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Abstract
Natural language processing has recently
made stock movement forecasting and volatil-
ity forecasting advances, leading to improved
financial forecasting. Transcripts of compa-
nies’ earnings calls are well studied for risk
modeling, offering unique investment insight
into stock performance. However, vocal cues
in the speech of company executives present
an underexplored rich source of natural lan-
guage data for estimating financial risk. Ad-
ditionally, most existing approaches ignore
the correlations between stocks. Building on
existing work, we introduce a neural model
for stock volatility prediction that accounts
for stock interdependence via graph convolu-
tions while fusing verbal, vocal, and finan-
cial features in a semi-supervised multi-task
risk forecasting formulation. Our proposed
model, VolTAGE, outperforms existing meth-
ods demonstrating the effectiveness of multi-
modal learning for volatility prediction.

1 Introduction

Motivation Financial risk modeling is of great
interest to capital market participants for making
sound investment decisions. Stock volatility is a vi-
tal indicator of a company’s risk profile (Poon and
Granger, 2003; Yang et al., 2020). The stock mar-
ket presents various opportunities that increasingly
attract investors, who utilize the market’s poten-
tial to generate profits, wherein stock volatility is
a vital risk modeling factor. One underexplored,
yet crucial event that leads to significant fluctua-
tions in stock volatility, is the earnings conference
call. These calls are held periodically by publicly
traded companies’ executives to summarize and

prognosticate company’s performance (Qin and
Yang, 2019). Harnessing the interplay between the
multimodal verbal and vocal cues in earnings calls
can help better analyze the impact these calls may
have on financial markets and forecast stock volatil-
ity (Dichev and Tang, 2009; Yang et al., 2020).

Challenges While stock trading presents unpar-
alleled investment opportunities, accurately predict-
ing the rise and fall of stock prices has numerous
challenges (Campbell et al., 1997). Conventional
research in finance revolves around using histor-
ical stock data to develop statistical models and
recurrent neural networks (RNNs) capable of fore-
casting price trends (Kristjanpoller et al., 2014;
Zheng et al., 2019). They are influenced by many
factors ranging from public opinion to the move-
ments of other related stocks (Malkiel, 2003). Re-
cent advances in deep learning present a promis-
ing prospect in multimodal stock forecasting by
analyzing online news (Hu et al., 2018), and so-
cial media (Guo et al., 2018) to learn latent pat-
terns affecting stock prices (Jiang, 2020). How-
ever, the challenging aspect in stock forecasting
is that most existing work treats stock movements
to be independent of each other, contrary to true
market function (Diebold and Yılmaz, 2014). Ad-
ditionally, existing research has not leveraged the
rich audio signals in company executives’ speech,
which could indicate the emotional and affective
state of the speakers, and provide insights into com-
pany performance. More recently, the use of audio
processing for earnings calls has gained an interest
in both financial and linguistic research (Burgoon
et al., 2015; Jiang and Pell, 2017).
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Multimodal approaches can extract complemen-
tary information from multiple modalities to im-
prove financial modeling, MDRM (Qin and Yang,
2019), and HTML (Yang et al., 2020) validate
the premise of such approaches for volatility fore-
casting. Additionally, advances in graph-based
deep learning (Kipf and Welling, 2017) have led
to the rise of graph neural networks (GNNs) that
can model the relationships between related stocks
(Feng et al., 2019). Publicly available online com-
pany information can be used to identify connec-
tions between stocks that might influence each
other, such as those having the same CEO or be-
longing to the same industry. Financial tasks are
often correlated, thus making multi-task learning a
promising choice for financial forecasting.

Contributions Building on advances in the in-
tersection of financial research, graph neural net-
works, and natural language processing, we present
VolTAGE: Volatility forecasting via Text-Audio fu-
sion with Graph convolution networks for Earnings
calls. VolTAGE comprises a set of neural compo-
nents to capture cross-modal signals from earn-
ings calls transcripts, CEO speech, inter stock
dependence graphs, and numerical financial fea-
tures. First, VolTAGE combines the verbal-vocal
coherence between earnings calls transcripts and
speech via an inter-modal multi-utterance atten-
tion mechanism. The fused features are then fed
to a graph convolution network (GCN) to simul-
taneously solve two homogeneous stock volatility
tasks - average volatility (main task) and single-
day volatility prediction (auxiliary task), in a semi-
supervised fashion. Through a set of comparative,
qualitative, and ablation experiments on real-world
S&P 500 index data, we show VolTAGE’s utility
of augmenting vocal and verbal cues with graph-
based features in a multi-task setup.

Ethical Considerations and Limitations Ex-
amining a CEO’s speech and tone in earnings calls
is a well-studied phenomenon in financial litera-
ture (Crawford Camiciottoli, 2011; Qin and Yang,
2019). Our work focuses only on calls for which
companies publicly release transcripts and audio
recordings. The data used in our study corresponds
to earnings calls of S&P 500 companies. We ac-
knowledge the presence of gender bias in our study,
given the imbalance in the gender ratio of CEOs
of S&P 500 companies. We also acknowledge the
demographic bias in our study, as the S&P 500

companies are organizations listed in the US, and
may not generalize directly to non-native speakers.

2 Background

Extensive studies have shown the utility of employ-
ing historical financial data (Jones, 2017; Dichev
and Tang, 2009) for volatility prediction, yet fi-
nancial forecasting using multiple modalities re-
mains an underexplored avenue. While newer work
focuses on data across multiple modalities, there
exist drawbacks and understudied approaches to
improve current methods, which we describe next.

Volatility Forecasting Forecasting stock volatil-
ity is a crucial pillar across multiple financial do-
mains and has focused on numerous academic stud-
ies. Volatility is a key indicator of uncertainty
and is a decisive variable to many investment deci-
sions and portfolio creations. Previous work in this
domain has mainly relied on numerical features
(Liu and Chen, 2019; Nikou et al., 2019), such
as macroeconomic indicators (Hoseinzade et al.,
2019). This includes discrete (GARCH (Duan,
1995), rolling regression (Peng et al., 2018)), con-
tinuous (Andersen, 2007), and neural approaches
(Kogan et al., 2009). This comprehensive work il-
lustrates the significance of volatility in investment,
security valuation, and risk management.

Natural Language Processing and Finance
Extensive studies incorporating related text infor-
mation have proven successful in financial forecast-
ing tasks. Mohan et al. (2019); Tan et al. (2019)
utilized financial news articles to improve the ac-
curacy of stock price predictions. Hu et al. (2018)
propose a hybrid attention network to predict the
stock trend based on the related sequential news ar-
ticles. Researchers have also observed the influence
of textual data in online media on stock markets
(Bollen et al., 2011; Mittermayer and Knolmayer,
2006). Si et al. (2014) showed sentiment analysis
based on social media is predictive of each stock’s
market. However, utilizing multimodal sources of
information remains an underexplored avenue in
financial forecasting.

Speech Processing and Finance Newer studies
(Qin and Yang, 2019; Yang et al., 2020) illustrate
the gains obtained using vocal cues from the CEO’s
earnings conference calls for volatility prediction.
Yet, the majority of the current work does not uti-
lize speech based data. The audio features add
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greater context and provide psycho-linguistic sig-
naling about the speaker’s emotional state (Jiang
and Pell, 2017). Qin and Yang (2019) illustrated
that late fusion of audio and text features from earn-
ings calls could be used to forecast stock volatil-
ity following the earnings call. The verbose quar-
terly earnings calls (Wang and Hua, 2014) act as
a medium of voluntary disclosure (Tasker, 1998),
thereby resulting in significant stock movements
(Ding et al., 2015), yet the majority of existing
approaches do not focus on such highly volatile
macro activities, where the market microstructure
is highly uncertain (Rogers et al., 2009). During
these macro events, the stock returns’ predictabil-
ity can be improved since the disclosure of in-
formed investors influences volatility spreads (Atil-
gan, 2014). Although multiple sources of infor-
mation are crucial, not all modalities contribute
equally (Akhtar et al., 2019). Noise in one modality
can be detrimental in such multimodal frameworks
(Morris-Drake et al., 2016).

Multimodality and Finance The Efficient Mar-
ket Hypothesis (Malkiel, 2003) illustrates the suc-
cess of multimodal data sources for predictive fi-
nancial tasks. The more recent multimodal HTML
(Yang et al., 2020) is a transformer-based model
that uses BERT (Devlin et al., 2019) for textual
modeling, and the same hand-crafted audio fea-
tures as MDRM, in an early fusion formulation.
Both MDRM and HTML assume stocks’ indepen-
dence and do not exploit these relations between
stock movements. Relations like the same indus-
trial base and co-ownership also result in related
stock movements (Feng et al., 2019). Recent works
exploit stock relations through graph neural net-
works (Kipf and Welling, 2017; Veličković et al.,
2018) for stock movement prediction (Kim et al.,
2019; Sawhney et al., 2020).

Building on these gaps in existing literature, we
propose VolTAGE for volatility prediction.

3 Forecasting Stock Volatility

Following Kogan et al. (2009) and Qin and Yang
(2019) we define stock volatility as a regression
task. For a given stock, with a close price of p

i

on
trading day i, we calculate the average log volatility
over n days following the earnings call as:

v[0,n] = ln

 rP
n

i=1(ri � r̄)2

n

!
(1)

where, the return price r
i

is defined as pi
pi�1
�1 and

r̄ is the mean of the return price over the period
from day-0 to day-n. Additionally, for our auxiliary
task we define the single-day log volatility using
the daily log absolute returns as follows:

v
n

= ln

✓����
p
n

� p
n�1

p
n�1

����

◆
(2)

Problem Statement Given an earning call e,
comprising of an audio A, and aligned text T , and
stock prices p[0,n], we aim to learn a predictive
regression function f(e{T,A})! v[0,n].

4 VolTAGE: Architecture and Learning

Below, we describe both the individual components
and joint optimization of VolTAGE, and present an
overview of the architecture in Figure 1.

4.1 Verbal Cues: Transcript Encoding
We use FinBERT1 (Araci, 2019) as a sentence en-
coder, which is a pre-trained language model based
on BERT, for language modeling specific to the fi-
nancial domain. Recent works (Araci, 2019; Keith
and Stent, 2019) in this domain indicate the benefits
of using a language model pre-trained on financial
corpora and retrofitting pre-computed embeddings,
achieving considerable performance gains; thereby
giving us a strong ground to incorporate the same.
FinBERT has been pre-trained on 46,000 docu-
ments of financial news articles and has shown
state-of-the-art performance on FiQA2 and Finan-
cial PhraseBank benchmarks (Malo et al., 2013).

Formally, we represent the transcript utterances
of each call as (t1, t2, ..., tK), where t

i

is the ith

text utterance and K is the number of sentences,
which are encoded as follows:

s
i

= FinBERT(t
i

) (3)

We then pass the sequence of these sentence repre-
sentations to a BiLSTM as:

��!
T (f)
t

= BiLSTM(f)(s
t

, T (f)
t�1) (4)

 ��
T (b)
t

= BiLSTM(b)(s
t

, T (b)
t+1) (5)

T
t

= [
��!
T (f)
t

,
 ��
T (b)
T�t

] (6)

1https://github.com/abhijeet3922/
finbert_embedding

2https://sites.google.com/view/fiqa
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Figure 1: VolTAGE architecture overview: feature extraction, semi-supervised learning and multi-task regression.

4.2 Vocal Cues: Audio Call Encoding
Audio-based features provide prosodic cues related
to the affective state of speakers (Montacié and
Caraty, 2018). Capturing the emotional valence
of the CEO can alter the understanding of the un-
derlying linguistic utterances in an earnings call
(Schröder et al., 2001). We extract a set of 26
acoustic features from each aligned audio clip at
a sampling rate of 10ms for each sentence. These
feature time series were then summarized by sta-
tistical functions such as mean, median, min, and
max to yield a fixed dimensional representation
for each sentence. We extend the feature sets of
previous works (Qin and Yang, 2019; Yang et al.,
2020). These features have shown to be corre-
lated to the speaker’s affective states such as stress
and anxiety (APQ 11 Shimmer, DDA Shimmer)
(Li et al., 2007; Mongia and Sharma, 2014), vocal
pace reflecting inconsistencies in vocal cues (ra-
tio of voiced to unvoiced frames in audio) (Přibil
and Přibilová, 2009; Viswanathan et al., 2012) and
deception (pitch) (Burgoon et al., 2015). We ex-
tracted these 26 features from each audio utterance
using Praat (Boersma and Van Heuven, 2001).

Text-Audio Alignment Following Qin and Yang
(2019), we use the pre-aligned dataset for earnings
calls, where the audio is segmented and aligned
with each corresponding utterance of the transcript
using the Iterative Forced Alignment (IFA) algo-
rithm. IFA is the process of determining the time
interval (in the audio file) containing the spoken
text for each fragment of the transcript. Qin and
Yang (2019) implemented IFA using Aeneas3 as
the fundamental forced alignment method. For-

3https://github.com/readbeyond/aeneas

mally, we represent the segmented audio clips as
(a1, a2, ..., aK) where a

i

is the ith audio clip and K
being the number of clips of an earning call, with
each clip being represented by 26 acoustic features.
Similar to the processing of verbal utterances, we
employ a BiLSTM layer to sequentially encodes
these features, and obtain an audio encoding A

t

as:

��!
A(f)

t

= BiLSTM(f)(a
t

, A(f)
t�1) (7)

 ��
A(b)

t

= BiLSTM(b)(a
t

, A(b)
t+1) (8)

A
t

= [
��!
A(f)

t

,
 ���
A(b)

T�t

] (9)

4.3 Verbal-Vocal Attention
The acoustic features provide context and struc-
ture to the verbal cues. To capture the associa-
tions between verbal and vocal cues, we employ
a Cross-Modal Gated Attention Fusion (CM Attn)
mechanism that simultaneously learns the align-
ment weights between audio features and text sen-
tence sequences. Thus, we employ this mecha-
nism to highlight the contributing features by giv-
ing more attention to the respective utterance and
neighboring utterances. Motivated by Akhtar et al.
(2019); Dhingra et al. (2016), we employ the mul-
tiplicative gated attention mechanism to generate
modality-specific attentive representations.

Formally, a multiplicative gating mechanism is
used to attend the important components of text and
audio sequences to get the final attentive feature
embeddings F

t

, F
a

which are then combined as:

Wa = softmax(T ·AT ),Wt = softmax(A · TT ) (10)
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(a) First-order relation (b) Second-order relation

Figure 2: Wiki-company based relations

G
a

= W
a

· T , G
t

= W
t

·A (11)
H = F

a

� F
t

= (G
a

�A)� (G
t

� T ) (12)

· is the dot product, � represents element-wise
multiplication, and � represents concatenation.
The fused verbal-vocal feature vector per earnings
call is then fed to a GCN, as described next.

4.4 Graph-based Semi Supervised Learning
Mining Stock Relations First, we construct a
company graph, inspired by the relations defined
by Feng et al. (2019). We mine connections be-
tween companies from Wikidata (Vrandečić and
Krötzsch, 2014). Wikidata represents relations in
the form of statements like (subject; predicate ;ob-
ject), such as (Facebook; founded by; Mark Zucker-
berg).4 We say that Company A has a first-order
relation with company B if there is a statement
with A as the subject and B as the object. Simi-
larly, there exists a second-order relation between
them if they are related by an intermediate entity.
This Wiki-Company graph G

WC

= (V,E
WC

) is a
homogeneous graph, where each node represents
a company, and two nodes are connected by an
edge representing either a first or second-order re-
lation. We present examples of first and second-
order relations in Figure 2. Since the companies
are related and not the earnings calls, we extend the
graph G

WC

by incorporating nodes corresponding
to earnings calls. Each call is connected to the
company it corresponds to through an edge. This
extended graph G(V,E) is heterogeneous with two
types of nodes (companies and earnings calls).

Graph Convolution Network We frame the
task as a graph-based semi-supervised learning
problem since we have labels (volatility values)

4https://www.mediawiki.org/wiki/
Wikibase/DataModel/JSON

available for a subset of nodes (i.e., earnings call
nodes) (Kipf and Welling, 2017). Our intuition
behind applying GCNs is to allow the model to
distribute gradient information from the supervised
loss on the labeled earnings call nodes. As shown
in Figure 1, we feed the fused verbal-vocal features
H as node features for each earnings call node to
the GCN. As for the stock nodes, since a stock may
have multiple earnings calls, we consider the mean
of feature vectors of all calls pertaining to a stock
as its feature vector, to incorporate features across
all earnings calls corresponding to that stock. For-
mally, let F 2 Rn⇥m represent the input feature
matrix comprising these feature vectors of length
m for the nodes in G, and D represent the diago-
nal degree matrix defined as D

ii

=
P

j

A
ij

. The
update rule at layer l of the GCN is then:

O(l) = ReLU( eAO(l�1)W (l)) (13)

where the first layer is represented as:

O(1) = ReLU( eAFW (1)) (14)

We experiment with a single layer and a 2-layer
GCN, and find better results with the latter. We for-
mulate the exact computation our GCN performs
to yield estimated volatility values as follows:

O = linear( eAReLU( eAFW (1))W (2)) (15)

Using the earnings call node labels, we train the
GCN on the MSE loss using the semi-supervised
learning mechanism. This mechanism generates
feature representations for both the company nodes
and the earnings call nodes, of which we use the
latter. Subsequently, these earnings call node fea-
tures, denoted by O

e

are fed along with the finan-
cial features to a multimodal LSTM network in a
multi-task learning setup as described next.

4.5 Multimodal LSTM for Risk Forecasting
Prior work (Figlewski, 1994) in the financial do-
main has shown the benefits of using past data
for future volatility forecasting. However, fusing
the sequential historical volatility data with non-
temporal GCN embeddings poses a challenge. To
overcome this disparity, we employ multimodal
”conditioned” LSTM networks (Karpathy and Fei-
Fei, 2015). In our case, we add GCN node em-
beddings from the first layer with the ReLU non-
linearity to the hidden state of the LSTM model at
the first time-step to integrate temporally diverse
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modalities. Further, the past data introduces his-
torical context in cases where calls may not have
major announcements that would lead to large fluc-
tuations in stock volatility.

Network Optimization To incorporate financial
data, we extract past n-day average volatilities prior
to the earning call, where n 2 [2, 30]. Formally,
training the LSTM model takes the sequence input
vectors (x1, .., xT ) representing the past financial
data along with the earnings call node embeddings
O

e

, obtained using GCN. The model computes a
series of hidden states (h1, .., hT ) and a sequence
of outputs (y1, ..yT ), by repeating the following
recurrence relation from time t = 1 to T :

h
t

= f(W
hx

x
t

+W
hh

h
t�1 +O

e

+ b
h

) (16)
y
t

= softmax(W
oh

h
t

+ b
o

) (17)

Here, W
hx

,W
hh

,W
oh

, x
i

, b
h

, b
o

are learnable
parameters and x

t

is the average t-day past volatil-
ity. Following Karpathy and Fei-Fei (2015), we
feed the GCN embeddings to the LSTM only at the
first iteration. We use the output y

T

from the last
LSTM unit for the final multi-output prediction.

Network Optimization We finally train VolT-
AGE by optimizing a multi-task loss as:

L =
1
2n

 
µ

X

i

(ŷi � yi)
2 + (1� µ)

X

j

(ŷj � yj)
2)

!

(18)
Here, ŷ

i

, ŷ
j

are predicted volatilities and y
i

, y
j

are true volatilities for the main and auxiliary tasks,
respectively. µ is a parameter that controls the
relative weight of the loss between the two tasks.

5 Experimental Setup

5.1 Data
We used the S&P 500 2017 Earnings Conference
Calls dataset (Qin and Yang, 2019).5 The dataset
consists of 559 earnings call audio recordings and
their transcripts for 277 public companies in the
S&P 500 index. Each call is segmented into a
sequence of audio clips aligned with their corre-
sponding text sentences, as spoken by the Chief
Executive Officer (CEO) during the call. We tem-
porally divide the data into train, validation, and
test sets in a ratio of 70 : 10 : 20 respectively to

5We were unable to map price data for 11 data points,
which were subsequently dropped

ensure future data is not used for forecasting. We
extract stock prices for each company using Yahoo
Finance6 from 1 January’17 till 31 December’17.
The stock data for 11 earnings calls was not avail-
able on Yahoo Finance; hence we excluded these
calls from our dataset. Following Qin and Yang
(2019); Yang et al. (2020), we experiment with
n 2 {3, 7, 15, 30} days to analyze the performance
over both short and long term periods.

5.2 Baselines
We compare VolTAGE with the following methods:

• Vpast: Following Qin and Yang (2019), we use
V
past

, the average log volatility of the past d
days to predict the future d days’ average log
volatility.

• bc-LSTM: We also compare against bc-LSTM
(Poria et al., 2017) which extracts the uni-modal
features using separate contextual Bi-LSTMs
and fuses them.

• MDRM: Qin and Yang (2019) extract pre-
trained GloVe embeddings and hand-crafted
acoustic features that are fed to separate BiL-
STMs to get their uni-modal contextual embed-
dings, which are then fused and fed to a two-
layer dense network.

• HTML: Yang et al. (2020) is the state-of-the-art
model using WWM-BERT to encode text tokens.
HTML makes use of the same audio features as
MDRM. The unimodal features are fused and
fed to a sentence-level transformer to get the
multimodal representations for each call.

5.3 Training Setup
We tune the hyperparameters on the val-
idation mean square error (MSE) to get:
dropout � 2 [0, 0.8], learning rate � 2
{10�5, 10�4, 10�3, 10�2, 10�1}, batch size b 2
{8, 16, 32, 64} and epochs (< 100).

We use FinBERT with default pre-training pa-
rameters, which outputs a 768-dimensional embed-
ding for each sentence. The maximum number of
audio clips in any call is 520. Hence, we zero-
pad the calls that have less than 520 clips for effi-
cient batching. The number of neurons in the time
distributed dense layer following the audio and
text BiLSTMs is 100. The heterogeneous graph

6https://finance.yahoo.com/
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Model MSE MSE3 MSE7 MSE15 MSE30 R2
3 R2

7 R2
15 R2

30

Vpast 1.12 2.99 0.83 0.42 0.23
LSTM 0.75 1.97 0.46 0.32 0.24 0.34 0.44 0.24 -0.02
HAN (Glove) 0.60 1.43 0.46 0.31 0.20 0.52 0.44 0.27 0.14
MDRM (Audio) 0.60 1.41 0.44 0.32 0.22 0.53 0.47 0.25 0.03
MDRM (Text+Audio) 0.58 1.37 0.42 0.30 0.22 0.54 0.49 0.29 0.06
HTML (Text) 0.46 1.18 0.37 0.15 0.13 0.61 0.55 0.64 0.42
HTML (Text+Audio) 0.40 0.85 0.35 0.25 0.16 0.72 0.58 0.40 0.32
VolTAGE 0.31 0.63 0.29 0.17 0.14 0.79 0.65 0.60 0.39

Table 1: n-day volatility MSE and coefficient of determination R2 for all models. Bold represents the best results.

contains 559 nodes for earning calls connected to
the 277 interrelated company nodes. The GCN is
trained using Pytorch Geometric (Fey and Lenssen,
2019).7 We use two GCN layers having 200 and
100 units respectively, inter-spaced by ReLU and
followed by a single dense layer. The 200 dimen-
sional feature vectors from the first layer of the
GCN after the ReLU activation are fed to a 200-unit
conditioned LSTM model for multi-task volatility
prediction. We optimize VolTAGE using the Adam
(Kingma and Ba, 2014) optimizer.

6 Results and Analysis

6.1 Comparative Analysis
We present the volatility prediction performance
of VolTAGE and the baselines in Table 1. We re-
port the MSE averaged across 10 different runs
for all models for the main task (n-day average
prediction). Our choice of using MSE as a com-
parative metric is motivated by prior work (Qin
and Yang, 2019; Yang et al., 2020). Addition-
ally, we also report the coefficient of determina-
tion R2 = 1� MSE

MSEVpast
, to illustrate the improve-

ments with V
past

. We observe gains across the
multimodal HTML that leverages both text and
audio modalities. We ascribe this improvement to
the cross-modal attention fusion mechanism, which
uses associations between audio and text modalities
over each contextual utterance instead of concate-
nation used in HTML. Moreover, a key limitation
of the baselines is the assumption of independence
of inter-stock movements. VolTAGE captures the
correlations between price movements of related
stocks through the GCN, and hence, volatility, am-
plifying performance. Similar to prior work (Qin
and Yang, 2019), Table 1 illustrates that forecasting

7We extract features for nodes using the last layer of
verbal-vocal fusion tuned only for average n-day volatility
prediction. The verbal-vocal attention fusion was not trained
on multi-task loss, and VolTAGE is not trained end-to-end.

Model MSE MSE3 MSE7 MSE15 MSE30

Glove 0.68 0.99 0.67 0.55 0.49
BERT 0.52 0.85 0.50 0.37 0.35
FinBERT 0.49 0.81 0.50 0.35 0.31
Audio 0.53 0.85 0.52 0.41 0.33
Audio+FinBERT (CM Attn) 0.45 0.77 0.47 0.31 0.24
Audio+FinBERT (CM Attn)+GCN 0.37 0.66 0.39 0.23 0.22
VolTAGE 0.31 0.63 0.29 0.17 0.14

Table 2: Ablation Results over model components

volatility in the short-term is a more intricate task
than long-term. Based on Post Earnings Announce-
ment Drift (PEAD) (Bernard and Thomas, 1989),
a documented financial phenomenon, we note that
the price fluctuations around earning calls tend to
stabilize over long periods. We observe that VolT-
AGE outperforms the baselines by a large margin
in short-term prediction (n = 3, 7); however the
margin diminishes over longer durations (n = 30).

6.2 Ablation Study

We observe an improvement across the text modal-
ity (T), when compared to the HTML (Text) model
(Yang et al., 2020) in Table 1 and Table 2. This
performance gain can be attributed to FinBERT,
which is trained to handle language tasks in the
financial domain, while the sentence-level trans-
former employed in the HTML (Text) model is a
generalized implementation of BERT (Devlin et al.,
2019). We also note that representations learned
by FinBERT outperform both GloVe (Pennington
et al., 2014) and BERT embeddings, reiterating
the effectiveness of domain-specific pre-training.
Further, we observe from Table 2, that the Au-
dio+FinBERT (CM Attn) model outperform uni-
modal components, demonstrating the utility of
multimodal verbal-vocal cues for volatility predic-
tion. On adding the GCN, we observe a gain of
17.7%, likely due to the GCN’s ability to learn
correlations between price movements of related
stocks that are captured by the company relations.
Finally, on introducing the financial modality via
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Figure 3: 3-Day Validation MSE vs µ

the conditioned LSTM network helps in counter-
acting the impact of PEAD by introducing earnings
call independent information into the model; this
can be observed in Table 2. We note that VolTAGE
outperforms all its ablative components, demon-
strating how each of its multimodal components
complement each other.

6.3 On Multi-task Learning
Training a network for multiple tasks jointly has
shown to improve performance on tasks that share a
conceptual similarity (Caruana, 1997). In our case,
we optimize VolTAGE on both n-day average and
single-day volatility prediction tasks a multi-task
formulation. In Figure 3, we analyze the variation
of the weight parameter µ with the 3-day valida-
tion MSE of n-day average, and single-day pre-
dicted volatility. As both tasks share a weighted
loss function, by tuning µ, we trade-off between
the two tasks. We observe from Figure 3, that at
the extreme values of the weight parameter µ = 0
and µ = 1, that represent single task learning
on the single-day and n-day average prediction
tasks respectively, VolTAGE does not obtain opti-
mal performance. Empirically, we find the optimal
µ = 0.8 for 3-day volatility forecasting on the main
task, thus validating our hypothesis that multi-task
learning across both average and single day spans
of volatility prediction improve predictive power.

7 Qualitative Analysis

We analyze the Q3-2017 earnings call for DG (Dol-
lar General), an American variety store company.
The stock’s price became highly volatile for a few
days following the earnings call. Figure 4a shows
the audio-aware text attention heatmap for the du-
ration of the earning call. The heatmap represents
cross-modal attention weights assigned to textual
utterances using corresponding vocal cues. Here
each cell (i, j) represents the weight of jth vocal

(a) Audio Aware Text Attention

-3 -2 -1 0 1 2 3
0.14

0.16

0.18

0.2

0.22

Sentences

dda apq11

(b) DG: Shimmer Analysis

Figure 4: Verbal and Vocal features from the earnings
call for Dollar General from Q3 2017.

utterance on the ith textual utterance. It is observed
that the highest attention is towards the middle of
the call, suggesting that the verbal cues of this por-
tion have the highest impact on the text contextual
embeddings for most of the sentences in the call.
Earning calls of companies are often structured
such that the beginning of the call involves intro-
ductory disclaimer and greetings, while the CEO
starts presenting financial results for the reporting
quarter along with future goals of the company to-
wards the middle of the call, which indicates why
we see such influential utterances in this portion.

Figure 4b shows the disparity between CEO’s
vocal and verbal cues around the utterance. While
textual content seems positive, a sudden spike in
shimmer features in CEO’s voice while speaking
this sentence suggests disharmony between verbal
and vocal cues. Past research in acoustics (Li et al.,
2007) suggests an elevated shimmer could be in-
dicative of underlying stress in speech. After the
earning call, it was noted that the gross margin
of the company slipped by 0.4%, due to the in-
creased transportation costs due to hurricane Irma
in 2017. On analyzing the graph, we observe that
DG has edge connections with WMT (Wallmart)
and TGT (Target Corp.), both of which are retail
variety stores, like DG. Analysts had estimated a
negative impact of about $2.8 Billion on the retail
sector due to the hurricane Irma. This examination
is also reflected in the high volatilities recorded
for WMT and TGT during the same quarter. A
unimodal model may miss these subtle disparities
between text and audio. Therefore, VolTAGE, by
leveraging cross-modal attention fusion and corre-
lation graphs, accurately forecasts the volatility of
DG, three days post the earnings call.
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8 Conclusion and Future Work

Volatility, measured as a deviation in returns, is a
reliable indicator of market risk linked with a stock.
A rich source of company information is earnings
calls that provide high risk-reward opportunities
given their uniqueness and critical information dis-
closure. Although evidence shows that enriching
models with speech and inter-stock correlations can
improve volatility forecasting, this area is underex-
plored. We propose VolTAGE, a neural architecture
that jointly exploits coherence over speech, text,
and inter-stock correlations for volatility forecast-
ing following earnings calls. Through experiments
on S&P 500 index data, we show the merit of cross-
modal gated attention fusion, graph-based learning,
and multi-task prediction for volatility forecasting.

There are several promising directions of future
work that we wish to explore. First, we want to im-
prove upon the audio feature extraction. To model
the speech of CEOs in earnings calls, using semi-
tones rather than raw frequency for pitch-related
features. Experimenting with other sets of com-
monly used acoustic features such as MFCC coeffi-
cients, OpenSMILE features and auDeep features
for representing audio utterances also form a future
direction for audio feature extraction. Second, we
want to expand the analysis presented in this paper
beyond the S&P 500 index and US-based compa-
nies. Existing research (Qin and Yang, 2019; Yang
et al., 2020) and this work at the intersection of
natural language processing and earnings calls are
limited to a small set of companies and earnings
calls. Analyzing the demographic, cultural, and
gender bias in research pertaining to financial dis-
closures, particularly earnings calls, forms a future
direction of research. We would also want to work
on studying a wider set of earnings calls and com-
panies spanning multiple languages, demographics,
speakers and gender.
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A Appendices
A.1 Pitch Analysis
We extract the following audio features correspond-
ing to pitch:
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1. Minimum pitch: The minimum pitch fre-
quency of the frames within a specified time
duration.

2. Maximum pitch: The maximum pitch fre-
quency of the frames within a specified time
duration.

3. meanF0: The mean of the fundamental fre-
quency (f0) within a specified time duration.

4. stdevF0: The standard deviation of the funda-
mental frequency (f0) within a specified time
duration.

5. Number of pulses: The number of pulses
within a given time window.

6. Number of periods: The number of peri-
ods/cycles within a given time window.

7. Degree of voice breaks: This is the total du-
ration of the breaks between the voiced parts
of the signal, divided by the total duration of
the analysed part of the signal.

8. voiced frames: The number of voiced
frames. A frame is regarded as locally un-
voiced if it has a voicing strength below the
voicing threshold (whose standard value is
0.45), or a local peak below the silence thresh-
old (whose standard value is 0.03).

9. Voiced to total ratio: The number of voiced
frames in a window divided by the total num-
ber of frames.

10. Voiced to unvoiced ratio: The number of
voiced frames in a window divided by the
number of unvoiced frames (unvoiced frames
are given by total frames-voiced frames).

A.2 Voice Analysis

Under voice analysis, we extract different features
quantifying jitter and shimmer in the earnings call
audio. Jitter is the relative average vocal pertur-
bation while Shimmer is the moment-to-moment
amplitude variation. We now describe the various
features extracted in this category:

1. Jitter (local):This is the fraction of average
absolute difference between consecutive peri-
ods by the average period.

2. Jitter (local, absolute): This is the average
absolute difference between consecutive peri-
ods in seconds.

3. Jitter (RAP): This is the Relative Average
Perturbation, the average absolute difference
between a period and the average of it and
its two neighbours, divided by the average
period.

4. Jitter (ppq5): This is the five-point Period
Perturbation Quotient, the average absolute
difference between a period and the average
of it and its four closest neighbours, divided
by the average period.

5. Jitter (ddp): This is the average absolute dif-
ference in jitter between consecutive periods
divided by the average period. This is Praat’s
original Get jitter and is proportional to three
times RAP.

6. Shimmer (local) : This is the average abso-
lute difference between the amplitudes of con-
secutive periods, divided by the average am-
plitude.

7. Shimmer (local, dB): This is the average ab-
solute base-10 logarithm of the difference be-
tween the amplitudes of consecutive periods,
multiplied by 20.

8. Shimmer (apq3): This is the three-point Am-
plitude Perturbation Quotient, the average ab-
solute difference between the amplitude of a
period and the average of the amplitudes of its
neighbours, divided by the average amplitude.

9. Shimmer (apq5): This is the five-point Am-
plitude Perturbation Quotient, the average ab-
solute difference between the amplitude of a
period and the average of the amplitudes of it
and its four closest neighbours, divided by the
average amplitude.

10. Shimmer (apq11): This is the 11-point Am-
plitude Perturbation Quotient, the average ab-
solute difference between the amplitude of a
period and the average of the amplitudes of it
and its ten closest neighbours, divided by the
average amplitude.

11. Shimmer (ddp): This is the average absolute
difference of shimmer between the amplitudes
of consecutive periods. This is Praat’s original
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Get shimmer and its value is proportional to
three times APQ3.

A.3 Intensity Analysis
We extract the following intensity features:

1. Mean Intensity: The mean (in dB) of the in-
tensity values of the frames within a specified
time duration.

2. Minimum intensity: The minimum (in dB)
of the intensity values of the frames within a
specified time duration.

3. Maximum intensity: The maximum (in dB)
of the intensity values of the frames within a
specified time duration.

4. SD energy: Standard deviation of energy in
the frames within a specified time duration.

A.4 Harmonicity Analysis
We extract the Harmonics-to-Noise Ratio (HNR) of
the earnings calls audio which has shown to be a
measure of the ”hoarseness of a speaker”.

1. Harmonics-to-Noise Ratio (HNR): It repre-
sents the degree of acoustic periodicity. It is
expressed in decibels. It can be used as a mea-
sure for the signal-to-noise ratio of periodic
voice signals.


