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Abstract

Word sense disambiguation is a well-known
source of translation errors in NMT. We posit
that some of the incorrect disambiguation
choices are due to models’ over-reliance on
dataset artifacts found in training data, specif-
ically superficial word co-occurrences, rather
than a deeper understanding of the source
text. We introduce a method for the predic-
tion of disambiguation errors based on statisti-
cal data properties, demonstrating its effective-
ness across several domains and model types.
Moreover, we develop a simple adversarial at-
tack strategy that minimally perturbs sentences
in order to elicit disambiguation errors to fur-
ther probe the robustness of translation models.
Our findings indicate that disambiguation ro-
bustness varies substantially between domains
and that different models trained on the same
data are vulnerable to different attacks.1

1 Introduction

Consider the sentence John met his wife in the hot
spring of 1988. In this context, the polysemous
term spring unambiguously refers to the season
of a specific year. Its appropriate translation into
German would therefore be Frühling (the season),
rather than one of its alternative senses, such as
Quelle (the source of a stream). To contemporary
machine translation systems, however, this sen-
tence presents a non-trivial challenge, with Google
Translate (GT) producing the following translation:
John traf seine Frau in der heißen Quelle von 1988.

Prior studies have indicated that neural machine
translation (NMT) models rely heavily on source
sentence information when resolving lexical am-
biguity (Tang et al., 2019). This suggests that the
combined source contexts in which a specific sense
of an ambiguous term occurs in the training data

1Experimental codebase available at http://github.
com/demelin/detecting_wsd_biases_for_nmt

greatly inform the models’ disambiguation deci-
sions. Thus, a stronger correlation between the
English collocation hot spring and the German
translation Quelle, as opposed to Frühling, in the
training corpus may explain this disambiguation
error. Indeed, John met his wife in the spring of
1988 is translated correctly by GT.

We propose that our motivating example is repre-
sentative of a systematic pathology NMT systems
have yet to overcome when performing word sense
disambiguation (WSD). Specifically, we hypothe-
size that translation models learn to disproportion-
ately rely on lexical correlations observed in the
training data when resolving word sense ambigu-
ity. As a result, disambiguation errors are likely
to arise when an ambiguous word co-occurs with
words that are strongly correlated in the training
corpus with a sense that differs from the reference.

To test our hypothesis, we evaluate whether
dataset artifacts are predictive of disambiguation
decisions made in NMT. First, given an ambigu-
ous term, we define a strategy for quantifying how
much its context biases NMT models towards its
different target senses, based on statistical patterns
in the training data. We validate our approach by
examining correlations between this bias measure
and WSD errors made by baseline models. Further-
more, we investigate whether such biases can be
exploited for the generation of minimally-perturbed
adversarial samples that trigger disambiguation er-
rors. Our method does not require access to gra-
dient information nor the score distribution of the
decoder, generates samples that do not significantly
diverge from the training domain, and comes with a
clearly-defined notion of attack success and failure.

The main contributions of this study are:

1. We present evidence for the over-reliance of
NMT systems on inappropriate lexical corre-
lations when translating polysemous words.

http://github.com/demelin/detecting_wsd_biases_for_nmt
http://github.com/demelin/detecting_wsd_biases_for_nmt
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2. We propose a method for quantifying WSD
biases that can predict disambiguation errors.

3. We leverage data artifacts for the creation of
adversarial samples that facilitate WSD errors.

2 Can WSD errors be predicted?

To evaluate whether WSD errors can be effectively
predicted, we first propose a method for measur-
ing the bias of sentence contexts towards different
senses of polysemous words, based on lexical co-
occurrence statistics of the training distribution.
We restrict our investigation to English→German,
although the presented findings can be assumed to
be language-agnostic. To bolster the robustness
of our results, we conduct experiments in two do-
mains - movie subtitles characterized by casual lan-
guage use, and the more formal news domain. For
the former, we use the OpenSubtitles2018 (OS18)
(Lison et al., 2019) corpus2, whereas the latter is
represented by data made available for the news
translation task of the Fourth Conference on Ma-
chine Translation (WMT19)3 (Barrault et al., 2019).
Appendix A.1 reports detailed corpus statistics.

2.1 Quantifying disambiguation biases
An evaluation of cross-lingual WSD errors presup-
poses the availability of certain resources, includ-
ing a list of ambiguous words, a lexicon containing
their possible translations, and a set of parallel sen-
tences serving as a disambiguation benchmark.

Resource collection
Since lexical ambiguity is a pervasive feature of
natural language, we limit our study to homographs
- polysemous words that share their written form
but have multiple, unrelated meanings. We further
restrict the set of English homographs to nouns that
are translated as distinct German nouns, so as to
confidently identify disambiguation errors, while
minimizing the models’ ability to disambiguate
based on syntactic cues. English homographs are
collected from web resources4, excluding those that
do not satisfy the above criteria. Refer to appendix
A.2 for the full homograph list.

We next compile a parallel lexicon of homograph
translations, prioritizing a high coverage of all pos-
sible senses. Similar to (Raganato et al., 2019),

2http://opus.nlpl.eu
3http://statmt.org/wmt19
4http://7esl.com/homographs

http://en.wikipedia.org/wiki/List_of_
English_homographs

we obtain sense-specific translations from cross-
lingual BabelNet (Navigli and Ponzetto, 2010)
synsets. Since BabelNet entries vary in their granu-
larity, we iteratively merge related synsets as long
as they have at least three German translations in
common or share at least one definition.5 This
leaves us with multiple sense clusters of semanti-
cally related German translations per homograph.
To further improve the quality of the lexicon, we
manually clean and extend each homograph en-
try to address the noise inherent in BabelNet and
its incomplete coverage.6 Appendix A.7 provides
examples of the final sense clusters.

In order to identify sentence contexts specific
to each homograph sense, parallel sentences con-
taining known homographs are extracted from the
training corpora in both domains. We lemmatize
homographs, their senses, and all sentence pairs
using spaCy (Honnibal and Montani, 2017) to im-
prove the extraction recall. Homographs are further
required to be aligned with their target senses ac-
cording to alignments learned with fast align (Dyer
et al., 2013). Each extracted pair is assigned to one
homograph sense cluster based on its reference ho-
mograph translation. Pairs containing homograph
senses assigned to multiple clusters are ignored, as
disambiguation errors are impossible to detect in
such cases.

Bias measures

It can be reasonably assumed that context words co-
occurring with homographs in a corpus of natural
text are more strongly associated with some of their
senses than others. Words that are strongly corre-
lated with a specific sense may therefore bias mod-
els towards the corresponding translation at test
time. We refer to any source word that co-occurs
with a homograph as an attractor associated with
the sense cluster of the homograph’s translation.
Similarly, we denote the degree of an attractor’s as-
sociation with a sense cluster as its disambiguation
bias towards that cluster. Table 1 lists the most fre-
quent attractors identified for the different senses
of the homograph spring in the OS18 training set.

Intuitively, if an NMT model disproportionately
relies on simple surface-level correlations when re-
solving lexical ambiguity, it is more likely to make
WSD errors when translating sentences that contain

5A manual inspection found the clusters to be meaningful.
6The lexicon is released as part of our experimental

code: http://github.com/demelin/detecting_
wsd_biases_for_nmt.

http://opus.nlpl.eu
http://statmt.org/wmt19
http://7esl.com/homographs
http://en.wikipedia.org/wiki/List_of_English_homographs
http://en.wikipedia.org/wiki/List_of_English_homographs
http://github.com/demelin/detecting_wsd_biases_for_nmt
http://github.com/demelin/detecting_wsd_biases_for_nmt
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season water source device

summer hot like
winter water back
come find thing

Table 1: Examples of attractors for spring.

strong attractors towards a wrong sense. To test this,
we collect attractors from the extracted parallel sen-
tences, quantifying their disambiguation bias (DB)
using two metrics: Raw co-occurrence frequency
(FREQ) and positive point-wise mutual informa-
tion (PPMI) between attractors and homograph
senses. FREQ is defined in Eqn.1, while Eqn.2
describes PPMI, with w ∈ V denoting an attractor
term in the source vocabulary7, and sc ∈ SC de-
noting a sense cluster in the set of sense clusters
assigned to a homograph. For PPMI, P (wi, scj),
P (wi), and P (scj) are estimated via relative fre-
quencies of (co-)occurrences in training pairs.

FREQ(wi, scj) = Count(wi, scj) (1)

PPMI(wi, scj) = max(
P (wi, scj)

P (wi)P (scj)
, 0) (2)

The disambiguation bias associated with the entire
context of a homograph is obtained by averaging
sense-specific bias values DB(wi, scj) of all attrac-
tors in the source sentence S = {w1, w2, ..., w|S|},
as formalized in Eqn.3. Context words that are not
known attractors of scj are assigned a disambigua-
tion bias value of 0.

DB(S, scj) =
1

|S|

|S|∑
i=1

DB(wi, scj) (3)

As a result, sentences containing a greater number
of strong attractors are assigned a higher bias score.

2.2 Probing NMT models
To evaluate the extent to which sentence-level dis-
ambiguation bias is predictive of WSD errors made
by NMT systems, we train baseline translation
models for both domains. The baselines include
Transformer (Vaswani et al., 2017), LSTM (Lu-
ong et al., 2015), and convolutional Seq-to-Seq
(ConvS2S) (Gehring et al., 2017) models of com-
parable size. Appendix A.4 details the training

7We consider any word that co-occurs with a homograph in
the training corpus as an attractor of the homograph’s specific
sense cluster, except for the homograph itself which is not
regarded as an attractor for any of its known sense clusters.

regime and hyper-parameter choices. SacreBLEU
(Post, 2018) scores reported in Table 2 indicate that
all models are reasonably competent.

WMT

Architecture OS18 test test 2014 test 2019

Transformer 29.7 27.5 38.2

LSTM 27.7 24.1 34.3

ConvS2S 27.7 23.5 32.5

Table 2: EN-DE translation performance (BLEU).

Test sets for WSD error prediction are con-
structed by extracting parallel sentences from held-
out, development, and test data (see appendix A.1
for details). The process is identical to that de-
scribed in section 2.1, with the added exclusion of
source sentences shorter than 10 tokens, as they
may not provide enough context. For each source
sentence, disambiguation bias values are computed
according to equation 3, with scj corresponding
to either the correct sense cluster (DB3) or the in-
correct sense cluster with the strongest bias (DB7).
Additionally, we consider the difference DBDIFF
between DB7 and DB3 which can be interpreted as
the overall statistical bias in a source sentence to-
wards an incorrect homograph translation. All bias
scores are computed either using FREQ or PPMI.

We examine correlations between the proposed
bias measures and WSD errors produced by the in-
domain baseline models. Translations are consid-
ered to contain WSD errors if the target homograph
sense does not belong to the same sense cluster as
its reference translation. We check this by looking
up target words aligned with source homographs
according to fast align. To estimate correlation
strength we employ the ranked biserial correla-
tion (RBC) metric8 (Cureton, 1956) and measure
statistical significance using the Mann-Whitney U
(MWU) test (Mann and Whitney, 1947).

In order to compute the RBC values, test sen-
tences are divided into two groups - one containing
correctly translated source sentences and another
comprised of source sentences with incorrect ho-
mograph translations. Next, all possible pairs are
constructed between the two groups, pairing to-
gether each source sentence from one group with
all source sentences from the other. Finally, the

8We additionally used the non-parametric generalization
of the Common Language Effect Size (Ruscio, 2008) for cor-
relation size estimation, but couldn’t detect any advantages
over RBC in our experimental setting.
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Model FREQ3 PPMI3 FREQ7 PPMI7 FREQDIFF PPMIDIFF Length

OS18 Transformer -0.532 -0.578 0.327 0.474 0.708 0.674 0.018

OS18 LSTM -0.468 -0.504 0.386 0.486 0.690 0.630 0.008

OS18 ConvS2S -0.477 -0.514 0.391 0.492 0.723 0.658 0.021

WMT19 Transformer -0.610 -0.668 0.415 0.579 0.687 0.677 -0.004

WMT19 LSTM -0.661 -0.698 0.376 0.574 0.725 0.708 -0.009

WMT19 ConvS2S -0.648 -0.678 0.408 0.599 0.731 0.710 0.000

Table 3: Rank biserial correlation between disambiguation bias measures and lexical disambiguation errors.

proportion of pairs f where the DB score of the
incorrectly translated sentence is greater than that
of the correctly translated sentence is computed, as
well as the proportion of pairs u where the opposite
relation holds. The RBC value is then obtained
according to Eqn.4.

RBC = f − u (4)

Statistical significance, on the other hand, is es-
timated by ranking all sentences in the test set
according to their DB score in ascending order
while resolving ties, and computing the U-value
according to Eqn.5-7, where R1 denotes to the sum
of ranks of sentences with incorrectly translated
homographs and n1 their total count, while R2

denotes the sum of ranks of correctly translated
sentences and n2 their respective total count.

U = min(U1, U2) (5)

U1 = R1 −
n1(n1 + 1)

2
(6)

U2 = R2 −
n2(n2 + 1)

2
(7)

To obtain the p-values, U-values are subjected to
tie correction and normal approximation.9

Table 3 summarizes the results10, including cor-
relation estimates between WSD errors and source
sentence length, as a proxy for disambiguation con-
text size. Statistically significant correlations are
discovered for all bias estimates based on attrac-
tors (p < 1e-5, two-sided). Moreover, the observed
correlations exhibit a strong effect size (McGrath

9We use Python implementations of RBC and MWU pro-
vided by the pingouin library (Vallat, 2018).

10Positive values denote a positive correlation between bias
measures and the presence of disambiguation errors in model
translations, whereas negative values denote negative correla-
tions. The magnitude of the values, meanwhile, indicates the
correlations’ effect size.

and Meyer, 2006). See appendix A.5 for the model-
specific effect size interpretation thresholds. For
all models and domains the strongest correlations
are observed for DBDIFF derived from simple co-
occurrence counts.

Challenge set evaluation

To establish the predictive power of the uncovered
correlations, a challenge set of 3000 test pairs with
the highest FREQDIFF score is subsampled from
the full WSD test pair pool in both domains. In
addition, we create secondary sets of equal size by
randomly selecting pairs from each pool. As Fig-
ure 1 illustrates, our translation models exhibit a
significantly higher WSD error rate - by a factor of
up to 6.1 - on the challenge sets as compared to the
randomly chosen pairs. While WSD performance
is up to 96% on randomly chosen sentences, per-
formance drops to 77–82% for the best-performing
model (Transformer). This suggests that lexical
association artifacts, from which the proposed dis-
ambiguation bias measure is derived, can be an
effective predictor of lexical ambiguity resolution
errors across model architectures and domains.

Figure 1: WSD errors in subsampled challenge sets.
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The observed efficacy of attractor co-occurrence
counts for WSD error prediction may be partially
due to sense frequency effects, since more frequent
senses occur in more sentence pairs, yielding more
frequent attractors. NMT models are known to un-
derperform on low-frequency senses of ambiguous
terms (Rios et al., 2017), prompting us to inves-
tigate if disambiguation biases capture the same
information. For this purpose, another challenge
set of 3000 pairs is constructed by prioritizing pairs
assigned to the rarest among each homograph’s
sense sets. We find that the new challenge set has a
72.63% overlap with the disambiguation bias chal-
lenge set in the OS18 domain and 64.4% overlap in
the WMT19 domain. Thus, disambiguation biases
appear to indeed capture some sense frequency ef-
fects, which themselves represent a dataset artifact,
but also introduce novel information.

Our experimental findings indicate that trans-
lation models leverage undesirable surface-level
correlations when resolving lexical ambiguity and
are prone to disambiguation errors in cases where
learned statistical patterns are violated. Next, we
use these insights for the construction of adversar-
ial samples that cause disambiguation errors by
minimally perturbing source sentences.

3 Adversarial WSD attacks on NMT

Adversarial attacks probe model robustness by at-
tempting to elicit incorrect predictions with per-
turbed inputs (Zhang et al., 2020). By crafting ad-
versarial samples that explicitly target WSD capa-
bilities of NMT models, we seek to provide further
evidence for their susceptibility to dataset artifacts.

3.1 Generating adversarial WSD samples

Our proposed attack strategy is based on the as-
sumption that introducing an attractor into a sen-
tence can flip its inherent disambiguation bias to-
wards the attractor’s sense cluster. Thus, transla-
tions of the so perturbed sentence will be more
likely to contain WSD errors. The corresponding
sample generation strategy consists of four stages:

1. Select seed sentences containing homographs
to be adversarially perturbed.

2. Identify attractors that are likely to yield fluent
and natural samples.

3. Apply perturbations by introducing attractors
into seed sentences.

4. Predict effective adversarial samples based on
attractor properties.

The targeted attack is deemed successful if a victim
model accurately translates the homograph in the
seed sentence, but fails to correctly disambiguate
it in the adversarially perturbed sample, instead
translating it as one of the senses belonging to the
attractor’s sense cluster. This is a significantly more
challenging attack success criterion than the gen-
eral reduction in test BLEU typically employed
for evaluating adversarial attacks on NMT systems
(Cheng et al., 2019). Samples are generated using
homographs and attractors collected in section 2.1,
while all test sentence pairs extracted in section
2.2 form the domain-specific seed sentence pools.
Attack success is evaluated on the same baseline
translation models as used throughout section 2.

Seed sentence selection
In order to generate informative and interesting
adversarial samples, we focus on seed sentences
that are likely to be unambiguous. We thus apply
three filtering heuristics to seed sentence pairs:

• Sentences have to be at least 10 tokens long.

• We mask out the correct homograph sense in
the reference translation and use a pre-trained
German BERT model (Devlin et al., 2019)11

to predict it. Pairs are rejected if the most prob-
able sense does not belong to the correct sense
cluster which suggests that the sentence con-
text may be insufficient for correctly disam-
biguating the homograph. As a result, WSD
errors observed in model-generated transla-
tions of the constructed adversarial samples
are more likely to be due to the applied adver-
sarial perturbations.

• 10% of pairs with the highest disambiguation
bias towards incorrect sense clusters are re-
moved from the seed pool.

Setting the rejection threshold above 10% can fur-
ther reduce WSD errors in seed sentences. At the
same time, it would likely render minimal perturba-
tions ineffective, due to the sentences’ strong bias
towards the correct homograph sense. Thus, we
aim for a working compromise.

11We use the implementation provided by the Hugging Face
Transformers library (Wolf et al., 2019). We do not fine-tune
BERT, as our use case corresponds to its original masked
language modeling objective.
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IH During this first spring, he planted another tree that looked the same.

RH A hot new spring will conquer the dark nights of winter.

InH Come the spring, I will be invading the whole country called Frankia.

RnH After a long, eternal fallow winter, spring has come again to Fredericks Manor.

Table 4: Perturbation examples; seed sense: season, adversarial sense: water source. Insertion/replacement in red.

Perturbation types

Naively introducing new words into sentences is
expected to yield disfluent, unnatural samples. To
counteract this, we constrain candidate attractors to
adjectives, since they can usually be placed in front
of English nouns without violating grammatical
constraints. We consider four perturbation types:

• Insertion of the attractor adjective in front of
the homograph (IH)

• Replacement of a seed adjective modifying
the homograph (RH)

• Insertion of the attractor adjective in front of
a non-homograph noun (InH)

• Replacement of a seed adjective modifying a
non-homograph noun (RnH)

Replacement strategies require seed sentences to
contain adjectives, but can potentially have a
greater impact on the sentence’s disambiguation
bias by replacing attractors belonging to the cor-
rect sense cluster. Examples for each generation
strategy are given in Table 4, with homographs
highlighted in blue and added attractors in red.

Attractor selection

Since adjectives are subject to selectional prefer-
ences of homograph senses, not every attractor will
yield a semantically coherent adversarial sample.
For instance, inserting the attractor flying in front of
the homograph bat in a sentence about baseball will
likely produce a nonsensical expression, whereas
an attractor like huge would be more acceptable.
We attempt to control for this type of disfluency
by only considering attractors that had been previ-
ously observed to modify the homograph in its seed
sentence sense. For non-homograph perturbations,
attractors must have been observed modifying the
non-homograph noun. This is ensured by obtain-
ing a dependency parse for each sentence in the
English half of the training data and maintaining

a list of modifier adjectives for each known target
homograph sense set and source noun.12

Lastly, to facilitate the fluency and naturalness
of adversarial samples, the generation process in-
corporates a series of constraints:

• Comparative and superlative adjective forms
are excluded from the attractor pool.

• Attractors may not modify compound nouns
due to less transparent selectional preferences.

• Attractors are not allowed next to other adjec-
tives modifying the noun, to avoid violating
the canonical English adjective order.

As all heuristics rely on POS taggers or dependency
parsers,13 they are not free of noise, occasionally
yielding disfluent or unnatural samples.

We restrict the number of insertions or replace-
ments to one, so as to maintain a high degree of
semantic similarity between adversarial samples
and seed sentences. A single seed sentence usu-
ally yields several samples, even after applying the
aforementioned constraints. Importantly, we gener-
ate samples using all retained attractors at this stage,
without selecting for expected attack success.

Post-generation filtering
To further ensure the naturalness of generated sam-
ples, sentence-level perplexity is computed for each
seed sentence and adversarial sample using a pre-
trained English GPT2 (Radford et al., 2019) lan-
guage model.14 Samples are rejected if their per-
plexity exceeds that of their corresponding seed
sentence by more than 20%. In total, we obtain
a pool of ∼500K samples for the OS18 domain
and∼3.9M samples for the WMT19 domain. Each
sample is translated by all in-domain models.

3.2 Identifying effective attractors
The success of the proposed attack strategy relies
on the selection of attractors that are highly likely

12This assumes correctness of homograph reference trans-
lations, which is unfortunately not always guaranteed.

13We use spaCy in all cases.
14As implemented in the Transformers library.
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Model FREQ7 PPMI7 FREQDIFF PPMIDIFF

OS18 Transformer 0.307 0.367 0.438 0.306

OS18 LSTM 0.258 0.261 0.375 0.227

OS18 ConvS2S 0.228 0.174 0.325 0.165

WMT19 Transformer 0.241 0.241 0.264 0.224

WMT19 LSTM 0.278 0.256 0.316 0.231

WMT19 ConvS2S 0.304 0.270 0.328 0.216

Table 5: Rank biserial correlation between attractors’ disambiguation bias and attack success.

to flip the homograph translation from the correct
seed sense towards an adversarial sense belonging
to the attractors’ own sense set. To identify such
attractors, we examine correlations between attrac-
tors’ disambiguation biases and the effectiveness
of adversarial samples containing them. The attrac-
tors’ bias values are based either on co-occurrence
frequencies (Eqn.1) or PPMI scores (Eqn.2) with
the homographs’ sense clusters. In particular, we
examine the predictive power of an attractor’s bias
towards the adversarial sense cluster (DB7) as well
as the difference between its adversarial and seed
bias values (DBDIFF). As before, RBC and MWU
measures are used to estimate correlation strength,
with Table 5 summarizing the results.

Similarly to the findings reported in section 2.2,
all uncovered correlations are strong and statisti-
cally significant with p < 1e-5 (see appendix A.5
for effect size thresholds). Importantly, FREQDIFF
exhibits the strongest correlation in all cases.

We are furthermore interested in establishing
which of the proposed perturbation methods yields
most effective attacks. For this purpose, we exam-
ine the percentage of attack successes per pertur-
bation strategy in Figure 2, finding perturbations
proximate to the homograph to be most effective.

Figure 2: Successful attacks per perturbation.

Challenge set evaluation

Having thus identified a strategy for selecting at-
tractors that are likely to yield successful attacks,
we construct a challenge set of 10000 adversarial
samples with the highest attractor FREQDIFF scores
that had been obtained via the IH or RH perturba-
tions. To enforce sample diversity, we limit the
number of samples to at most 1000 per homograph.
Additionally, we create equally-sized, secondary
challenge sets by drawing samples at random from
each domain’s sample pool. Figure 3 illustrates
the attack success rate for both categories, while
Table 6 shows some of the successful attacks on
the OS18 transformer. Further successful samples
are reported in Appendix A.7.

Figure 3: Successful challenge sets attacks.

The success rates are modest, ranging from
4.62% to 24.39%, but nonetheless showcase the
capacity of targeted, minimal perturbations for flip-
ping correct homograph translations towards a spe-
cific sense set. Since our attacks do not require
access to model gradients or predictive score distri-
butions, fall within the same domain as the models’
training data, and have a strict notion of success,
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Source input / Original output / Perturbed output Seed sense Adv. sense

S: We played the songs again until we felt they sounded right, worked out all the (nasty) bugs.
O: Wir spielten die Lieder wieder, bis sie sich richtig anhörten und alle Fehler3 ausarbeiteten.
P: Wir spielten die Lieder wieder, bis sie sich richtig anhörten und alle bösen Käfer7 ausarbeiteten. error insect

S: The driver gets out, opens the (large) boot, takes some flowers out to deliver.
O: Der Fahrer steigt aus, öffnet den Kofferraum3, nimmt ein paar Blumen zum Ausliefern mit.
P: Der Fahrer steigt aus, öffnet den großen Stiefel7, nimmt ein paar Blumen zum Ausliefern mit. trunk shoe

S: The doctor somehow got that wig mixed up with the newspapers and (different) letters.
O: Der Arzt verwechselte die Perücke mit den Zeitungen und Briefen3.
P: Der Arzt verwechselte die Perücke mit den Zeitungen und anderen Buchstaben7. message character

S: And he will not cease until every last race of the Four Lands is destroyed.
O: Und er wird nicht aufgeben, bis jede Rasse3 der Vier Länder ausgelöscht ist.
P: Und er wird nicht aufhören, bis jedes letzte Rennen7 der Vier Länder zerstört ist. ethnic group contest

Table 6: Examples of successful attacks on the OS18 transformer. Homographs are blue, attractors are red.

direct comparisons with previous work are difficult.
Crucially, compared with a random sample selec-
tion strategy, subsampling informed by attractors’
disambiguation bias is up to 4.25 times more suc-
cessful at identifying effective adversarial samples.

While the relative improvement in attack success
rate over the random baseline is comparable in both
domains, the OS18 models are more susceptible to
attacks in absolute terms. This may be due to their
lower quality, or the properties of the training data,
which can suffer from noisiness (Lison et al., 2019).
Interestingly, the relative robustness of individual
model architectures to WSD attacks also differs
between domains, despite similar quality in terms
of BLEU (see Table 2). A more thorough investi-
gation of architecture-specific WSD vulnerabilities
is left for future work.

3.3 Sample quality analysis

To examine whether our adversarial samples would
appear trivial and innocuous to human translators,
automatic and human evaluation of samples in-
cluded in the challenge set is conducted. Following
(Morris et al., 2020), we use a grammar checker15

to evaluate the number of cases in which adversar-
ial perturbations introduce grammatical errors. In
the OS18 domain, only 1.04% of samples are less
grammatical than their respective seed sentences,
whereas this is the case for 2.04% of WMT19 sam-
ples, indicating a minimal degradation.

We additionally present two bilingual judges
with 1000 samples picked at random from adver-
sarial challenge sets in both domains and 1000
regular sentences from challenge sets constructed
in section 2.2. For each adversarial source sen-

15http://languagetool.org

tence, annotators were asked to choose whether the
homograph’s translation belongs to the correct or
adversarial seed cluster. For each regular sentence,
the choice was between the correct and randomly
selected clusters. Across both domains, annotator
error rate was 11.23% in the adversarial setting and
11.45% for regular sentences. As such, the gener-
ated samples display a similar degree of ambiguity
to natural sentences that are likely to elicit WSD
errors in NMT models. Annotator agreement was
substantial (Cohen’s kappa = 0.7).

The same judges were also asked to rate the nat-
uralness of each sentence on a Likert scale from
1 to 5. Perturbed sentences were assigned a mean
score of 3.94, whereas regular sentences scored
higher at 4.18. However, annotator agreement was
low (weighted Kappa = 0.17). The observed drop
in naturalness is likely due to the selection of at-
tractors that are not fully consistent with the se-
lectional preferences of homograph senses during
sample generation. We attribute this to WSD er-
rors in reference translations. For instance, we find
that the attractor vampire is occasionally applied to
seed sentences containing the homograph bat in its
sporting equipment sense, which can only occur if
the attractor has been observed to modify this sense
cluster in the training data (see 3.1). Appendix A.6
replicates annotator instructions for both tasks.

4 Transferability of adversarial samples

An interesting question to consider is whether trans-
lation models trained on the same data are vulner-
able to the same adversarial samples. We eval-
uate this by computing the Jaccard similarity in-
dex between successful attacks on each baseline
model from the entire pool of adversarial samples

http://languagetool.org
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described in section 3.2. We find the similarity to
be low, raging between 10.1% and 18.2% for OS18
and between 5.7% and 9.1% for WMT19 samples,
which suggests that different model architectures
appear to be sensitive to different corpus artifacts,
possibly due to differences in their inductive biases.

Considering the observed discrepancy in vulner-
abilities between architectures, a natural follow-up
question is whether two different instances of the
same architecture are susceptible to the same set
of attacks. We investigate this by training a second
transformer model for each domain, keeping all
settings constant with the initial models, but choos-
ing a different seed for the random initialization.
While the similarity between sets of successful ad-
versarial samples is greater for two models of the
same type, with 25.2% in the OS18 and 12.4% in
WMT19 domain, is it still remarkably low.

5 Literature review

Polysemous terms represent a long-standing chal-
lenge for NMT. Past investigations sought to
quantify the WSD capacity of translation models
through challenge sets (Rios et al., 2017; Raganato
et al., 2019), to understand the disambiguation
process by analysing their internal representations
(Marvin and Koehn, 2018; Tang et al., 2019), or to
improve ambiguity resolution capabilities of trans-
lation models (Rios et al., 2017; Liu et al., 2018).
To our knowledge, no study so far has examined
the interaction between training data artifacts and
WSD performance in detail.

Dataset artifacts, on the other hand, have pre-
viously been shown to enable models to make
correct predictions based on incorrect or insuffi-
cient information (McCoy et al., 2019; Gururangan
et al., 2018) by over-relying on spurious correla-
tions present in the training data. Within NMT,
models were found to exhibit gender-bias, rein-
forcing harmful stereotypes (Vanmassenhove et al.,
2018; Stanovsky et al., 2019). As a response, strate-
gies have been proposed for de-biasing the training
data (Li and Vasconcelos, 2019; Le Bras et al.,
2020), as well as for making models more robust to
data biases through adversarial training (Belinkov
et al., 2019).

Adversarial attacks have recently been extended
as an effective model analysis tool from vision to
language tasks (Samanta and Mehta, 2017; Alzan-
tot et al., 2018; Glockner et al., 2018; Zhang et al.,
2019), including NMT (Cheng et al., 2018, 2019),

where the focus so far has been on strategies re-
quiring direct access to the victim model’s loss
gradient or output distribution. Recent surveys
suggested that state-of-the-art attacks often yield
ungrammatical and meaning-destroying samples,
thus diminishing their usefulness for the evaluation
of model robustness (Michel et al., 2019; Morris
et al., 2020). Targeted attacks on WSD abilities
of translation models have so far remained unex-
plored.

6 Conclusion

We conducted an initial investigation into leverag-
ing data artifacts for the prediction of WSD errors
in machine translation and proposed a simple ad-
versarial attack strategy based on the presented
insights. Our results show that WSD is not yet a
solved problem in NMT, and while the general per-
formance of popular model architectures is high,
we can identify or create sentences where models
are more likely to fail due to data biases.

The effectiveness of our methods owes to neu-
ral models struggling to accurately distinguish be-
tween meaningful lexical correlations and super-
ficial ones. As such, the presented approach is
expected to be transferable to other language pairs
and translation directions, assuming that the em-
ployed translation models share this underlying
weakness. Given the model-agnostic nature of our
findings, this is likely to be the case.

As a continuation to this work, we intend to eval-
uate whether multilingual translation models are
more resilient to lexical disambiguation biases and,
as a consequence, are less susceptible to adver-
sarial attacks that exploit source-side homography.
Extending model-agnostic attack strategies to in-
corporate other types of dataset biases and to target
natural language processing tasks other than ma-
chine translation is likewise a promising avenue for
future research. Lastly, the targeted development
of models that are resistant to dataset artifacts is a
promising direction that is likely to aid generaliza-
tion across linguistically diverse domains.
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A Supplementary material

A.1 Data properties

The WMT19 data is obtained by concatenating the
Europarl v9, Common Crawl, and News Commen-
tary v14 parallel corpora. Basic data cleaning is
performed for both domains, which includes re-
moval of pairs containing sentences classified by
langid16 as neither German or English and pairs
with a source-to-target sentence length ratio exceed-
ing 2. We create development and training splits
for the OS18 domain by removing 10K sentence
pairs from the full, shuffled corpus in each case.
For each domain, we additionally hold-out 20%
of pairs to be used for the extraction of test pairs
containing homographs, as described in section 2.2.
Final statistics for the OS18 domain are reported
in table 9 and in 10 for the WMT19 domain.

Each dataset is subsequently tokenized and true-
cased using Moses (Koehn et al., 2007) scripts17.
For model training and evaluation, we addition-
ally learn and apply BPE codes (Sennrich et al.,
2016) to the data using the subword-NMT imple-
mentation18, with 32k merge operations and the
vocabulary threshold set to 50.

A.2 Homograph list

The full list of homographs used in our experiments
is as follows: anchor, arm, band, bank, balance, bar,
barrel, bark, bass, bat, battery, beam, board, bolt,
boot, bow, brace, break, bug, butt, cabinet, capital,
case, cast, chair, change, charge, chest, chip, clip,
club, cock, counter, crane, cycle, date, deck, drill,
drop, fall, fan, file, film, flat, fly, gum, hoe, hood,
jam, jumper, lap, lead, letter, lock, mail, match,
mine, mint, mold, mole, mortar, move, nail, note,
offense, organ, pack, palm, pick, pitch, pitcher,
plaster, plate, plot, pot, present, punch, quarter,
race, racket, record, ruler, seal, sewer, scale, snare,
spirit, spot, spring, staff, stock, subject, tank, tear,
term, tie, toast, trunk, tube, vacuum, watch.

A.3 Sense cluster examples

Table 11 lists some of the identified sense clusters
for several homographs. All homographs used in
our experiments have at least two sense clusters
associated with them.

16http://github.com/saffsd/langid.py
17http://github.com/moses-smt/

mosesdecoder
18http://github.com/rsennrich/

subword-nmt

A.4 Baseline models

Table 12 provides implementation and training
details for each architecture. Same settings are
used for training identical models types in differ-
ent domains. We use standard fairseq19 (Ott et al.,
2019) implementations for all model types and train
them on NVIDIA 1080ti or NVIDIA 2080ti GPUs.
Model translations are obtained by averaging the fi-
nal 5 model checkpoints and decoding using beam
search with beam size 5.

A.5 Base-rate adjusted effect size thresholds

Whether the effect size of correlations between
dichotomous and quantitative variables can be con-
sidered strong depends on the size ratio between
the two groups denoted by the dichotomous vari-
able, i.e. its base rate. As the standard formulation
of RBC is sensitive to the base rate, the estimated
effect size decreases as the base rate becomes more
extreme (see (McGrath and Meyer, 2006) for de-
tails). Applied to our experimental setting, this
means that the observed correlation values are sen-
sitive to the number of sentences containing dis-
ambiguation errors relative to the amount of those
that do not. This is an undesirable property, as we
are only interested in the predictive power of our
quantitative variables, regardless of how often dis-
ambiguation errors are observed. Thus, we adjust
the thresholds for the interpretation of correlation
strength to account for WSD errors being less fre-
quent than WSD successes overall, in analogy to
(McGrath and Meyer, 2006). Doing so enables the
direct comparison of correlation strength between
domains and model types, as each combination of
the two factors exhibits a different disambiguation
success base rate.

A common practice for interpreting effect size
strength that does not account for base rate inequal-
ities is the adoption of Cohen’s benchmark (Cohen,
2013), which posits that the effect size d is large
if d >= 0.8, medium if d >= 0.5, and small if
d >= 0.2. To adjust these threshold values for
the observed base rates, they are converted accord-
ing to Eqn. 8, where p1 and p2 represent the pro-
portions of groups described by the dichotomous
variable, with p2 = 1− p1:

threshold =
d√

d2 + 1
p1,p2

(8)

19http://github.com/pytorch/fairseq

http://github.com/saffsd/langid.py
http://github.com/moses-smt/mosesdecoder
http://github.com/moses-smt/mosesdecoder
http://github.com/rsennrich/subword-nmt
http://github.com/rsennrich/subword-nmt
http://github.com/pytorch/fairseq
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The adjusted effect size interpretation thresholds
for WSD error correlation values as given in Table
3 are provided in Table 7. Adjusted thresholds for
attack success correlations as given in Table 5 are
summarized in Table 8.

A.6 Annotator instructions
The judges were presented with the following in-
structions for the described annotation tasks:

Your first task is to judge whether the meaning
of the homograph as used in the given sentence is
best described by the terms in the SENSE 1 cell
or by those in the SENSE 2 cell. Please use the
drop-down menu in the WHICH SENSE IS COR-
RECT? column to make your choice. If you think
that neither sens captures the homograph’s mean-
ing, please select NONE from the options in the
drop-down menu. If you think that the homograph
as used in the given sentence can be equally inter-
preted both as SENSE 1 or SENSE 2, please select
BOTH.

We’re also asking you to give us your subjec-
tive judgment whether the sentence you’ve been
evaluating makes sense to you, i.e. whether it’s
grammatical, whether it can be easily understood,
and whether it sounds acceptable to you as a whole.
Typos and spelling mistakes, on the other hand, can
be ignored. Specifically, we would like you to as-
sign each sentence a naturalness score, ranging
from 1 to 5, according to the following scale:

• 1 = Completely unnatural (i.e. sentence is
clearly ungrammatical, highly implausible, or
meaningless / incoherent)

• 2 = Somewhat unnatural (i.e. sentence is not
outright incoherent, but sounds very strange)

• 3 = Unsure (i.e. sentence is difficult to judge
either way)

• 4 = Mostly natural (i.e. sentence sounds good
for the most part)

• 5 = Completely natural (i.e. a well-formed
English sentence)

For instance a sentence like ”John ate ten pan-
cakes for breakfast.” may get a ranking between
4 and 5, as it satisfies all of the above criteria. A
sentence like ”John ate green pancakes for break-
fast.” is grammatical but somewhat unusual and
may therefore get a score between 3 and 4. ”John

ate late pancakes for breakfast.”, on the other hand,
does not sound very natural since pancakes cannot
be ”late” and may therefore be rated as 1 or 2. For
this judgment we ask you to pay special attention to
words in the neighborhood of the homograph. To
submit your judgment please select the appropriate
score from the drop-down menu in the DOES THE
SENTENCE MAKE SENSE? column.

A.7 Examples of successful adversarial
samples

Tables 13 - 18 list examples of successful adversar-
ial attacks across the examined model architectures
and dataset domains. As done throughout the paper,
homographs are highlighted in blue, whereas the
introduced attractors are emphasized in red.

Model small medium large

OS18 Transformer 0.0542 0.1344 0.2121

OS18 LSTM 0.0666 0.1647 0.2581

OS18 ConvS2S 0.0710 0.1753 0.2740

WMT19 Transformer 0.0381 0.0949 0.1508

WMT19 LSTM 0.0458 0.1138 0.1803

WMT19 ConvS2S 0.0502 0.1247 0.1971

Table 7: Base-rate adjusted thresholds for the interpre-
tation of WSD error prediction correlations.

Model small medium large

OS18 Transformer 0.0339 0.0846 0.1345

OS18 LSTM 0.0338 0.0842 0.1340

OS18 ConvS2S 0.0328 0.0817 0.1301

WMT19 Transformer 0.0166 0.0414 0.0661

WMT19 LSTM 0.0178 0.0446 0.0712

WMT19 ConvS2S 0.0219 0.0548 0.0874

Table 8: Base-rate adjusted thresholds for the interpre-
tation of attack success correlations.
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Statistic train dev test held-out

# sentences 14,993,062 10,000 10,000 3,751,765

# words (EN) 106,873,835 71,719 71,332 26,763,351

# words/sentence (EN) 7.13 7.17 7.13 7.13

# words (DE) 100,248,893 67,185 66,799 25,094,166

# words/sentence (DE) 6.69 6,71 6.68 6.69

Table 9: Corpus statistics for the OS18 domain.

Statistic train dev (test18) test14 test19 held-out

# sentences 4,861,743 2,998 3,003 1,997 1,215,435

# words (EN) 100,271,426 58,628 59,325 42034 25,057,036

# words/sentence (EN) 20.62 19.56 19.76 21.05 20.62

# words (DE) 93,900,343 54,933 54,865 42,087 23,467,086

# words/sentence (DE) 19.31 18.32 18.27 21.08 19.31

Table 10: Corpus statistics for the WMT19 domain.

Homograph Sense 1 Sense 2 Sense 3

bat
Chiroptera, Fledertier,

Handflügler, Fledermaus,
Flattertier

Schlagstock, Schlagholz,
Baseballschläger, Baseballkeule,

Schläger
-

case

Karton, Kiste,
Päckchen, Packung,
Schachtel, Kasten,

Behälter, Box

Fall, Zustand,
Sache, Gegebenheit,

Lage, Kontext,
Umstand, Status,

Sachverhalt, Stand,
Situation

Prozess, Gerichtsverfahren,
Fall, Gerichtsverhandlung,

Sache, Prozeß,
Rechtsstreit, Ermittlung,

Antrag, Rechtsfall,
Gerichtsfall, Klage,
Verhör, Rechtssache

letter
Sendschreiben, Papierbrief,
Musterbrief, Anschreiben,

Post, Schreiben, Brief

Buchstabe, Großbuchstabe,
Charakter, Letter,

Kleinbuchstabe, Zeichen
-

spring

Ringfeder, Spiralfeder,
Sprungfeder, Feder,

Tellerfeder, Federung,
Gummifeder

Frühling, Lenz,
Frühjahr

Quelle, Brunnen,
Quell, Wasserquelle

vacuum
Vakuum, Nichts,

Unterdruck, Leerraum,
Leere, Luftleere

Industriestaubsauger, Staubsauger,
Handstaubsauger, Teppichkehrer,
Bodenstaubsauger, Allessauger,

Sauger, Kesselsauger

-

Table 11: Non-exhaustive examples of homograph-specific sense clusters.
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Parameter Transformer LSTM ConvS2S

batch size (subwords) 24,576 4,096 4,096

# total updates 100,000 600,000 600,000

# warm-up updates 4,000 - -

# updates between checkpoints 1,000 4,000 4,000

# epochs between validations 1 1 1

optimizer Adam Adam Adam

Adam betas 0.9, 0.98 0.9, 0.98 0.9, 0.98

learning rate scheduled (inverse sqrt) 0.0002 (+ decay) 0.0003 (+ decay)

# total parameters (OS18) 60,641,280 59,819,008 64,548,328

# total parameters (WMT19) 61,714,432 60,892,160 66,696,728

embedding size 512 512 512

Tied embeddings Yes Yes Yes

hidden size 2,048 512 512

# encoder layers 6 5 (bidirectional) 8

# decoder layers 6 5 8

kernel size - - 3

dropout 0.1 0.2 0.2

label smoothing 0.1 0.1 0.1

Table 12: Training settings and model hyperparameters.

Source input / Original output / Perturbed output Seed sense Adv. sense

S: The Penguin was beating him with an (old) bat, but it was Gordon that pulled the trigger.
O: Der Pinguin hat ihn mit einem Schläger3 geschlagen, aber Gordon hat abgedrückt.
P: Der Pinguin hat ihn mit einer alten Fledermaus7 geschlagen , aber Gordon hat abgedrückt. club animal

S: I’m not going to relax until that thing its back in its (simple) case.
O: Ich werde mich nicht entspannen, bis dieses Ding nicht seinen Rücken in seinem
Koffer3 hat.
P: Ich werde mich nicht entspannen, bis das Ding nicht seinen Rücken in seinem
einfachen Fall7 hat. container instance

S: ”They rest in their mother’s (hot) lap, enjoying the ultimate bliss”
O: ”Sie ruhen im Schoß3 ihrer Mutter, genießen das ultimative Glück”
P: ”Sie ruhen in der heißen Runde7 ihrer Mutter, genießen das ultimative Glück” body part circuit

S: That’s mighty neighbourly, but I got to play the (big) organ for the parson tonight.
O: Das ist mächtig nachbarschaftlich, aber ich muss heute Abend Orgel3 für den
Pfarrer spielen.
P: Das ist mächtig nachbarschaftlich, aber ich muss heute Abend das Organ7 für den
Pfarrer spielen. instrument body part

S: I’m just gonna write a (high) note, and then we’ll go.
O: Ich schreibe nur einen Zettel3 und dann gehen wir.
P: Ich schreibe einen hohen Ton7 und dann gehen wir. writing tone

Table 13: Additional examples of successful attacks on the OS18 transformer. Homographs are blue, attractors are
red.
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Source input / Original output / Perturbed output Seed sense Adv. sense

S: I only sell (good) arms to people who fight clean wars! sure!
O: Ich verkaufe nur Waffen3 an Leute, die saubere Kriege bekämpfen.
P: Ich verkaufe nur gute Arme7 an Leute, die saubere Kriege bekämpfen. weapon body part

S: We’ve heard they’re trying to raise (new) capital to rebuild their armies.
O: Wir haben gehört, sie wollen Kapital3 sammeln, um ihre Armeen aufzubauen.
P: Wir haben gehört, dass sie eine neue Hauptstadt7 aufziehen wollen, um ihre Armeen
aufzubauen. money city

S: Did you charge the Donellys for five (closed) cases of vodka?
O: Haben Sie die Donellys für fünf Kisten3 Wodka berechnet?
P: Haben Sie die Donellys für fünf geschlossene Fälle7 Wodka berechnet? container court case

S: All units, repeat. that is a battered yellow van, no (separate) plates.
O: An alle Einheiten, das ist ein gegrillter gelben Van, keine Nummernschilder3.
P: An alle Einheiten, das ist ein gegrillter gelben Van, keine getrennten Teller7. number plate dish

S: Um, (old) seals tell the truth , but a sea lion’s always lyin’?
O: Robben3 sagen die Wahrheit, aber ein Seelöwen lügt immer ?
P: Alte Siegel7 sagen die Wahrheit, aber ein Seelöwen lügt immer? animal emblem

Table 14: Examples of successful attacks on the OS18 LSTM. Homographs are blue, attractors are red.

Source input / Original output / Perturbed output Seed sense Adv. sense

S: - Oh, well, keep the (small) change and have a drink on me.
O: Behalten Sie den Rest3 und trinken Sie auf mich.
P: Oh, nun, behalte die kleine Veränderung7 und trink einen auf mich. coins development

S: Do you know how that (specific) date went, by any chance?
O: Wissen Sie, wie das Date3 gelaufen ist?
P: Wissen Sie, wie das Datum7 gelaufen ist? meeting calendar date

S: Goal! (public address) An amazing last-minute third goal that takes Greenock
into the (strong) lead.
O: Ein erstaunliches drittes drittes Ziel, das Greenock in die Führung3 führt.
P: Ein erstaunliches drittes Ziel, das Greenock in die starke Spur7 führt. first place clue

S: I mean, you seem like someone who plots out every (fucking) move.
O: Ich meine, Sie scheinen jemand zu sein, der jeden Schritt3 aussticht.
P: Ich meine, Sie scheinen jemand zu sein, der jede verdammte Bewegung7

ausschüttet. action movement

S: You know, if we get hungry, we eat some chips, have some (crazy) punch ...
O: Weißt du, wenn wir hungrig werden, essen wir ein paar Chips, haben etwas Punsch3 ...
P: Weißt du, wenn wir hungrig werden, essen wir ein paar Chips, haben einen
verrückten Schlag7 ... drink hit

Table 15: Examples of successful attacks on the OS18 ConvS2S. Homographs are blue, attractors are red.
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Source input / Original output / Perturbed output Seed sense Adv. sense

S: Copenhagen - Copenhagen, Denmark’s (financial) capital, wants to be the world’s first
CO2-neutral city by 2025.
O: Kopenhagen - Kopenhagen, die Hauptstadt3 Dänemarks, will bis 2025 die
erste CO2-neutrale Stadt der Welt sein.
P: Kopenhagen - Kopenhagen, das Finanzkapital7 Dänemarks, will bis 2025 die erste
CO2-neutrale Stadt der Welt sein. city money

S: This is done by pricking the earlobe with a small lancet and taking a (real) drop of blood.
O: Dies geschieht, indem der Ohrwurm mit einem kleinen Lancet geprickt wird und ein
Tropfen3 Blut eingenommen wird.
P: Dies geschieht, indem der Ohrwurm mit einem kleinen Lancet geprickt wird und ein
richtiger Blutabfall7 entsteht. drop of liquid decrease

S: One (small positive) note was from the Republic of Ireland, which saw its PMI grow to
57.3, its highest level since the end of 1999.
O: Eine positive Anmerkung3 war die aus der Republik Irland, wo das PMI auf 57,3
anstieg, das höchste Niveau seit Ende 1999.
P: Ein kleiner Schein7 stammt aus der Republik Irland, wo das PMI auf 57,3 anstieg,
das höchste Niveau seit Ende 1999. remark paper money

S: His epoch-making (full) record ”Free Jazz” was released by Atlantic Records at the
dawn of that decade.
O: Seine epochale Platte3 ”Free Jazz” wurde zu Beginn des Jahrzehnts von
Atlantic Records veröffentlicht.
P: Seine epochale Aufzeichnung7 ”Free Jazz” wurde zu Beginn des Jahrzehnts von
Atlantic Records veröffentlicht. musical medium document

S: After winter delivered an early dose of (natural) spring last week, temperatures
dropped again on Monday to a high of just 15.8C in the city.
O: Nachdem der Winter vergangene Woche eine frühe Frühjahrsdosis3

geliefert hatte, fielen die Temperaturen am Montag wieder auf einen Höchstwert von nur
15,8C in der Stadt.
P: Nachdem der Winter letzte Woche eine frühe Dosis Naturquelle7 lieferte, fielen die
Temperaturen am Montag wieder auf einen Höchstwert von nur 15,8C in der Stadt. season water source

Table 16: Examples of successful attacks on the WMT19 transformer. Homographs are blue, attractors are red.
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Source input / Original output / Perturbed output Seed sense Adv. sense

S: A Thousand Splendid Suns is a story of two women’s lives in Afghanistan, where women
are equal, as a table or the (last) chair.
O: Ein Thousand Splendid Seine ist eine Geschichte von zwei Frauen in Afghanistan, wo
Frauen gleich sind, als Tisch oder Stuhl3.
P: Ein Thousand Splendid Seine ist eine Geschichte von zwei Frauen in Afghanistan, wo
Frauen gleich sind, als Tisch oder als letzter Vorsitzender7. furniture chairperson

S: See a (small rapid) drop in your CO level once you stop smoking.
O: Sehen Sie sich einen schnellen Rückgang3 Ihrer CO-Ebene an, sobald Sie das
Rauchen einstellen.
P: Sehen Sie einen kleinen Tropfen7 auf Ihrem CO-Niveau, sobald Sie aufhören,
Rauchen zu beenden. decrease drop of liquid

S: And moreover - each of our guests will get a (different small) present!
O: Und darüber hinaus wird jeder unserer Gäste ein kleines Geschenk3 bekommen!
P: Und darüber hinaus wird jeder unserer Gäste eine andere Gegenwart7 bekommen! gift current time

S: A (new) record of every transaction made is kept, allowing for a complete audit if
necessary.
O: Ein Datensatz3 jeder Transaktion wird gehalten, so dass erforderlichenfalls
eine vollständige Prüfung möglich ist.
P: Ein neuer Rekord7 jeder Transaktion wird gehalten, so dass erforderlichenfalls
eine vollständige Prüfung möglich ist. document achievement

S: Britain’s new trade deals with non-EU countries would also probably involve
(political worse) terms.
O: Die neuen Handelsvereinbarungen Großbritanniens mit Nicht-EU-Ländern würden
wahrscheinlich auch schlechtere Bedingungen3 beinhalten.
P: Großbritanniens neue Handelsabkommen mit Nicht-EU-Ländern würden
wahrscheinlich auch politische Begriffe7 beinhalten. demand expression

Table 17: Examples of successful attacks on the WMT19 LSTM. Homographs are blue, attractors are red.
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Source input / Original output / Perturbed output Seed sense Adv. sense

S: Not to mention (non) uniform loading and soring fingers, contaminated with
(common) lead.
O: Ganz zu schweigen von (nicht) einheitlichen Lade- und Sortierfingern, die mit
Blei3 kontaminiert sind.
P: Ganz zu schweigen von (nicht) einheitlichen Lade- und Sortierfingern, die mit einer
gemeinsamen Führung7 kontaminiert sind. metal first place

S: If the symbol ”&gt” is displayed, keep entering (greek) letters until predictive options
are displayed.
O: Wenn das Symbol ”&gt” angezeigt wird, erhalten Sie die Eingabe von Buchstaben3,
bis prognostizierte Optionen angezeigt werden.
P: Wenn das Symbol ”&gt” angezeigt wird, erhalten Sie immer wieder Grußbriefe7,
bis prognostizierte Optionen angezeigt werden. character message

S: This film is not about dialogue or a (little stringent) plot, but all about atmosphere -
a feverish dream that has become a film.
O: In diesem Film geht es nicht um einen Dialog oder um eine strenge Handlung3, sondern
um die Atmosphäre - ein feverser Traum, der zu einem Film geworden ist.
P: In diesem Film geht es nicht um Dialog oder ein wenig Grundstück7, sondern alles über
die Atmosphäre - ein feverser Traum, der zu einem Film geworden ist. story tract of land

S: Manufacture of products from silicone and rubber, Production of springs,
Manufacturing of springs, Winding of (small) springs.
O: Herstellung von Produkten aus Silikon- und Gummi, Herstellung von Quellen,
Herstellung von Quellen, Federn3.
P: Herstellung von Produkten aus Silikon- und Gummi, Herstellung von Quellen,
Herstellung von Quellen, Winding von kleinen Quellen7. device water source

S: In 1980, financial assets - (large) stocks, bonds, and bank deposits - totaled around 100%
of GDP in the advanced economies.
O; Im Jahr 1980 belief sich das Finanzvermögen - Aktien3, Anleihen und
Bankeinlagen - in den hochentwickelten Volkswirtschaften rund 100% des BIP.
P: Im Jahr 1980 belief sich das Finanzvermögen - große Bestände7, Anleihen und
Bankeinlagen - in den hochentwickelten Volkswirtschaften rund 100% des BIP. investment inventory

Table 18: Examples of successful attacks on the WMT19 ConvS2S. Homographs are blue, attractors are red.


