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Abstract

Automated fact extraction and verification is
a challenging task that involves finding rele-
vant evidence sentences from a reliable cor-
pus to verify the truthfulness of a claim. Ex-
isting models either (i) concatenate all the ev-
idence sentences, leading to the inclusion of
redundant and noisy information; or (ii) pro-
cess each claim-evidence sentence pair sepa-
rately and aggregate all of them later, miss-
ing the early combination of related sen-
tences for more accurate claim verification.
Unlike the prior works, in this paper, we
propose Hierarchical Evidence Set Modeling
(HESM), a framework to extract evidence
sets (each of which may contain multiple ev-
idence sentences), and verify a claim to be
supported, refuted or not enough info, by en-
coding and attending the claim and evidence
sets at different levels of hierarchy. Our ex-
perimental results show that HESM outper-
forms 7 state-of-the-art methods for fact ex-
traction and claim verification. Our source
code is available at https://github.com/
ShyamSubramanian/HESM.

1 Introduction

A study by Gabielkov et al. (2016) has revealed
that 60% of people on social media share the news
after reading just the title, without reading the ac-
tual content of the news. Unfortunately, the rise of
social media has further accelerated the communi-
cation and propagation of unverified information.
To solve the problem, our work focuses on auto-
mated fact extraction and verification task, which
requires retrieving the evidence related to a claim
as well as verifying the claim based on the evidence.
The task is challenging since it requires semantic
understanding and reasoning to learn the subtleties
that differ between evidence that supports and evi-
dence that refutes a claim. The task’s difficulty is

further amplified for claims that require aggregat-
ing information from multiple evidence sentences
in different documents.

Previous works, in fact verification, either op-
erate by combining all the evidence sentences
(Nie et al., 2019) or they operate at each evidence
sentence-level and aggregate them later (Yoneda
et al., 2018; Hanselowski et al., 2018a). Combining
all the sentences together may lead to the combina-
tion of redundant, noisy, and irrelevant information
with the relevant information. This makes claim
verification more complicated in terms of identify-
ing and learning the context of only the relevant
sentences. On the other hand, processing each
evidence sentence separately, delays the combina-
tion of relevant sentences that belong to the same
evidence set, for claims that require aggregating
information from multiple sentences. It also makes
claim verification harder since it summarizes infor-
mation without complete context. Figure 1 depicts
an example of an ideal verification system, which
extracts evidence sets, processes them individually,
and then aggregates them later. In the example,
four evidence sentences are retrieved. Sentences
which are relevant and hyperlinked, are combined
to form evidence sets (called Evidence Set [1] and
Evidence Set [2] in the figure). Each evidence set
verifies the claim individually, and then they are
aggregated for the final verification.

Like Figure 1, our proposed framework also re-
trieves and combines evidence sentences into evi-
dence sets in an iterative fashion. Then, it processes
each evidence set individually to form a represen-
tation of the evidence set using word-level atten-
tion. Then, it combines information from all the
evidence set representations using contextual and
non-contextual aggregation methods, which use
evidence set-level attention. The word-level atten-
tion, along with evidence set-level attention, forms
a hierarchical attention mechanism. Finally, our

https://github.com/ShyamSubramanian/HESM
https://github.com/ShyamSubramanian/HESM


7799

Claim
Wentworth is an Australian television series.

Wentworth [TV series]
A sixth season was commissioned

by Foxtel on 9 May 2017.
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Foxtel is an Australian pay
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1 May 2013.

Verdict
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SoHo was an Australian cable

and satellite channel.
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Final Verdict
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Figure 1: An example of claim, evidence sets, and verdict. The arrows represent the hierarchy of the fact extraction
and verification process. The second sentence in each evidence set is retrieved from a document hyperlinked from
the first sentence.

framework learns to verify the claim at different
levels of hierarchy (i.e., at each evidence set-level
and the aggregated evidence level).

Our main contributions are as follows:

• We propose Hierarchical Evidence Set Mod-
eling, which consists of document retriever,
multi-hop evidence retriever, and claim veri-
fication.

• Our multi-hop evidence retriever retrieves ev-
idence sentences and combines them as evi-
dence sets. Our claim verification component
conducts the hierarchical verification based on
each evidence set individually and then based
on all the evidence sets.

• Our experimental results show that our model
outperforms 7 state-of-the-art baselines in both
the evidence retrieval and claim verification.

2 Related Work

Several works exist in fact verification based on
different forms of claim and evidence. Thorne
and Vlachos (2017); Vlachos and Riedel (2015)
verify numerical claims using subject-predicate-
object triples from knowledge graph as evidence.
Nakashole and Mitchell (2014); Bast et al. (2017)
verify subject-predicate-object triple based claims.
Chen et al. (2020) verifies textual claims based
on evidences in a tabular format. Fact verifica-
tion is studied in different natural language settings
namely Recognizing Textual Entailment (Dagan
et al., 2005), Natural Language Inference (Bowman
et al., 2015) and Claim verification (Thorne et al.,
2018a). A differently motivated but closely related
problem is fact checking in journalism, also known
as fake news detection (Ferreira and Vlachos, 2016;
Wang, 2017). In this work, we focus on Claim ver-
ification using the FEVER dataset (Thorne et al.,

2018a) with textual claims and evidence.
Previous works on the fact extraction and claim

verification task follow a three-stage pipeline that
includes document retrieval, evidence sentence re-
trieval and claim verification. Most previous works
reuse the document retrieval component of top-
performing systems (Hanselowski et al., 2018b;
Yoneda et al., 2018; Nie et al., 2019) in the FEVER
Shared Task 1.0 challenge (Thorne et al., 2018b).

Evidence sentence retrieval component in al-
most all previous works retrieves all the evidences
through a single iteration (Yoneda et al., 2018;
Hanselowski et al., 2018b; Nie et al., 2019; Chen
et al., 2017; Soleimani et al., 2020; Liu et al.,
2020). Stammbach and Neumann (2019) uses a
multi-hop retrieval strategy through two iterations
to retrieve evidence sentences that are conditioned
on the retrieval of other evidence sentences. Then,
they choose all the top-most relevant evidence sen-
tences with the highest relevance scores and com-
bine them. Our work follows a similar strategy,
but differs from the prior work by combining only
evidence sentences that belong to the same evi-
dence set, and then processing each evidence set
separately.

In claim verification component, Nie et al.
(2019); Yoneda et al. (2018); Hanselowski et al.
(2018b) use a modified ESIM model (Chen et al.,
2017) for verification. Recent works (Soleimani
et al., 2020; Zhou et al., 2019; Stammbach and Neu-
mann, 2019) use BERT model (Devlin et al., 2019)
for claim verification. Few other works (Zhou et al.,
2019; Liu et al., 2020) use graph based models for
fine-grained semantic reasoning. Different from
the previous works, our model operates with claim-
evidence set pairs instead of claim-evidence sen-
tence pairs. Our model benefits from encoding,
attending and evaluating at different levels of hi-
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erarchy, as well as from both contextual and non-
contextual aggregations of the evidence sets.

3 Problem Definition

Given a set of m textual documents and a claim ci,
the problem is to find a set of evidence sentences
Êi = {s1, s2, ..., s|Êi|} and classify the claim ci
as ŷi ∈ {S,R,NEI} (i.e., SUPPORTED, RE-
FUTED or NOT ENOUGH INFO). For a success-
ful verification of the claim ci, there are two con-
ditions: (1) Êi should match at least one evidence
set in the ground truth evidence sets Ei and (2) ŷi
should match the ground truth entailment label yi.

4 Hierarchical Evidence Set Modeling

Our Hierarchical Evidence Set Modeling (HESM)
framework consists of three components namely
Document Retriever, Multi-hop Evidence Retriever
and Claim Verification. Figure 2 shows an
overview of our framework. The document re-
triever component retrieves the top K1 documents
that are relevant to the claim. The multi-hop re-
triever component retrieves the relevant top K2

evidence sets from the K1 retrieved documents via
an iterative fashion. The claim verification compo-
nent classifies the claim as SUPPORTS, REFUTES
or NOT ENOUGH INFO based on the retrieved
evidence sets. Following prior works, in our frame-
work, we reuse the document retriever component
from Nie et al. (2019), which works well in terms
of relevant document retrieval. We mainly focus
on and propose novel multi-hop evidence retriever
and claim verification components.

4.1 Document Retriever

Document retrieval is the task of selecting docu-
ments related to a given claim. First, documents
are selected by an exact match between their titles
and a span of text of the claim. In particular, the
CoreNLP toolkit (Manning et al., 2014) is used
for retrieving text spans from the claim. To ob-
tain more relevant documents, the same procedure
is applied again after eliminating articles such as
’a’, ’an’ or ’the’ from the claim, and once again
after singularizing each word in the claim. For
documents, whose titles are ambiguous (e.g., ”Sav-
ages (band)” and Savages (2012 film)), a semantic
understanding strategy based on Neural Semantic
Matching Network (NSMN) (Nie et al., 2019) is
performed to calculate the relevance of each of the

Large text corpus
(Wikipedia)

Claim

Document Retriever

Multi-hop evidence retriever Claim Verification

Top K1 documents

Top K2 Evidence setsYes No

SUPPORTS | REFUTES | NOT
ENOUGH INFO

Sentences from 
hyperlinked documents

Iter <= N

Selected Sentences

Figure 2: Our HESM framework.

documents by comparing the first line of each doc-
ument with the claim. Finally, only the top K1

ranked documents are selected.

4.2 Multi-hop Evidence Retriever

According to statistics of the FEVER dataset
(Thorne et al., 2018a), 16.82% claims require mul-
tiple evidence sentences to verify their truthfulness,
and 12.5% claims’ evidence sentences are located
across multiple documents. Based on this, we pro-
pose a multi-hop evidence retriever, which is an
iterative retrieval mechanism with N number of
iterations or hops. From analyzing the FEVER
dataset, almost all the evidence sentences are at
most two hops away from a claim, and thus can be
retrieved in two iterations. Hence, for this work, we
setN as 2. We retrieve a maximum ofK2 evidence
sets for each claim. Each evidence set contains a
maximum of Ms evidence sentences. With the re-
cent success of Transformer (Vaswani et al., 2017)
based pre-trained models in NLP, we incorporate
the ALBERT model (Lan et al., 2020) as a part
of our multi-hop evidence retriever. ALBERT is a
lightweight BERT based model that is pre-trained
on large-scale English language corpus for learning
language representation.

In the first iteration, given a claim ci, each sen-
tence j in the selected documents from the docu-
ment retriever is concatenated with the claim ci as
[[CLS];ci;[SEP ];j] and passed through the AL-
BERT model. [CLS] and [SEP ] are classifica-
tion and separator tokens required by the ALBERT
model. From the ALBERT model representation of
each input token, the representation of the [CLS]
token is pooled and fed to a linear layer classifier
to produce the two scores m+ and m− for select-
ing and discarding the sentence, respectively. In
Transformer-based models, [CLS] token is consid-
ered as a representation of the whole input. Then,
a selection probability p(x = 1|ci, j) is calculated
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as a softmax normalization between the two scores.
Only the top K2 sentences with the highest m+

scores and probability score greater than a thresh-
old thevi1 are selected.

In the second iteration, each of the K2 evidence
sentences from the first iteration is considered as
an evidence set. In the FEVER dataset, for claims
requiring multiple sentences for verification, most
of the sentences missed in the first iteration of re-
trieval are found in hyperlinked documents of the
sentences retrieved in the first iteration. Therefore,
in second iteration, the claim ci, each of the K2

evidence sentences j, and each sentence k from the
hyperlinked documents in sentence j are concate-
nated as [[CLS]; ci; [SEP ]; j; k] and fed as input
to the ALBERT model. Similar to the first iteration,
two scoresm+ andm−, and a selection probability
p(x = 1|ci, j, k) are obtained. Finally, for each
evidence sentence j, a maximum of (Ms − 1) sen-
tences with the highest m+ scores and probability
score greater than a threshold thevi2 are selected
and added to the corresponding evidence set.

4.3 Claim Verification

Claim verification is a three-way classification task
to label the claim as SUPPORTED, REFUTED, or
NOT ENOUGH INFO, based on the extracted evi-
dence. Inspired by Hierarchical Attention Network
(Yang et al., 2016), we propose a neural network
that combines evidence sets hierarchically. While
Yang et al. (2016) uses word-level and sentence-
level attention to hierarchically combine words into
sentences and sentences into a document, in this
task, we use word-level and evidence set-level at-
tention to hierarchically combine words and sen-
tences into evidence sets, and evidence sets into
an aggregated evidence. Different from Yang et al.
(2016), we propose two ways of aggregating evi-
dence sets. Also, we train each evidence set to be
able to verify the claim individually. The model
consists of two parts: (1) Evidence Set Modeling
Block that contains a word-level encoder and atten-
tion layers to model each evidence set based on its
words and sentences; and (2) Hierarchical Aggre-
gator that contains evidence set-level encoder and
attention layers to combine multiple evidence sets.

4.3.1 Evidence Set Modeling Block
The Evidence Set Modeling Block in Figure 3 takes
a claim ci and each evidence set ej as input and
returns: (1) a sequence output u1, u2, ..., uT , that
is the representation of each token in the sequence;

ALBERT

ALBERT 
Pooling

Classifier

Pooled Output
pj

Logits S/R/NEI
lj

(Word Level) 
Attention Sum Block

Summarized Vector
sj

u1 u2 u3 uT...

[CLS] + Claim + [SEP] + Evidence Set + [SEP]

Sequence Output

Figure 3: Evidence Set Modeling Block.

(2) a pooled output pj , that can be considered as a
joint representation of the claim and the evidence
set (3) a summarized vector sj , that is also a joint
representation of the claim and the evidence set ob-
tained using word-level attention; and (4) the logits
lj from classification of the claim as SUPPORTS,
REFUTES or NOT ENOUGH INFO, based on the
evidence set ej .

Word Encoder. We use the ALBERT model
for word level encoder. Let J be the number of
evidence sets retrieved for the claim ci. First,
all the sentences in an evidence set j are con-
catenated to form the evidence set sequence ej ,
where j ∈ [1, J ]. Then, the claim ci and the
evidence set sequence ej are concatenated as
[[CLS]; ci; [SEP ]; ej ; [SEP ]] to form the input
sequence xj . The word embeddings, Xj ∈ RT×d,
of the input sequence xj is obtained from the
ALBERT embedding layer, where T denotes the
number of tokens in the input sequence xj and
d is the size of the word embedding. Then, the
ALBERT model processes the input Xj and pro-
duces a sequence output u1, u2, ..., uT denoted by
Uj ∈ RT×d, which consists of the representation
of each token t in xj . The ALBERT model also
consists of a pooling layer that returns the vector
representation pj of the [CLS] token which is con-
sidered to be representation of the whole sequence
in Transformer-based models.

Uj = ALBERT(Xj) ∈ RT×d (1)

pj = ALBERT POOLER(Uj) ∈ Rd (2)

Attention Sum Block. Before describing word-
level attention, we first describe the Attention Sum
block which is used in the word-level attention. The
Attention Sum block in Figure 4 returns a weighted
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f1 f2 fR...

c1 c2 cR... uq

Softmax

a1 a2 aR...

Σ

Hidden Vectors
Dot Product

Attention Scores

Attention weights

Weighted Sum

v1 v2 vR...Value Vectors

Summarized vector

q1 q2 qR...Input Vectors

Linear Layer

Figure 4: Attention Sum Block.

sum of all the value token vectors v1 to vR, where
the weights are calculated using attention between
input token vectors q1 to qR and a trainable weight
vector uq that is randomly initialized. Each vector
qr is passed through a linear layer to get hidden
representation fr for each token r ∈ [1, R]. The
hidden representation fr is then subjected to a dot
product with the vector uq to form a scalar ct which
is the attention score for each qr. Then, softmax
is computed over all the attention scores c1 to cR
to get an attention weight ar for each token r. Fi-
nally, the value token vectors vr are subjected to
a weighted sum with attention probabilities from
the softmax operation as weights and returns the
summarized vector s. The attention weights denote
the importance of each token in the value vectors
sequence. The Attention Sum block is used in the
following Word Attention and Hierarchical Aggre-
gation components.

fr =Wqqr + bq, r ∈ [1, R] (3)

cr = fTr uq (4)

ar = softmax(cr) (5)

s =
∑
r

vrar (6)

Word Attention. In the word-level attention
component, the sequence output ut, where t ∈
[1, T ], of the evidence set j obtained from Word
Encoder is passed (as both the input qr and value vr
vectors) through the Attention Sum block to obtain
a summarized vector representation sj (denoted
as s in Attention Sum block), based on the impor-
tance of each word. sj is used in the Hierarchical

s1

Evidence Set 1

Evidence Set
Modeling Block

Evidence Set J...

Evidence Set
Modeling Block

(Evidence Set Level) Attention Sum Block

p1 lJ... sJ...

Transformer Encoder

(Evidence Set Level) Attention Sum Block

Classifier

Σ

Pooled Outputs & Logits Summarized Vectors

X Xβ1 β2

Trainable scalar weight Trainable scalar weight

Logits S/R/NEI

...

l1 pJ

Value VectorsInput Vectors

Contextual AggregationNon-Contextual Aggregation

Logits S/R/NEI

Logits S/R/NEI

Figure 5: Hierarchical Aggregation.

Aggregation component in Section 4.3.2.

sj = ATTN SUM(u1, u2, ..., uT ) ∈ Rd (7)

Classifier. The pooled output vector pj contain-
ing representation of [CLS] token from the Word
Encoder is passed through a linear layer to obtain
a three way classification score lj (SUPPORTS,
REFUTES and NOT ENOUGH INFO classes) of
the claim ci based on the evidence set ej . This
classifier verifies the claim based on the evidence
set.

lj =Wwpj + bw (8)

4.3.2 Hierarchical Aggregation Modeling
The hierarchical aggregation component in Figure
5 takes the output of the Evidence Set Modeling
block of all J evidence sets as input and produces
the three-way classification score for the claim
based on all the evidence sets. It consists of two
types of aggregations namely contextual and non-
contextual aggregations. Both components com-
pute an evidence set level attention to combine all
the evidence sets, forming a hierarchy.

Non-contextual Evidence Set Aggregation.
Non-contextual aggregation combines the logits
l1, ..., lJ of all the evidence sets to produce the
aggregated verification logits lnc. The motivation
behind using non-contextual aggregation is that the
majority of the claims need only a single evidence
sentence/evidence set for verification. Therefore,
we aggregate the logits instead of doing a contex-
tual combination of evidence sets. This helps in
avoiding the combination of context from multi-
ple evidence sets without being distracted by sen-
tences containing unnecessary information. The
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pooled output p1, ..., pJ , and the classification log-
its l1, ..., lJ of all the evidence sets, from the Ev-
idence set modeling block, are passed through
the Attention Sum block to compute the aggre-
gated representation of all the evidence sets. Here,
the sequence of vectors p1, p2, ....pJ forms the in-
put vectors of Attention Sum block and the logits
l1, l2, ..., lJ forms the value vectors of the Atten-
tion Sum block. Thus, it aggregates the logits of
all evidence sets based on the importance of each
evidence set.

lnc = ATTN SUM(p1, ..., pJ ; l1, ..., lJ) (9)

Contextual Evidence Set Aggregation. Con-
textual aggregation combines the representation
sj of each evidence set j with one another to pro-
duce the claim verification logits lc. The motiva-
tion behind using contextual aggregation is that,
even though we combine evidence sentences into
evidence sets through the multi-hop retriever, our
extracted evidence sets might not be completely
accurate for some claims (i.e., some evidence sen-
tences that belong to the same ground truth evi-
dence set might be distributed across our extracted
multiple evidence sets). Therefore, we combine
the evidence sets contextually to overcome the lim-
itation. Let S ∈ RJ×d denote the summarized
representations s1, s2, ..., sJ of all the evidence
sets [1, J ]. S is passed through a Transformer en-
coder, in order to obtain contextual representations
m1,m2, ...,mJ denoted by M ∈ RJ×d. Here, the
Transformer encoder layer ensures that the context
from one evidence set is combined with other evi-
dence sets. Then, the evidence set representations
mj , where j ∈ [1, J ], from the encoder are passed
(as both the input qr and value vr vectors) through
the Attention Sum block to obtain an aggregated
vector representation k of all the evidence sets. Fi-
nally, the vector representation k is fed into a linear
layer classifier to obtain the three way classification
logits lc of the claim.

M = Transformer Encoder(S) ∈ RJ×d (10)

k = ATTN SUM(m1,m2, ...,mJ) (11)

lc =Wsk + bs (12)

Aggregated Logits. The aggregated logits are
computed based on a weighted combination of the
scores from contextual and non-contextual aggrega-

tions. The weights β1 and β2 are trainable weights
that denote importance of each aggregation.

l = β1lc + β2lnc (13)

4.3.3 Training Loss and Inference
The three-way classification logits lj from the Evi-
dence set modeling block for each evidence set j
are subjected to a cross-entropy loss. All the losses
from each evidence set j are averaged to get an ag-
gregated loss Lesm. The aggregated classification
logits l from the Hierarchical Aggregation Mod-
eling block are subjected to a cross-entropy loss
Lham. The final loss is the sum of Lesm and Lham.

During the inference, the aggregated logits l
from the Hierarchical Aggregation Modeling is
used as the final three-way classification score of
the claim verification. The label with the maximum
score is selected as the final classification label.

5 Experiments

5.1 Experiment Setting
In this section, we describe the dataset, evaluation
metrics, baselines, and implementation details in
our experiments.

Dataset. We evaluate our framework HESM
in the FEVER dataset, a large scale fact verifica-
tion dataset (Thorne et al., 2018a). The dataset
consists of 185, 445 claims with human-annotated
evidence sentences from 5, 416, 537 documents.
Each claim is labeled as SUPPORTS, REFUTES,
or NOT ENOUGH INFO. The dataset consists of
training, development, and test sets, as shown in
Table 1. The training and development sets, along
with their ground truth evidence and labels are
available publicly. But, the ground truth evidence
and labels of the test set are not publicly available.
Instead, once extracted evidence sets/sentences and
predicted labels of the test set by a model are sub-
mitted to the online evaluation system1, its perfor-
mance is measured and displayed at the system. In
this work, we train and tune our hyper-parameters
on training and development sets, respectively.

Baselines. We compare our model against 7
state-of-the-art baselines, including the top per-
formed models from FEVER Shared task 1.0 (Nie
et al., 2019; Hanselowski et al., 2018a; Yoneda
et al., 2018), BERT based models (Soleimani et al.,
2020; Stammbach and Neumann, 2019; Zhou et al.,

1https://competitions.codalab.org/competitions/18814
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Split SUPPORTED REFUTED NOT ENOUGH INFO
Train. 80,035 29,775 35,639
Dev. 6,666 6,666 6,666
Test 6,666 6,666 6,666

Table 1: Statistics of FEVER Dataset.

2019) and graph based model (Liu et al., 2020).
Although we compare ours against all of them, the
BERT based models are our major baselines since
we use ALBERT, which is a lightweight BERT
based model. The detailed description of the base-
lines is presented in the Appendix.

Evaluation Metrics. The official evaluation
metrics of the FEVER dataset are Label Accu-
racy (LA) and FEVER score. Label Accuracy
is the three-way classification accuracy for the la-
bels SUPPORTS, REFUTES, and NOT ENOUGH
INFO, regardless of the retrieved evidence. FEVER
score considers a claim to be correctly classified
only if the retrieved evidence set matches at least
one of the ground truth evidence sets along with
the correct label. Between the two metrics, the
FEVER score is considered as the most important
evaluation metric because it considers both correct
evidence retrieval and correct label prediction.

For evidence retrieval performance evaluation,
recall and OFEVER are reported since these two
scores matter for the claim verification process.
Note that OFEVER is the oracle fever score calcu-
lated, assuming that the claim verification compo-
nent has 100% accuracy. As formulated by Thorne
et al. (2018a), a maximum of 5 evidence sentences
are extracted to calculate evidence retrieval perfor-
mance. For our model’s evaluation purpose, we
assign the score of evidence sentences retrieved in
first iteration to their corresponding evidence sets.
Then, we sort the evidence sets based on their as-
signed scores and select at most 5 sentences from
the evidence sets in the same sorted order.

Implementation, Training, and Hyperparam-
eter Tuning. We set number of retrieved docu-
ments K1 = 10, the number of iterations N = 2,
maximum number of sentences retrieved in the first
iteration per claim K2 = 3, a threshold probability
thevi1 = 0.5, the maximum number of sentences in
each Evidence set Ms = 3, another threshold prob-
ability thevi2 = 0.8. Other detailed information is
described in the Appendix.

5.2 Experimental Results and Analysis
Experiments are conducted to evaluate the perfor-
mance of evidence retrieval, claim verification, and

Model # of Iterations Recall OFEVER (%)
UNC NLP Nie et al. (2019) 1 0.868 91.19
BERT-Base Stammbach and Neumann (2019) 2 0.898 93.20
our HESM (ALBERT-Base) 2 0.905 93.70

Table 2: Evidence retrieval performance of the base-
lines and our model in development set.

Model LA(%) FEVER(%)
UKP Athene (Hanselowski et al., 2018b) 65.46 61.58
UCL MRG (Yoneda et al., 2018) 67.62 62.52
UNC NLP (Nie et al., 2019) 68.21 64.21
BERT Pair (Zhou et al., 2019) 69.75 65.18
BERT Concat (Zhou et al., 2019) 71.01 65.64
BERT (Base) (Soleimani et al., 2020) 70.67 68.50
GEAR (BERT Base) (Zhou et al., 2019) 71.60 67.10
KGAT (BERT Base) (Liu et al., 2020) 72.81 69.40
our HESM (BERT Base) 73.18 70.07
our HESM (ALBERT Base) 73.25 70.06
BERT (Large) (Soleimani et al., 2020) 71.86 69.66
BERT (Large) (Stammbach and Neumann, 2019) 72.71 69.99
KGAT (BERT Large) (Liu et al., 2020) 73.61 70.24
KGAT (RoBERTa Large) (Liu et al., 2020) 74.07 70.38
our HESM (ALBERT Large) 74.64 71.48

Table 3: Performance of the baselines and our model in
test set.

aggregation approaches. In addition, we conduct
an ablation study. Only the claim verification ex-
periment is conducted in the test set since each
baseline’s officially evaluated results are reported
in the FEVER leaderboard. In the other experi-
ments and analysis, we use the development set
since the test set does not contain the ground truth
of evidence sets/sentences and claim class labels.

5.2.1 Multi-hop evidence retrieval
As shown in Table 2, we compare the performance
of our model with two baselines, UNC NLP (Nie
et al., 2019) and BERT based model (Stammbach
and Neumann, 2019). UNC NLP uses ESIM (Chen
et al., 2017) based model, and Stammbach and
Neumann (2019) uses a BERT based model. Since
most other previous works either use ESIM based
model or BERT based model for evidence retrieval,
we compare with these two representative baselines
(i.e., the results of the other 5 baselines in evidence
retrieval would be similar to one of them). Our
HESM with ALBERT Base outperforms the base-
lines, achieving 0.905 recall and 93.70% OFEVER
score. We can also notice that multiple-hop evi-
dence retrieval approaches (ours and Stammbach
and Neumann (2019)) performed better than UNC
NLP, which conducts a single iteration.

5.2.2 Claim verification
Table 3 shows claim verification results of our
HESM model and baselines. Our model with
ALBERT Large outperforms all the baselines,
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Aggregation LA(%) FEVER(%)
Logical 68.92 66.32
Top-1 69.92 67.77
MLP 74.25 72.03
Concat 74.87 72.13
Attention-based 74.96 72.74
HESM 75.77 73.44

Table 4: Claim verification with different aggregation
methods in development set.

achieving 74.64% label accuracy (LA) and 71.48%
FEVER score. In particular, our model performed
much better than the top performed models from
FEVER Shared task 1.0 (i.e., UKP Athene, UCL
MRG, and UNC NLP). Compared with baselines
using BERT Base, our HESM with ALBERT Base
performed better than them. Likewise, compared
with baselines using large language models, our
model with ALBERT large still performed bet-
ter than them. This experimental result confirms
that our model with ALBERT large improved
1.1% FEVER score compared with the best base-
line, KGAT with RoBERTa Large, indicating our
model’s capability of producing more correct la-
bel prediction and evidence extraction. The rea-
son why we chose to use ALBERT over BERT
in our models is ALBERT consumes much less
memory and is expected to have comparable per-
formance to its BERT counterpart. Since the other
models/baselines use BERT instead of ALBERT,
for a fair comparison, we include a result of our
HESM model with BERT Base. The performance
is similar to the HESM with ALBERT Base model.
This result confirms that our framework is more
important than a specific language model used.

5.2.3 Aggregation Analysis

We compare our hierarchical aggregation with dif-
ferent baseline aggregation methods. Table 4 shows
the results of aggregation analysis in the develop-
ment set. Top-1 aggregation is using just the top-1
relevant evidence set to verify the claim. Logi-
cal aggregation involves classifying the claim as
SUPPORTS or REFUTES if at least one of the evi-
dence sets has the label SUPPORTS or REFUTES,
respectively. In case both labels appear in the ev-
idence sets, then the label from the top-scoring
evidence set is used to break the tie. If both la-
bels do not appear in any of the evidence sets, we
predict the claim as NOT ENOUGH INFO. MLP
aggregation is to use an MLP layer to aggregate
the class label probability of all the evidence sets

Model LA(%) FEVER(%)
HESM 75.77 73.44
- w/o Evidence set level Loss 75.35 72.74
- w/o Non-Contextual Aggregation 75.33 72.74
- w/o Contextual Aggregation 73.70 71.96
- w/o Multi-hop evidence retrieval 73.53 71.92

Table 5: Ablation analysis in development set.
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Figure 6: Performance of contextual and non-
contextual aggregations given different claim labels.

to get a final verification label. Concat aggregation
concatenates all the sentences in all evidence sets
into a string to verify the claim. Attention-based
aggregation is similar to the aggregation technique
used in Hanselowski et al. (2018b) using attention
between claim and each evidence set to get the im-
portance of each evidence set and then combine
them using Max and Mean pooling. Finally, our
HESM model aggregates evidence sets using hi-
erarchical aggregation. From the results, we can
see that our HESM model outperforms all other
aggregation methods.

5.2.4 Ablation Study
Table 5 shows the label accuracy and FEVER score
of our model after removing different components,
including evidence set level loss Lesm, and con-
textual and non-contextual aggregations. All of
the proposed components positively contributed to
boosting the performance of our framework.

5.2.5 Contextual and Non-contextual
Aggregations

In this section, we study the performance of contex-
tual and non-contextual aggregations in different
aspects in the development set.

Label-wise performance. Figure 6 shows per-
formance of contextual and non-contextual aggre-
gations with respect to the class labels. We use the
logits lc and lnc to calculate performance of con-
textual and non-contextual aggregations. In both
label accuracy and FEVER score, contextual ag-
gregation performs better for correctly verifying a
claim when the relevant evidence either supports
or refutes the claim, whereas non-contextual ag-
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Figure 7: Performance of contextual and non-
contextual aggregations given claims requiring differ-
ent number of evidence sentences.

Aggregation Weights Attention accuracy
Contextual 0.48 90.93
Non-contextual 0.52 92.41

Table 6: Attention analysis for contextual and non-
contextual aggregation

gregation performs better in identifying evidence
that does not have enough information to support
or refute the claim (i.e., claims with the label NOT
ENOUGH INFO). Thus, each aggregation comple-
ments the other in claim verification.

Performance on claims requiring a different
number of evidence sentences. Figure 7 shows
the performance of contextual and non-contextual
aggregations with respect to claims requiring a
different number of evidence sentences for veri-
fication. Overall refers to all the claims, Single
refers to claims requiring only a single evidence
sentence for verification, Any refers to claims for
which more than one ground truth evidence set
exists, where some sets contain a single evidence
sentence and some sets contain multiple evidence
sentences, and Multi refers to claims that can be ver-
ified only with multiple sentences. Non-contextual
aggregation performs better than contextual aggre-
gation in claims requiring only Single evidence
sentence, whereas contextual aggregation performs
better than non-contextual aggregation in claims
requiring Any and Multi evidence sentences. The
results make sense because contextual aggregation
combines the context of multiple evidence sets,
while non-contextual aggregation usually selects
one of the evidence sets based on the attention
mechanism.

Attention analysis. In Table 6 we show the
weights β1 and β2 of the final model and also the
evidence-set level attention accuracy. The attention
weights can be seen as the importance of each ag-
gregation. The attention weights show that both the
aggregations are equally important (0.48 vs. 0.52).

The attention accuracy denotes the accuracy of

the evidence set-level attention from the attention
sum block in both eq. (9) and eq. (12) of non-
contextual and contextual aggregations, respec-
tively. It evaluates whether the retrieved evidence
set from multi-hop retriever, which matches one
of the ground truth evidence sets, has the high-
est attention weight of all the retrieved evidence
sets. In cases where the evidence sentences from
the ground truth evidence set are distributed across
multiple evidence sets retrieved from multi-hop re-
triever, the attention is considered accurate if all
the matching evidence sets have higher attention
weight than the non-matching evidence sets. Here,
we consider only the claims for which the retrieved
evidence sentences match at least one ground truth
evidence set. In other words, we omit the claims
with NOT ENOUGH INFO label and also the 6.3%
claims for which the multi-hop retriever cannot re-
trieve evidence sentences that match at least one
ground truth evidence set as shown in Table 2. The
high attention accuracy for both contextual and non-
contextual aggregation shows that our evidence-set
level attention is highly capable of attending to the
correct evidence sets.

6 Conclusion

In this paper, we have proposed HESM frame-
work for automated fact extraction and verification.
HESM operates at evidence set level initially and
combines information from all the evidence sets
using hierarchical aggregation to verify the claim.
Our experiments confirm that our hierarchical evi-
dence set modeling outperforms 7 state-of-the-art
baselines, producing more accurate claim verifi-
cation. Our aggregation and ablation study show
that our hierarchical aggregation works better than
many baseline aggregation methods. Our analy-
sis of contextual and non-contextual aggregations
illustrates that the aggregations perform different
roles and positively contribute to different aspects
of fact-verification.
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A Appendix

Baselines. We compare our model with 7 state-
of-the-art baselines, including the top performed
models from FEVER Shared task 1.0 (Thorne et al.,
2018b), BERT based models, and a graph-based
model.

The top performed models from FEVER shared
task 1.0 include UNC NLP (Nie et al., 2019), UKP
Athene (Hanselowski et al., 2018a) and UCL MRG
(Yoneda et al., 2018). All three models use a
modified version of Enhanced Sequential Infer-
ence Model (Chen et al., 2017) for claim verifi-
cation. UNC NLP model concatenates all retrieved
evidence sentences together to verify the claim,
whereas UCL MRG and UKP Athene models pro-
cess each evidence sentence separately and aggre-
gate them at a later stage. UCL MRG reports the
best results with linear layer aggregation. UKP
Athene uses an attention-based aggregation.

The BERT based models include Soleimani et al.
(2020); Stammbach and Neumann (2019); Zhou
et al. (2019). Soleimani et al. (2020) uses BERT-
base and BERT-large for evidence retrieval and
claim verification, respectively. They also ex-
periment with both pairwise and point-wise rank-
ing for evidence retrieval. Stammbach and Neu-
mann (2019) uses two iterations of evidence re-
trieval similar to our work, but different from our
work, they concatenate all the sentences retrieved.
Zhou et al. (2019) reports performance for both
BERT-concat that concatenates all the sentences
and BERT-pair model that processes each claim-
evidence sentence pair separately. GEAR (Zhou
et al., 2019) uses BERT Base as backbone and
aggregates claim-evidence sentence pair using a
fully-connected graph-based evidence reasoning
network. A graph-based model KGAT (Liu et al.,
2020) uses a modified version of Graph Attention
Network (Veličković et al., 2018) to model a graph
constructed from claim and evidence. KGAT ex-
periments with both BERT Base and BERT Large
models as its backbone.

Detailed Implementation, Training and Hy-
perparameter Tuning. For training the document
retriever, Adam optimizer (Kingma and Ba, 2015)
is used with a batch size of 128, and cross-entropy
loss is used. The maximum number of retrieved
documents K1 is set to 10. In the Multi-hop evi-
dence retrieval stage, the number of iterations N
is set to 2. For both iterations, the ALBERT-Base
model for sequence classification is used and is

trained using a batch size of 64 along with AdamW
optimizer (Loshchilov and Hutter, 2019) and a
learning rate of 5e-5. In the first iteration, we set
the threshold probability thevi1 as 0.5, and the max-
imum number of sentences per claim K2 to 3. We
also use the annealed sampling strategy followed
by Nie et al. (2019) to decrease the number of nega-
tive examples after each epoch so that model learns
to be more tolerant about selecting sentences while
being discriminative enough to filter out apparent
negative sentences.

In the second iteration, we use the ALBERT-
Base model to retrieve relevant sentences in hyper-
linked documents of evidence sentences retrieved
in the first iteration. Similar to the first iteration,
we use annealed sampling here as well. We set
the maximum number of sentences in an Evidence
set, Ms to be 3. Finally, we choose either K2 evi-
dence sets or lesser, if a lesser number of evidence
sets leads up to 5 evidence sentences since only 5
evidence sentences are considered for calculating
FEVER score. We set the threshold probability
thevi2 to 0.8 since we find that the model is able
to retrieve correct evidence sentences with a high
probability. Cross entropy loss is used in both iter-
ations. Both the iterations are trained for 4 epochs.

Finally, in the claim verification stage, we use the
hierarchical evidence set aggregator, which uses the
ALBERT model as its backbone. We use AdamW
optimizer with a batch size of 32 and a learning rate
of 2e-5 and 4 epochs to train our final model. It also
uses a 2 layer transformer encoder for evidence-set
level encoding.

We use the PyTorch framework to optimize both
Multi-hop evidence retriever and claim verification
components. We use grid-search on development
set to search over a batch size from {32, 64}, a
learning rate from {2e-5, 5e-5}, and number of
epochs from {2, 4, 6}. The maximum number of
evidence sets K2 is selected from {2, 3, 4} and
maximum number of sentences per evidence set
Ms is selected from {2, 3, 4}. In claim verifica-
tion, the number of transformer encoder layers in
contextual aggregation is selected from {1, 2, 3}.


