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Abstract

We introduce a new keyphrase genera-
tion approach using Generative Adversar-
ial Networks (GANs). For a given doc-
ument, the generator produces a sequence
of keyphrases, and the discriminator distin-
guishes between human-curated and machine-
generated keyphrases. We evaluated this ap-
proach on standard benchmark datasets. We
observed that our model achieves state-of-the-
art performance in the generation of abstrac-
tive keyphrases and is comparable to the best
performing extractive techniques. Although
we achieve promising results using GANSs,
they are not significantly better than the state-
of-the-art generative models. To our knowl-
edge, this is one of the first works that use
GANSs for keyphrase generation. We present
a detailed analysis of our observations and ex-
pect that these findings would help other re-
searchers to further study the use of GANs for
the task of keyphrase generation.

1 Introduction

Keyphrases capture the most salient topics of a doc-
ument and are often indexed in databases to help
with search and information retrieval techniques.
Researchers tag their scientific publications with
high-quality keyphrases to ensure discoverability in
scientific repositories. Automatic identification of
keyphrases is of great interest to the scientific com-
munity as it helps to recommend relevant articles,
suggest missing citations to authors, identify po-
tential peer reviewers, and analyze research trends
(Augenstein et al., 2017).

Keyphrases could either be extractive (part of
the document) or abstractive (not part of the docu-
ment). Some prior works have referred to them
as present and absent keyphrases, respectively.
Keyphrase generation is the process of predicting
both extractive and abstractive keyphrases from

a given document. Most of the previous works
in keyphrase domain, including both supervised
and unsupervised techniques, primarily focus on
extractive keyphrases (Hasan and Ng, 2014; Ma-
hata et al., 2018; Sahrawat et al., 2020). Recent
studies Meng et al. (2017); Ye and Wang (2018);
Chan et al. (2019) have started to develop genera-
tive approaches that produce both abstractive and
extractive keyphrases from documents. Though
these studies have shown some promise, the results
suggest that there is great room for improvement.

Most of the supervised natural text generation
approaches use Maximum Likelihood Estimation
(MLE) objective (Lu et al., 2018). However, MLE
techniques have often been observed not to be gen-
erating satisfactory text because of exposure bias
(Lu et al., 2018). Generative approaches based
on Reinforcement Learning (RL) or adversarial
training have been shown to address some of the
challenges of exposure bias. One such example
is the success in the field of summary generation
using GANs (Wang and Lee, 2018). Driven by
these developments, we posit that, as with sum-
marization, keyphrase generation can also benefit
from the use of GANSs. To pursue this hypothesis,
in this paper, we propose a new GAN architecture
for keyphrase generation where the generator pro-
duces a sequence of keyphrases from a given docu-
ment, and the discriminator distinguishes between
human-curated and machine-generated keyphrases
(Section 2).

We introduce an adversarial training setup for
the state-of-the-art generative approaches used in
(Chan et al., 2019) (Section 3). We also propose a
hierarchical attention-based discriminator architec-
ture. Our empirical analysis shows that the genera-
tive models, in GAN setup, improves generation of
abstractive keyphrases but do not show any signifi-
cant improvements for extractive keyphrases.

As concluded by (Cano and Bojar, 2019), we
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Figure 1: GAN framework for generating keyphrases.

think keyphrase generation is still a hard text sum-
marization challenge. We share our observations
as well as our implementations with the scientific
community. We expect these findings would help
other researchers further explore the application of
GANS s for keyphrase generation. Following are our
main contributions:

e We propose a GAN framework using reinforce-
ment learning for keyphrase generation with a new
discriminator architecture based on hierarchical at-
tention that allows for providing reward to partially
decoded sequences.

e We evaluate our proposed method on four pub-
licly available datasets and compare our results
with five state-of-the-art deep neural generative
models for keyphrase generation!.

2 Methodology

Given a document 7' = {z1,x9,..., 2z, }, Where
x; is the i token, the problem of keyphrase gen-
eration is to generate a set of keyphrases y =
{y1,92,...,ym } that best capture the semantic
meaning of 7T'. In this paper, we approach this
as a supervised problem solved specifically using
GAN (Goodfellow et al., 2014). Our GAN model
consists of a generator G trained to produce a se-
quence of keyphrases from a given document, and a
discriminator D that learns to distinguish between
machine-generated and human-curated keyphrases.

Adversarial learning for text is a challenging task
as it is not straight-forward to back-propagate the
loss of the discriminator due to the discrete nature
of text data (Rajeswar et al., 2017). We use RL to
address this issue, where the generator is treated as
an RL agent, and its rewards are obtained from the

!Code - https://github.com/avinsit123/

keyphrase—-gan

discriminator’s outputs. Fig 1, shows an overview
of our framework.

2.1 Generator

- We employ CatSeq (Yuan et al., 2018) as our
generator. CatSeq model uses an encoder-decoder
framework where the encoder is a bidirectional
Gated Recurrent Unit (bi-GRU), and the decoder
a forward GRU. For a given document, the gen-
erator produces a sequence of keyphrases: y =
{y1,92, ..., ym }» where each keyphrase y; is com-
posed of tokens yl-l, yf, s yfl To incorporate out-
of-vocabulary tokens, we use a copying mechanism
(Gu et al., 2016). We also use an attention mech-
anism to help the generator identify the relevant
components of the source text.
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Figure 2: Schematic of Proposed Discriminator (D)

2.2 Discriminator

- The main aim of the discriminator is to distinguish
between human-curated and machine-generated
keyphrase sequences. To achieve this, the discrim-
inator would also require a representation of the
original document 7. We proposed a new condi-
tional hierarchical discriminator model (Fig 2) that
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consumes the original document 7', a sequence of
keyphrases y, and outputs that probability of the
sequence being human-curated.

The first layer of this hierarchical model con-
sists of m + 1 bi-GRUs. The first bi-GRU en-
codes the input document 7" as a sequence of vec-
tors: h = {hq, ha, ..., hy, }. The other m bi-GRUs,
which share the same weight parameters, encode
each keyphrase y; as a vector k;, resulting in a se-
quence of vectors: {k1, ko, ..., ki, }. We then use
an attention-based approach (Luong et al., 2015)
to build context vectors c; for each keyphrase (eq.
1), where c; is a weighted average over h. By
concatenating c¢; and k;, we get a contextualized
representation e; = [c; : k;| of y;.

iy hy - elisks
n 1 ehiwskj

1=

(1)

¢ =

The second layer of the discriminator is a GRU
which consumes the average of the document
representations h,,y and all the contextualized

keyphrase representations ey, e, ....., €, as:
P GRU (hguvg, St), ift=0 2)
1T YGRU (e, s),  otherwise”

The final state of this layer is passed through one
fully connected layer (w ) and sigmoid transforma-
tion to get the probability that a given keyphrase
sequence is human-curated Py, = o (wfSm+1).

2.3 Adversarial Training

The goal of the framework is to optimize the gen-
erator to produce keyphrase sequences that resem-
ble human-curated keyphrase sequences. This is
achieved by training the generator and discrimina-
tor in an alternating fashion. Namely, we train the
first version of the generator using maximum likeli-
hood estimation (MLE). We then use this generator
to produce machine-generated keyphrases (.Sy) for
all documents. We combine them with the corre-
sponding human curated keyphrases (.5;), and train
the first version of the discriminator to optimize for
the following loss function:

Dioss = —Eyes, [log(D(y))]—Eyes; [log(1=D(y))] (3)

To train the subsequent versions of the genera-
tor, we employ reinforcement learning, where the
policy gradient is defined as:

m

l;
VERe = Z[D(yi) —B]vlog H GWlly 7™ yraia, @)

i=1 j=1
“4)

B is a baseline obtained by greedy decoding of
keyphrase sequence using self-critical sequence
training (Rennie et al., 2016) method. The rewards
for the generator are calculated from the outputs of
the discriminator trained in the previous iteration.
The resulting generator is then used to create new
training samples for the discriminator. This process
is continued until the generator converges.

When using RL for text generation (Li et al.,
2017), it is necessary to support rewards for inter-
mediate steps or partially decoded sequences. One
of the advantages of our proposed discriminator ar-
chitecture it can assign individual rewards to each
generated keyphrase or one reward to the entire se-
quence. To support individual rewards, each state
s; of the final discriminator layer is passed through
a feed-forward neural network with a sigmoid ac-
tivation R(y;) = D(y;) = o(Wysi+1). To obtain
reward for the entire sequence, we just use the final
predicted probability.

3 Experimental Work

3.1 Datasets

We trained the proposed GAN model using KP20k
dataset (Meng et al., 2017) which consists of
549,818 samples (train: 509,818, test: 20,000, vali-
dation: 20,000). Each sample is a scientific article
consisting of the title, abstract, and the correspond-
ing human-assigned keyphrases. In addition to
KP20k, we also evaluated the model on three other
standard keyphrase datasets: Inspec (Hulth, 2003),
NUS (Le etal., 2016), and Krapivin (Krapivin et al.,
2009) which contain 500, 211, and 400 test sam-
ples respectively. We discarded all samples from
KP20k training set that overlap with the other three
test datasets.

3.2 Baselines

We compare our proposed GAN model against
five state-of-the-art generative approaches: CatSeq,
CatSeq-D, CatSeq-Corr, CatSeq-TG, CatSeq-RL
as implemented in (Chan et al., 2019). All the base-
lines models were trained from scratch using MLE
except for CatSeq-RL, which was trained using
RL. We report the performance of our model under
two different reward strategies: GANjsp: one re-
ward per keyphrase, and GANgp: one reward per
keyphrase sequence.
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Model Inspec NUS Krapivin KP20k
@5 FiQM | Q5 FiQM | F1@Q5 FiQM | F1Q5 FiQM
CatSeq 0.236  0.286 0336 0.399 0.269  0.360 0.291  0.367
CatSeq-D 0.214  0.264 0.321  0.393 0.268  0.352 0.285 0.363
CatSeq-Corr | 0.240  0.292 0315 0.384 0.271  0.352 0.289  0.365
CatSeq-TG 0.229  0.278 0.333  0.398 0.275 0.356 0.292  0.366
CatSeq-RL | 0.250  0.300 0375  0.433 0.287  0.362 0.310 0.383
GANsr 0.253  0.293 0.340 0.413 0.284  0.363 0.293  0.371
GANumR 0.258 0.299 0.348 0.417 0.288 0.369 0.303  0.378
Table 1: F1 scores for extractive keyphrases on 4 datasets
Model Inspec NUS Krapivin KP20k
Q@5 FQM | Q5 FiQM | F1@Q5 FiQM | F1Q5 FiQM
CatSeq 0.004  0.011 0.013  0.019 0.017  0.032 0.015  0.031
CatSeq-D 0.008 0.012 0.018  0.029 0.018  0.030 0.015 0.031
CatSeq-Corr | 0.005 0.008 0.019 0.032 0.022  0.033 0.015 0.032
CatSeq-TG 0.005 0.007 0.025 0.046 0.023  0.037 0.017  0.033
CatSeq-RL 0.009 0.017 0.019  0.031 0.026  0.046 0.024 0.044
GANsr 0.011  0.013 0.016  0.034 0.032  0.051 0.028  0.039
GANmR 0.013  0.019 0.026 0.038 0.042  0.057 0.032  0.045

Table 2: F1 scores for abstractive keyphrases on 4 datasets

3.3 Experimental Settings

For the CatSeq generator model, the word embed-
dings were initialized to 300 dimensions and hid-
den layers to 150 units. For the hierarchical dis-
criminator model, word embeddings were initial-
ized to 200 dimensions, and the hidden layer set
to 150 units. A dropout of 0.5 is applied to both
discriminator layers. We pre-trained both the gen-
erator and discriminator using Adam optimizer at a
learning rate of 0.001 and batch size of 64 and 32,
respectively. Whenever the loss stops converging,
we apply learning rate decay. During adversarial
training, we switched to Adagrad optimizer with a
learning rate of 0.00005. These parameter choices
were driven by tuning on the KP20k validation
dataset.

The generator model was first pre-trained for
3 epochs. The entire GAN architecture was then
trained for four iterations. In each iteration, the
discriminator was first trained using MLE for 4
epochs, then generator using policy gradient (with
rewards from discriminator) for 4 epochs. We ob-
served that GAN model started to diverge after the
fourth iteration. The target sequence consisted of a
semicolon-separated list of extractive keyphrases,
followed by a tag, followed by another semicolon-
separated list of abstractive keyphrases. The tag
was useful in distinguishing between the extractive
and abstractive keyphrases during evaluation.

3.4 Evaluation Metrics

We present the model performances in terms of
F1@K (Yuan et al., 2018), and F1@M (M denotes
the no. of unique keyphrases). F1@K is calculated
by comparing the top K items (y.x) of the gen-
erated keyphrase sequence with the ground-truth
sequence. In our experimental work, we set K = 5.
When calculating F1 @M, we consider the entire
sequence of generated keyphrases. For comparison
between keyphrases, we first apply Porter stem-
ming and then use exact matching (Chan et al.,
2019).

3.5 Results

Table 1 summarizes the results in terms of F1@5
and F1@M for extractive keyphrases. Table 2
presents the same for abstractive keyphrases. For
extractive keyphrases, GAN ;g model obtains the
best performance on Krapivin dataset and the sec-
ond best performance on the other three datasets
(NUS, Inspec, and KP20K). Overall, the CatSeq-
RL seems to be doing best for extractive keyprhases
with the GAN ;s r model being a very close second.
In the case of abstractive keyphrases, GAN ;g ob-
tains the best performance across all datasets, with
the exception of F1@M for NUS. Also, we ob-
served that GAN s consistently outperforms the
GANggr model. Since GANgr assigns a single
reward to an entire sequence, it is possible that
bad keyphrases when present in good keyphrase
sequence might receive a high reward. Likewise, a
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Model Extractive Abstractive Model Inspec | Krapivin | NUS KP20k

Fl@e5 Fi@eM | Fie5S FieM Catseq 0.87803 | 0.781 0.82118 | 0.804
CatSeq(Pre-trained) | 0.291 0.367 0.015 0.031 Catseq-D 0.88232 | 0.772 0.8372 | 0.8242
8211:]1 gggé gggi 8&‘2‘ g-8§§ Catseg-Corr | 0.86242 | 0.781 0.8472 | 0.8312

GRU . . . U3

GANumR 0303 0378 | 0.032  0.045 Catseq-TG | 0.87101 | 0.779 0.8214 | 0.8124

Catseq-RL | 0.8602 | 0.786 0.83 0.809

Table 3: F1 Scores for different discriminator structures GANwm R 0.891 0.771 0.853 0.85

on the KP20k data

good keyphrase is present in a bad sequence might
receive a low reward. This type of a reward scheme
could prove detrimental to the training of the gener-
ator. On the other hand, GAN ;i assigns reward to
each keyphrase based on its quality and irrespective
of the sequence.

3.6 Discriminator Structure

We conducted a small ablation study to understand
how different aspects of the discriminator archi-
tecture contribute towards the performance. We
compare our hierarchical discriminator against two
simpler versions: GAN and GANgry. In GAN,
we remove the part of the architecture that condi-
tions on the original document. In GANgRgy, we
remove the attention mechanism. Table 3 presents
a comparison of these three architectures on KP20k
dataset. We observe that both GAN ;;r model and
GANgGRry outperform GAN suggesting that incor-
porating the original document is necessary for
generation. Also, GAN g outperforms GANgry
showing that the attention mechanism was benefi-
cial.

3.7 Keyphrase Diversity

We also evaluated the models in terms of a-
nDCG@5 scores (Clarke et al., 2008). a-nDCG
is an extension of the DCG ranking and is used
to measure the diversity of content generated. It
works by penalizing redundant keyphrases and re-
warding new keyphrases. The results are summa-
rized in Table 4. Our model obtains the best per-
formance on three out of the four datasets, with
the exception of CatSeq-RL performing the best
on Krapivin. The GAN,,r model shows a signifi-
cant improvement in the a-nDCG @35 scores over
the pre-trained CatSeq model, in case of KP20k
GANsr model improves by almost 6%.

4 Conclusions and Future work

In this paper, we proposed the first GAN archi-
tecture for keyphrase generation. The model con-
sists of a generator that produces a sequence of

Table 4: a-nDCG @5 metrics

keyphrases given a document, and a discrimina-
tor that distinguishes between human-curated and
machine-generated keyphrases. The two compo-
nents of the GAN model are trained in an alter-
nating fashion: the scores from the discriminator
are used in the policy update of the generator, the
keyphrases produced by the generator are used in
the training of the discriminator. Our results show
that the proposed model obtains better performance
in generating abstractive keyphrases but fails to out-
perform baseline model for extractive keyphrases.
Further analysis of the results (details in sup-
plementary materials) suggest that our model is
effective in removing duplicates and generating di-
verse keyphrases. However, we observed the recall
of our model is capped by the CatSeq generator,
it did not produce any new keyphrases. We also
observed that that our model suffers with some of
the common challenges observed in GAN training
such as vanishing gradient and mode collapse. Re-
cent works (Lu et al., 2018; d’ Autume et al., 2019)
have proposed some solutions to address these chal-
lenges and we plan to explore them. Future direc-
tion also include alternate architectures, reward
schemes, and evaluation using human judges.
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A Appendix

We further analyse the performance of the GAN
model . All graphs indicate metrics for GAN mod-
els with multiple rewards trained on the KP20k
train dataset, validated on KP20k validation dataset
and tested on the Krapivin and Inspec dataset. The
GAN ;g model is trained for 4 iterations with each
iteration being composed of 4 epochs of discrimi-
nator training followed by generator training.

A.1 Vanishing Gradients

Discriminator Rewards

—— Real Keyphrases
—— Fake Keyphrases
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lters
Figure 4: Generator’s F1@5 Scores for present
keyphrases

One problem we noticed in the GAN training
process is as the discriminator performance im-
proves, the ability of the generator to converge de-
creases. Fig. 3 shows after couple of iterations the
discriminator becomes stronger, and assigns high
rewards to all real keyphrases and low rewards to all

0045 Generator F1@5 Scores for absent keyphrases

— Inspec
0040 — Krapivin

0.035
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@ 0025
[

0.020
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Iters

Figure 5: Generator’'s F1@5 Scores for absent

keyphrases

fake keyphrases. While the magnitude of improve-
ment in generator’s F1 scores decreases for both
present keyphrases (Fig 4) and absent keyphrases
(Fig 5), and further training over the 4th jteration
causes the generator to diverge.

This problem in GAN training is commonly
known as vanishing gradient problem (Arjovsky
and Bottou, 2017), where in the presence of
stronger discriminator causes smaller gradients as-
signed to the generator during training. Thus, as the
discriminator improves its strength throughout the
iterations, it decreases the ability of the generator
to converge.

A.2 Learning Rate

Generator F1@5 Scores for different Irs
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Figure 6: Changes in F1@5 scores of present
keyphrases from Krapivin dataset for different learning
rates

Some research shows increasing the learning
rate might help the generator converge faster and
overcome the gradient problem. Increase in the
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learning rate during GAN training, however causes
the generator to enter mode collapse. In this case
while the generator receives higher rewards from
the discriminator, its performance with respect to
F1 scores drastically decreases. Figure 6, shows
the change in F1@35 scores for present keyphrases
over the Krapivin dataset as we vary the learning
rate. We observe that increasing the learning rate
even by small amount leads to decrease in the F1
scores of the generator, and the decrease is more
prominent as we increase the learning rate further,
at learning rate 0.05, the generator starts generating
gibberish text after 4 iterations.

A.3 Discriminator early stopping

0290 Generator F1@5 Scores for varying discriminator strength

—— GANps
— GANp
0.285 — GANp

0.280
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Figure 7: Change in F1@5 Scores on Krapivin dataset
for varying strength of discriminator

The improvement in the strength of discrimina-
tor impedes the convergence of discriminator after
each iteration of training. Thus, we experiment the
effect of weaker discriminator on GAN training.
The strength of the discriminator is reduced by
early stopping and training it just for 1 and 2
epochs in each iteration instead of original 4
epochs . Table 5, shows performance for various
generators on Krapivin dataset based on the
strength of the discriminator. GANp;, GANp2
and GANp, are the GAN models in which the
discriminator is trained for 1, 2 and 4 epochs in
each adversarial training iteration respectively.
The F1 scores of these models indicate slowing
down discriminator training actually end up with
worse performance

Further analysis of an increase in generator’s
F1@5 scores on present keyphrases in fig 7 show
that while training with a weak discriminator does

Model Present Absent
Fl@5 Fl@M | F1I@5 Fl@M
CatSeq(Pre-trained) | 0.269 0.360 0.017 0.032
GAND: 0.276 0.364 0.028 0.039
GANp2 0.281 0.367 0.036 0.047
GANp4y 0.288 0.369 0.042 0.057

Table 5: Generator’s F1 scores on krapivin dataset for
varying strength of discriminator

improve the generator’s convergence in later itera-
tions as evidence by GANp; and GAN p9 improv-
ing their F1 scores till 6" iterations, this magnitude
of increase in not large enough. Fig 7 shows that
initial increase in F1 scores of GAN ps in the 1st
iteration is quite large compared to GANp, and
GANp;. This small improvement can be attributed
to the fact that a weak discriminator find its difficult
to distinguish between false and real keyphrases,
thus assigning rewards closer to the baseline which
do not reflect the reality of generated keyphrases
causing the generator to converge less. We fur-
ther see a manifestation of vanishing gradient prob-
lem in all 3 GAN models - the improvement in
F1 scores decreases as we move across increasing
iterations thus, this initial large increase is crucial
in improving GANp,’s scores and making it the
best performing model.

A4 Examples

Table 6 and Tabel 7 shows examples of keyphrases
generated by GAN s and all baselines along with
the original and author assigned keyphrases. Table
6 showcases some scenarios where the GAN /g
improves upon existing keyphrases and Table
7 highlights examples where GAN,,r performs
worse.The following observations are made with
respect to these examples.

1. GAN);/r model improves upon existing
keyphrases generated by the pre-trained
CatSeq model - As seen in both examples
of Table 6 the GAN model improves upon
existing keyphrases generated by the pre-
trained CatSeq model. In Ex.1, CatSeq gen-
erates keyphrases object and image. These
differ from the original keyphrases object
recognition and image registration only by
1 word. GAN ), model helps in introducing
these new words and improves upon CatSeq-
generated keyphrases by providing them with
a higher reward and encouraging the gener-
ator. Similarly, in Ex.2 GAN,r improves
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Source Abstract: Affine invariants of convex polygons.
Registration and object recognition, proposed recently by
yang and cohen are algebraically dependent. We show how
to select an independent and complete set of the invariants.
The use of this new set leads to a significant reduction of
the computing complexity without decreasing the discrimi-
nation power.

CatSeq: affine invariants; convex polygons; registration;
object ; object recognition; object; image

CatSeqTG: affine invariants; convex  poly-
gons;registration; object ;object recognition;pattern
recognition;.

CatSeqCorr: affine  invariants;convex  poly-
gons;registration; object; object recognition;

CatSeqgD: affine invariants;convex polygons;registration;
object;object recognition;image recognition;

GAN  r: affine invariants; convex polygons; object; ob-
ject recognition; image registration;

Original Keyphrases: affine invariants;convex poly-
gons;object recognition;image registration;feature vec-
tor;convex quadruplet;complexity reduction;

Source Abstract: The role of speech input in wearable
computing. Computers, and as we saw in this magazine’s
first issue, several companies are promoting products that
use limited speech interfaces for specific tasks. How-
ever, we must overcome several challenges to using speech
recognition in more general contexts, and interface design-
ers must be wary of applying the technology to situations
where speech is inappropriate.

CatSeq: speech input;speech; speech;wearable comput-
ing;speech recognition;noise;

CatSeqTG: speech input; speech; speech; speech recogni-
tion;noise;.

CatSeqCorr: speech input; speech; speech; wearable com-
puting;speech recognition;hidden markov models;
CatSeqD: speech input; speech; speech; wearable comput-
ing;speech recognition;

GAN s r: speech input; wearable computing;speech recog-
nition;background noise;

Original Keyphrases: speech input; speech interfaces;
speech recognition; wearable computing;wearable com-
puter;mobile speech recognition;background noise;speech
recognizers;

Source Abstract: Interestingness of frequent itemsets us-
ing bayesian networks as background knowledge. The pa-
per presents a method for pruning frequent itemsets based
on background knowledge represented by a bayesian net-
work. The interestingness of an itemset is defined as the
absolute difference between its support estimated from
data and from the bayesian network. Efficient algorithms
are presented for finding interestingness of a collection of
frequent itemsets and for finding all attribute sets with a
given minimum interestingness. Practical usefulness of the
algorithms and their efficiency have been verified experi-
mentally. Categories and subject descriptors h.

CatSeq: interestingness; frequent itemsets; bayesian net-
works; data mining;

CatSeqTG: interestingness; frequent itemsets; bayesian
networks; data mining.

CatSeqCorr: interestingness; frequent itemsets; bayesian
networks; background knowledge; data mining

CatSeqD: interestingness;frequent itemsets;bayesian net-
works;background knowledge;

GAN\r: frequent items; bayesian networks;

Original Keyphrases: interestingness;frequent item-
set;frequent  itemsets;bayesian  network;background
knowledge;data mining;emerging pattern;association
rule;association rules;

Source Abstract: Twenty years of the literature on acquir-
ing out of print materials . Out of print materials to assess
recurring issues and identify changing practices. The out of
print literature is uniform in its assertion that libraries need
to acquire o.p.materials to replace worn or damaged copies,
to replace missing copies, to duplicate copies of heavily
used materials, to fill gaps in collections, to strengthen
weak collections, to continue to develop strong collections,
and to provide materials for new courses, new programs,
and even entire new libraries.

CatSeq: out of print; libraries; information retrieval;
CatSeqTG: out of print;

CatSeqCorr: out of print; libraries; information retrieval;
data mining;

CatSeqD: out of print; print; libraries; united kingdom;
GAN\/r: out of print; retrieval;

Original Keyphrases: out of print materials; recurring
issues; changing practices; library materials; out of print
books; acquisition;

Table 6: Positive Examples generated by GAN,r and

other baselines Table 7: Negative Examples generated by GAN ;g and

other baselines

upon CatSeq-generated Noise by generating
Background Noise.

2. GAN;;r model removes repeated and un-

wanted keyphrases and improves diver-
sity.
All baseline models in Ex 2 of Table 6 gen-
erate keyphrase speech 2 times. However,
GAN s r removes all repeating occurences of
keyphrases and generates a diverse keyphrase
sequence as evidenced by a-nDCG@5 met-
rics of diversity in Table 4.

3. GAN),;r model doesn’t help the generator
introduce new keyphrases
A consistent feature noticeable across all ex-
amples is that while the GAN model does im-
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prove upon generated keyphrases, it doesn’t
generate full new keyphrases. In none of the
examples, does the GAN ;g model introduce
new keyphrases.

4. GAN),r removes original keyphrases pre-
dicted by the pre-trained CatSeq model
Sometimes when the keyphrase is present in
both the real and fake keyphrase sequence,
the discriminator assigns low rewards to these
keyphrases even though they might be true.
These keyphrases often get discarded due to
these low rewards during the GAN training
process. Consider Ex.1 of Table 7, even
though keyphrases interestingness and data



mining, both, are predicted by the CatSeq
generator and are present in the original
keyphrase sequence. However, the GAN s
model removes both these keyphrases gen-
erating a less original keyphrase sequence,
thereby decreasing F1 score.

Thus GAN,;r improves upon the CatSeq-
generated keyphrases and removes repeated
keyphrases. However, it falls short in generating
new keyphrases thus not increasing the F1 score
much.

A.5 Absent vs Present Keyphrases

GAN’s cause an improvement in both present and
absent keyphrases. While the improvement in F1
scores is more significant for present keyphrases,
the marginal improvement in F1 scores of absent
keyphrases is enough to make the GAN model per-
form better than all baselines. This improvement
in F1 scores can be attributed to our reward scheme
and the structure of the discriminator which gives
equal priority in rewarding both absent and present
keyphrases.

A.6 Conclusion

Analysis indicates that GAN training suffers from
vanishing gradient problem preventing the genera-
tor from achieving maximum potential. Increasing
the learning rate causes mode collapse and using a
weaker discriminator does not guarantee a large in-
crease in F1 scores. These observations indicate the
inherent difficulty in training GAN’ on textual data
especially keyphrases. The GAN model improves
upon the MLE-Generated keyphrases and improves
diversity by removing repeated keyphrases, how-
ever it fails to introduce new keyphrases.
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