).

Intent recognition task is a multi-class classifi-
cation problem, where we input a sentence U and

models predict one single intent class over I possi-
ble intents.

Pint = Softmax(W1(F (U))) ∈ RI , (3)

where F is a pre-trained language model and we
use its [CLS] embeddings as the output represen-
tation. W1 ∈ RI×dB is a trainable linear mapping.
The model is trained with cross-entropy loss be-
tween the predicted distributions Pint and the true
intent labels.

Dialogue state tracking can be treated as a
multi-class classification problem using a prede-
fined ontology. Unlike intent, we use dialogue
history X (a sequence of utterances) as input and a
model predicts slot values for each (domain, slot)
pair at each dialogue turn. Each corresponding
value vji , the i-th value for the j-th (domain, slot)
pair, is passed into a pre-trained model and fixed
its representation during training.

Sj
i = Sim(Gj(F (X)), F (vji )) ∈ R1, (4)

where Sim is the cosine similarity function, and
Sj ∈ R|vj | is the probability distribution of the
j-th (domain, slot) pair over its possible values.
Gj is the slot projection layer of the j slot, and
the number of layers |G| is equal to the number
of (domain, slot) pairs. The model is trained with
cross-entropy loss summed over all the pairs.

Dialogue act prediction is a multi-label classi-
fication problem because a system response may
contain multiple dialogue acts, e.g., request and
inform at the same time. Model take dialogue his-
tory as input and predict a binary result for each
possible dialogue act:

A = Sigmoid(W2(F (X))) ∈ RN , (5)

where W2 ∈ RdB×N is a trainable linear mapping,
N is the number of possible dialogue acts, and each
value in A is between [0, 1] after a Sigmoid layer.
The model is trained with binary cross-entropy loss
and the i-th dialogue act is considered as a triggered
dialogue act if Ai > 0.5.

Response selection is a ranking problem, aiming
to retrieve the most relative system response from
a candidate pool. We use a dual-encoder strategy
(Henderson et al., 2019b) and compute similarity
scores between source X and target Y ,

ri = Sim(F (X), F (Yi)) ∈ R1, (6)
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where Yi is the i-th response candidate and ri is its
cosine similarity score. Source X can be truncated,
and we limit the context lengths to the most recent
256 tokens in our experiments. We randomly sam-
ple several system responses from the corpus as
negative samples. Although it may not be a true
negative sample, it is common to train a ranker and
evaluate its results (Henderson et al., 2019a).

5 Evaluation Datasets

We pick up several datasets, OOS, DSTC2, GSIM,
and MWOZ, for downstream evaluation. The first
three corpora are not included in the pre-trained
task-oriented datasets. For MWOZ, to be fair, we
do not include its test set dialogues during the pre-
training stage. Details of each evaluation dataset
are discussed in the following:

• OOS (Larson et al., 2019): The out-of-scope in-
tent dataset is one of the largest annotated intent
datasets, including 15,100/3,100/5,500 samples
for the train, validation, and test sets, respec-
tively. It covers 151 intent classes over ten do-
mains, including 150 in-scope intent and one out-
of-scope intent. The out-of-scope intent means
that a user utterance that does not fall into any
of the predefined intents. Each of the intents has
100 training samples.

• DSTC2 (Henderson et al., 2014): DSTC2 is a
human-machine task-oriented dataset that may
include a certain system response noise. It has
1,612/506/1117 dialogues for train, validation,
and test sets, respectively. We follow Paul et al.
(2019) to map the original dialogue act labels
to universal dialogue acts, which results in 9
different system dialogue acts.

• GSIM (Shah et al., 2018a): GSIM is a human-
rewrote machine-machine task-oriented corpus,
including 1500/469/1039 dialogues for the train,
validation, and test sets, respectively. We com-
bine its two domains, movie and restaurant do-
mains, into one single corpus. It is collected by
Machines Talking To Machines (M2M) (Shah
et al., 2018b) approach, a functionality-driven
process combining a dialogue self-play step and
a crowdsourcing step. We map its dialogue act la-
bels to universal dialogue acts (Paul et al., 2019),
resulting in 6 different system dialogue acts.

• MWOZ (Budzianowski et al., 2018): MWOZ is
the most common benchmark for task-oriented

dialogues, especially for dialogue state tracking.
It has 8420/1000/1000 dialogues for train, vali-
dation, and test sets, respectively. Across seven
different domains, in total, it has 30 (domain,
slot) pairs that need to be tracked in the test set.
We use its revised version MWOZ 2.1, which has
the same dialogue transcripts but with cleaner
state label annotation.

6 Results

For each downstream task, we first conduct the
experiments using the whole dataset, and then we
simulate the few-shot setting to show the strength
of our TOD-BERT. We run at least three times with
different random seeds for each few-shot exper-
iment to reduce data sampling variance, and we
report its mean and standard deviation for these
limited data scenarios. We investigate two ver-
sions of TOD-BERT; one is TOD-BERT-mlm that
only uses MLM loss during pre-training, and the
other is TOD-BERT-jnt, which is jointly trained
with the MLM and RCL objectives. We compare
TOD-BERT with BERT and other baselines, in-
cluding two other strong pre-training models GPT-
2 (Radford et al., 2019) and DialoGPT (Zhang et al.,
2019). For a GPT-based model, we use mean pool-
ing of its hidden states as its output representation,
which we found it is better than using only the last
token.

6.1 Linear Probe

Before fine-tuning each pre-trained models, we first
investigate their feature extraction ability by prob-
ing their output representations. Probing methods
are proposed to determine what information is car-
ried intrinsically by the learned embeddings (Ten-
ney et al., 2019). We probe the output representa-
tion using one single-layer perceptron on top of a
“fixed” pre-trained language model and only fine-
tune that layer for a downstream task with the same
hyper-parameters. Table 3 shows the probing re-
sults of domain classification on MWOZ, intent
identification on OOS, and dialogue act prediction
on MWOZ. TOD-BERT-jnt achieves the highest
performance in this setting, suggesting its represen-
tation contains the most useful information.

6.2 Intent Recognition

TOD-BERT outperforms BERT and other strong
baselines in one of the largest intent recognition
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Model Acc
(all)

Acc
(in)

Acc
(out)

Recall
(out)

1-Shot BERT 29.3% ± 3.4% 35.7% ± 4.1% 81.3% ± 0.4% 0.4% ± 0.3%
TOD-BERT-mlm 38.9% ± 6.3% 47.4% ± 7.6% 81.6% ± 0.2% 0.5% ± 0.2%

TOD-BERT-jnt 42.5% ± 0.1% 52.0% ± 0.1% 81.7% ± 0.1% 0.1% ± 0.1%

10-Shot BERT 75.5% ± 1.1% 88.6% ± 1.1% 84.7% ± 0.3% 16.5% ± 1.7%
TOD-BERT-mlm 76.6% ± 0.8% 90.5% ± 1.2% 84.3% ± 0.2% 14.0% ± 1.3%

TOD-BERT-jnt 77.3% ± 0.5% 91.0% ± 0.5% 84.5% ± 0.4% 15.3% ± 2.1%

Full
(100-Shot)

FastText* - 89.0% - 9.7%
SVM* - 91.0% - 14.5%
CNN* - 91.2% - 18.9%
GPT2 83.0% 94.1% 87.7% 32.0%

DialoGPT 83.9% 95.5% 87.6% 32.1%
BERT 84.9% 95.8% 88.1% 35.6%

TOD-BERT-mlm 85.9% 96.1% 89.5% 46.3%
TOD-BERT-jnt 86.6% 96.2% 89.9% 43.6%

Table 2: Intent recognition results on the OOS dataset, one of the largest intent corpus. Models with * are reported
from Larson et al. (2019).

Domain
(acc)

Intent
(acc)

Dialogue Act
(F1-micro)

GPT2 63.5% 74.7% 85.7%
DialoGPT 63.0% 65.7% 84.2%

BERT 60.5% 71.1% 85.3%
TOD-BERT-mlm 63.9% 70.7% 83.5%

TOD-BERT-jnt 68.7% 77.8% 86.2%

Table 3: Probing results of different pre-trained lan-
guage models using a single-layer perceptron.

datasets, as shown in Table 2. We evaluate accu-
racy on all the data, the in-domain intents only, and
the out-of-scope intent only. Note that there are
two ways to predict out-of-scope intent, one is to
treat it as an additional class, and the other is to
set a threshold for prediction confidence. Here we
report the results of the first setting. TOD-BERT-
jnt achieves the highest in-scope and out-of-scope
accuracy. Besides, we conduct 1-shot and 10-shot
experiments by randomly sampling one and ten
utterances from each intent class in the training
set. TOD-BERT-jnt has 13.2% all-intent accuracy
improvement and 16.3% in-domain accuracy im-
provement compared to BERT in the 1-shot setting.

6.3 Dialogue State Tracking

Two evaluation metrics are commonly used in dia-
logue state tracking task: joint goal accuracy and
slot accuracy. The joint goal accuracy compares
the predicted dialogue states to the ground truth at
each dialogue turn. The ground truth includes slot
values for all the possible (domain, slot) pairs. The
output is considered as a correct prediction if and
only if all the predicted values exactly match its
ground truth values. On the other hand, the slot

accuracy individually compares each (domain, slot,
value) triplet to its ground truth label.

In Table 5, we compare BERT to TOD-BERT-
jnt on the MWOZ 2.1 dataset and find the latter
has 2.4% joint goal accuracy improvement. Since
the original ontology provided by Budzianowski
et al. (2018) is not complete (some labeled val-
ues are not included in the ontology), we create
a new ontology of all the possible annotated val-
ues. We also list several well-known dialogue state
trackers as reference, including DSTReader (Gao
et al., 2019), HyST (Goel et al., 2019), TRADE
(Wu et al., 2019), and ZSDST (Rastogi et al., 2019).
We also report the few-shot experiments using 1%,
5%, 10%, and 25% data. Note that 1% of data
has around 84 dialogues. TOD-BERT outperforms
BERT in all the setting, which further show the
strength of task-oriented dialogue pre-training.

6.4 Dialogue Act Prediction

We conduct experiments on three different datasets
and report micro-F1 and macro-F1 scores for the
dialogue act prediction task, a multi-label classifica-
tion problem. For the MWOZ dataset, we remove
the domain information from the original system
dialogue act labels. For example, the “taxi-inform”
will be simplified to “inform”. This process reduces
the number of possible dialogue acts from 31 to
13. For DSTC2 and GSIM corpora, we follow Paul
et al. (2019) to apply universal dialogue act map-
ping that maps the original dialogue act labels to
a general dialogue act format, resulting in 9 and 6
unique system dialogue acts in DSTC2 and GSIM,
respectively. We run two other baselines, MLP and
RNN, to further show the strengths of BERT-based
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MWOZ (13) DSTC2 (9) GSIM (6)
micro-F1 macro-F1 micro-F1 macro-F1 micro-F1 macro-F1

1% Data BERT 84.0% ± 0.6% 66.7% ± 1.7% 77.1% ± 2.1% 25.8% ± 0.8% 67.3% ± 1.4% 26.9% ± 1.0%
TOD-BERT-mlm 87.5% ± 0.6% 73.3% ± 1.5% 79.6% ± 1.0% 26.4% ± 0.5% 82.7% ± 0.7% 35.7% ± 0.3%

TOD-BERT-jnt 86.9% ± 0.2% 72.4% ± 0.8% 82.9% ± 0.4% 28.0% ± 0.1% 78.4% ± 3.2% 32.9% ± 2.1%

10% Data BERT 89.7% ± 0.2% 78.4% ± 0.3% 88.2% ± 0.7% 34.8% ± 1.3% 98.4% ± 0.3% 45.1% ± 0.2%
TOD-BERT-mlm 90.1% ± 0.2% 78.9% ± 0.1% 91.8% ± 1.7% 39.4% ± 1.7% 99.2% ± 0.1% 45.6% ± 0.1%

TOD-BERT-jnt 90.2% ± 0.2% 79.6% ± 0.7% 90.6% ± 3.2% 38.8% ± 2.2% 99.3% ± 0.1% 45.7% ± 0.0%

Full Data

MLP 61.6% 45.5% 77.6% 18.1% 89.5% 26.1%
RNN 90.4% 77.3% 90.8% 29.4% 98.4% 45.2%

GPT2 90.8% 79.8% 92.5% 39.4% 99.1% 45.6%
DialoGPT 91.2% 79.7% 93.8% 42.1% 99.2% 45.6%

BERT 91.4% 79.7% 92.3% 40.1% 98.7% 45.2%
TOD-BERT-mlm 91.7% 79.9% 90.9% 39.9% 99.4% 45.8%

TOD-BERT-jnt 91.7% 80.6% 93.8% 41.3% 99.5% 45.8%

Table 4: Dialogue act prediction results on three different datasets. The numbers reported are the micro and macro
F1 scores, and each dataset has different numbers of dialogue acts.

Model Joint
Acc

Slot
Acc

1% Data BERT 6.4% ± 1.4% 84.4% ± 1.0%
TOD-BERT-mlm 9.9% ± 0.6% 86.6% ± 0.5%

TOD-BERT-jnt 8.0% ± 1.0% 85.3% ± 0.4%

5% Data BERT 19.6% ± 0.1% 92.0% ± 0.5%
TOD-BERT-mlm 28.1% ± 1.6% 93.9% ± 0.1%

TOD-BERT-jnt 28.6% ± 1.4% 93.8% ± 0.3%

10% Data BERT 32.9% ± 0.6% 94.7% ± 0.1%
TOD-BERT-mlm 39.5% ± 0.7% 95.6% ± 0.1%

TOD-BERT-jnt 37.0% ± 0.1% 95.2% ± 0.1%

25% Data BERT 40.8% ± 1.0% 95.8% ± 0.1%
TOD-BERT-mlm 44.0% ± 0.4% 96.4% ± 0.1%

TOD-BERT-jnt 44.3% ± 0.3% 96.3% ± 0.2%

Full Data

DSTReader* 36.4% -
HyST* 38.1% -

ZSDST* 43.4% -
TRADE* 45.6% -

GPT2 46.2% 96.6%
DialoGPT 45.2% 96.5%

BERT 45.6% 96.6%
TOD-BERT-mlm 47.7% 96.8%

TOD-BERT-jnt 48.0% 96.9%

Table 5: Dialogue state tracking results on MWOZ 2.1.
We report joint goal accuracy and slot accuracy for the
full data setting and the simulated few-shot settings.

models. The MLP model simply takes bag-of-word
embeddings to make dialogue act prediction, and
the RNN model is a bi-directional GRU network.

In Table 4, one can observe that in full data
scenario, TOD-BERT consistently works better
than BERT and other baselines, no matter which
datasets or which evaluation metrics. In the few-
shot experiments, TOD-BERT-mlm outperforms
BERT by 3.5% micro-F1 and 6.6% macro-F1 on
MWOZ corpus in the 1% data scenario. We also
found that 10% of training data can achieve good
performance that is close to full data training.

(a) BERT (b) BERT

(c) TOD-BERT-mlm (d) TOD-BERT-mlm

(e) TOD-BERT-jnt (f) TOD-BERT-jnt

Figure 2: The tSNE visualization of BERT, TOD-
BERT-mlm and TOD-BERT-jnt representations of sys-
tem responses in the MWOZ test set. Different colors
in the left-hand column mean different domains, and in
the right-hand column represent different dialogue acts.

6.5 Response Selection

To evaluate response selection in task-oriented di-
alogues, we follow the k-to-100 accuracy, which
is becoming a research community standard (Yang
et al., 2018; Henderson et al., 2019a). The k-of-100
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MWOZ DSTC2 GSIM
1-to-100 3-to-100 1-to-100 3-to-100 1-to-100 3-to-100

1% Data BERT 7.8% ± 2.0% 20.5% ± 4.4% 3.7% ± 0.6% 9.6% ± 1.3% 4.0% ± 0.4% 10.3% ± 1.1%
TOD-BERT-mlm 13.0% ± 1.1% 34.6% ± 0.4% 12.5% ± 6.7% 24.9% ± 10.7% 7.2% ± 4.0% 15.4% ± 8.0%

TOD-BERT-jnt - - 37.5% ± 0.6% 55.9% ± 0.4% 12.5% ± 0.9% 26.8% ± 0.8%

10% Data BERT 20.9% ± 2.6% 45.4% ± 3.8% 8.9% ± 2.3% 21.4% ± 3.1% 9.8% ± 0.1% 24.4% ± 1.2%
TOD-BERT-mlm 22.3% ± 3.2% 48.7% ± 4.0% 19.0% ± 16.3% 33.8% ± 20.4% 11.2% ± 2.5% 26.0% ± 2.7%

TOD-BERT-jnt - - 49.7% ± 0.3% 66.6% ± 0.1% 23.0% ± 1.0% 42.6% ± 1.0%

Full Data

GPT2 47.5% 75.4% 53.7% 69.2% 39.1% 60.5%
DialoGPT 35.7% 64.1% 39.8% 57.1% 16.5% 39.5%

BERT 47.5% 75.5% 46.6% 62.1% 13.4% 32.9%
TOD-BERT-mlm 48.1% 74.3% 50.0% 65.1% 36.5% 60.1%

TOD-BERT-jnt 65.8% 87.0% 56.8% 70.6% 41.0% 65.4%

Table 6: Response selection evaluation results on three corpora for 1%, 10% and full data setting. We report
1-to-100 and 3-to-100 accuracy, which is similar to recall1 and recall@3 given 100 candidates.

metric is computed using a random batch of 100
examples so that responses from other examples in
the same batch can be used as random negative can-
didates. This allows us to be compute the metric
across many examples in batches efficiently. While
it is not guaranteed that the random negatives will
indeed be “true” negatives, the 1-of-100 metric still
provides a useful evaluation signal. During infer-
ence, we run five different random seeds to sample
batches and report the average results.

In Table 6, we conduct response selection ex-
periments on three datasets, MWOZ, DSTC2, and
GSIM. TOD-BERT-jnt achieves 65.8% 1-to-100
accuracy and 87.0% 3-to-100 accuracy on MWOZ,
which surpasses BERT by 18.3% and 11.5%, re-
spectively. The similar results are also consistently
observed in DSTC2 and GSIM datasets, and the
advantage of the TOD-BERT-jnt is more evident
in the few-shot scenario. We do not report TOD-
BERT-jnt for MWOZ few-shot setting because it
is not fair to compare them with others as the full
MWOZ training set is used for response contrastive
learning during pre-training stage. The response
selection results are sensitive to the training batch
size since the larger the batch size the harder the
prediction. In our experiments, we set batch size
equals to 25 for all the models.

7 Visualization

In Figure 2, we visualize the embeddings of BERT,
TOD-BERT-mlm, and TOD-BERT-jnt given the
same input from the MWOZ test set. Each sample
point is a system response representation, which is
passed through a pre-trained model and reduced its
high-dimension features to a two-dimension point
using the t-distributed stochastic neighbor embed-
ding (tSNE) for dimension reduction. Since we
know the true domain and dialogue act labels for

each utterance, we use different colors to repre-
sent different domains and dialogue acts. As one
can observe, TOD-BERT-jnt has more clear group
boundaries than TOD-BERT-mlm, and two of them
are better than BERT.

To analyze the results quantitatively, we run K-
means, a common unsupervised clustering algo-
rithms, on top of the output embeddings of BERT
and TOD-BERT. We set K for K-means equal to
10 and 20. After the clustering, we can assign
each utterance in the MWOZ test set to a predicted
class. We then compute the normalized mutual
information (NMI) between the clustering result
and the actual domain label for each utterance.
Here is what we observe: TOD-BERT consistently
achieves higher NMI scores than BERT. For K=10,
TOD-BERT has a 0.143 NMI score, and BERT
only has 0.094. For K=20, TOD-BERT achieves a
0.213 NMI score, while BERT has 0.109.

8 Conclusion

We propose task-oriented dialogue BERT (TOD-
BERT) trained on nine human-human and multi-
turn task-oriented datasets across over 60 domains.
TOD-BERT outperforms BERT on four dialogue
downstream tasks, including intention classifica-
tion, dialogue state tracking, dialogue act predic-
tion, and response selection. It also has a clear
advantage in the few-shot experiments when only
limited labeled data is available. TOD-BERT is
easy-to-deploy and will be open-sourced, allowing
the NLP research community to apply or fine-tune
any task-oriented conversational problem.
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Wen, Blaise Thomson, and Steve Young. 2016. Neu-
ral belief tracker: Data-driven dialogue state track-
ing. arXiv preprint arXiv:1606.03777.

Shachi Paul, Rahul Goel, and Dilek Hakkani-Tür.
2019. Towards universal dialogue act tag-
ging for task-oriented dialogues. arXiv preprint
arXiv:1907.03020.

https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.18653/v1/P19-1536
https://doi.org/10.18653/v1/P19-1536
https://www.microsoft.com/en-us/research/publication/multi-domain-task-completion-dialog-challenge/
https://www.microsoft.com/en-us/research/publication/multi-domain-task-completion-dialog-challenge/
https://www.microsoft.com/en-us/research/publication/microsoft-dialogue-challenge-building-end-to-end-task-completion-dialogue-systems/
https://www.microsoft.com/en-us/research/publication/microsoft-dialogue-challenge-building-end-to-end-task-completion-dialogue-systems/


927

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xi-
ujun Li, Jinchao Li, Michael Zeng, and Jian-
feng Gao. 2020. Few-shot natural language gen-
eration for task-oriented dialog. arXiv preprint
arXiv:2002.12328.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2018. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. arXiv preprint arXiv:1811.00207.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2019. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. arXiv preprint
arXiv:1909.05855.

Marzieh Saeidi, Ritwik Kulkarni, Theodosia Togia, and
Michele Sama. 2017. The effect of negative sam-
pling strategy on capturing semantic similarity in
document embeddings. In Proceedings of the 2nd
Workshop on Semantic Deep Learning (SemDeep-2),
pages 1–8.

Pararth Shah, Dilek Hakkani-Tur, Bing Liu, and
Gokhan Tur. 2018a. Bootstrapping a neural conver-
sational agent with dialogue self-play, crowdsourc-
ing and on-line reinforcement learning. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 3
(Industry Papers), pages 41–51.

Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Ab-
hinav Rastogi, Ankur Bapna, Neha Nayak, and
Larry Heck. 2018b. Building a conversational agent
overnight with dialogue self-play. arXiv preprint
arXiv:1801.04871.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R Bowman, Dipan-
jan Das, et al. 2019. What do you learn from
context? probing for sentence structure in con-
textualized word representations. arXiv preprint
arXiv:1905.06316.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2016. A network-
based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A
transfer learning approach for neural network
based conversational agents. arXiv preprint
arXiv:1901.08149.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state gener-
ator for task-oriented dialogue systems. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 808–819, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong,
Noah Constant, Petr Pilar, Heming Ge, Yun-Hsuan
Sung, Brian Strope, and Ray Kurzweil. 2018. Learn-
ing semantic textual similarity from conversations.
In Proceedings of The Third Workshop on Repre-
sentation Learning for NLP, pages 164–174, Mel-
bourne, Australia. Association for Computational
Linguistics.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2019. Dialogpt: Large-scale
generative pre-training for conversational response
generation. arXiv preprint arXiv:1911.00536.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE inter-
national conference on computer vision, pages 19–
27.

https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/W18-3022
https://doi.org/10.18653/v1/W18-3022


928

A Appendices

(a) BERT

(b) TOD-BERT-mlm

(c) TOD-BERT-jnt

Figure 3: The tSNE visualization of BERT and TOD-
BERT representations of system responses in MWOZ
test set. Different colors mean different domains.

(a) BERT

(b) TOD-BERT-mlm

(c) TOD-BERT-jnt

Figure 4: The tSNE visualization of BERT and TOD-
BERT representations of system responses in MWOZ
test set. Different colors mean different dialogue acts.
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(a) BERT

(b) TOD-BERT-mlm

(c) TOD-BERT-jnt

Figure 5: The tSNE visualization of BERT and TOD-
BERT representations of system responses in MWOZ
test set. Different colors mean different dialogue slots.


