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Abstract
Pretrained contextualized text encoders are
now a staple of the NLP community. We
present a survey on language representation
learning with the aim of consolidating a series
of shared lessons learned across a variety of
recent efforts. While significant advancements
continue at a rapid pace, we find that enough
has now been discovered, in different direc-
tions, that we can begin to organize advances
according to common themes. Through this
organization, we highlight important consider-
ations when interpreting recent contributions
and choosing which model to use.

1 Introduction

A couple years ago, Peters et al. (2018, ELMo)
won the NAACL Best Paper Award for creating
strong performing, task-agnostic sentence repre-
sentations due to large scale unsupervised pretrain-
ing. Days later, its high level of performance was
surpassed by Radford et al. (2018) which boasted
representations beyond a single sentence and fine-
tuning flexibility. This instability and competition
between models has been a recurring theme for
researchers and practitioners who have watched
the rapidly narrowing gap between text represen-
tations and language understanding benchmarks.
However, it has not discouraged research. Given
the recent flurry of models, we often ask: “What,
besides state-of-the-art, does this newest paper
contribute? Which encoder should we use?”

The goals of this survey are to outline the areas
of progress, relate contributions in text encoders
to ideas from other fields, describe how each area
is evaluated, and present considerations for practi-
tioners and researchers when choosing an encoder.
This survey does not intend to compare specific
model metrics, as tables from other works pro-
vide comprehensive insight. For example, Table
16 in Raffel et al. (2019) compares the scores on a

large suite of tasks of different model architectures,
training objectives, and hyperparameters, and Ta-
ble 1 in Rogers et al. (2020) details early efforts in
model compression and distillation. We also rec-
ommend other closely related surveys on contextu-
alized word representations (Smith, 2019; Rogers
et al., 2020; Liu et al., 2020a), transfer learning
in NLP (Ruder et al., 2019), and integrating en-
coders into NLP applications (Wolf et al., 2019).
Complementing these existing bodies of work, we
look at the ideas and progress in the scientific dis-
course for text representations from the perspective
of discerning their differences.

We organize this paper as follows. §2 provides
brief background on encoding, training, and eval-
uating text representations. §3 identifies and ana-
lyzes two classes of pretraining objectives. In §4,
we explore faster and smaller models and architec-
tures in both training and inference. §5 notes the
impact of both quality and quantity of pretraining
data. §6 briefly discusses efforts on probing en-
coders and representations with respect to linguis-
tic knowledge. §7 describes the efforts into training
and evaluating multilingual representations. Within
each area, we conclude with high-level observa-
tions and discuss the evaluations that are used and
their shortcomings.

We conclude in §8 by making recommendations
to researchers: publicizing negative results in this
area is especially important owing to the sheer cost
of experimentation and to ensure evaluation repro-
ducibility. In addition, probing studies need to
focus not only on the models and tasks, but also on
the pretraining data. We pose questions for users of
contextualized encoders, like whether the compute
requirement of a model is worth the benefits. We
hope our survey serves as a guide for both NLP
researchers and practitioners, orienting them to the
current state of the field of contextualized encoders
and differences between models.
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2 Background

Encoders Pretrained text encoders take as input
a sequence of tokenized1 text, which is encoded by
a multi-layered neural model. The representation
of each (sub)token, xt, is either the set of hidden
weights, {h(l)t } for each layer l, or its weight on just
the top layer, h(−1)

t . Unlike fixed-sized word, sen-
tence, or paragraph representations, the produced
contextualized representations of the text depends
on the length of the input text. Most encoders use
the Transformer architecture (Vaswani et al., 2017).

Transfer: The Pretrain-Finetune Framework
While text representations can be learned in any
manner, ultimately, they are evaluated using spe-
cific target tasks. Historically, the learned repre-
sentations (e.g. word vectors) were used as initial-
ization for task-specific models. Dai and Le (2015)
are credited with using pretrained language model
outputs as initialization, McCann et al. (2017) use
pretrained outputs from translation as frozen word
embeddings, and Howard and Ruder (2018) and
Radford et al. (2018) demonstrate the effectiveness
of finetuning to different target tasks by updating
the full (pretrained) model for each task. We re-
fer to the embeddings produced by the pretrained
models (or encoders) as contextualized text repre-
sentations. As our goal is to discuss the encoders
and their representations, we do not cover the inno-
vations in finetuning (Liu et al., 2015; Ruder et al.,
2019; Phang et al., 2018; Liu et al., 2019c; Zhu
et al., 2020, inter alia).

Evaluation Widely adopted evaluations of text
representations relate them to downstream natu-
ral language understanding (NLU) benchmarks.
This full-stack process necessarily conflates rep-
resentation power with finetuning strategies. Com-
mon language understanding benchmarks include
(1) a diverse suite of sentence-level tasks cover-
ing paraphrasing, natural language inference, senti-
ment, and linguistic acceptability (GLUE) and its
more challenging counterpart with additional com-
monsense and linguistic reasoning tasks (Super-
GLUE) (Wang et al., 2019c,b; Clark et al., 2019a;
De Marneffe et al., 2019; Roemmele et al., 2011;
Khashabi et al., 2018; Zhang et al., 2018; Dagan
et al., 2006; Bar Haim et al., 2006; Giampiccolo

1Unlike traditional word-level tokenization, most works
decompose text into subtokens from a fixed vocabulary using
some variation of byte pair encoding (Gage, 1994; Schuster
and Nakajima, 2012; Sennrich et al., 2016)

et al., 2007; Bentivogli et al., 2009; Pilehvar and
Camacho-Collados, 2019; Rudinger et al., 2018;
Poliak et al., 2018; Levesque et al., 2011); (2)
crowdsourced questions derived from Wikipedia ar-
ticles (Rajpurkar et al., 2016, 2018, SQuAD); and
(3) multiple-choice reading comprehension (Lai
et al., 2017, RACE).

3 Area I: Pretraining Tasks

To utilize data at scale, pretraining tasks are typi-
cally self-supervised. We categorize the contribu-
tions into two types: token prediction (over a large
vocabulary space) and nontoken prediction (over a
handful of labels). In this section, we discuss sev-
eral empirical observations. While token prediction
is clearly important, less clear is which variation of
the token prediction task is the best (or whether it
even matters). Nontoken prediction tasks appear to
offer orthogonal contributions that marginally im-
prove the language representations. We emphasize
that in this section, we seek to outline the primary
efforts in pretraining objectives and not to provide
a comparison on a set of benchmarks.2

3.1 Token Prediction

Predicting (or generating) the next word has histori-
cally been equivalent to the task of language model-
ing. Large language models perform impressively
on a variety of language understanding tasks while
maintaining their generative capabilities (Radford
et al., 2018, 2019; Keskar et al., 2019; Brown et al.,
2020), often outperforming contemporaneous mod-
els that use additional training objectives.

ELMo (Peters et al., 2018) is a BiLSTM model
with a language modeling objective for the next (or
previous) token given the forward (or backward)
history. This idea of looking at the full context
was further refined as a cloze3 task (Baevski et al.,
2019), or as a denoising Masked Language Model-
ing (MLM) objective (Devlin et al., 2019, BERT).
MLM replaces some tokens with a [mask] sym-
bol and provides both right and left contexts (bidi-
rectional context) for predicting the masked tokens.
The bidirectionality is key to outperforming a unidi-
rectional language model on a large suite of natural
language understanding benchmarks (Devlin et al.,
2019; Raffel et al., 2019).

The MLM objective is far from perfect, as the
use of [mask] introduces a pretrain/finetune vo-

2See Raffel et al. (2019) for comprehensive experiments.
3A cloze task is a fill-in-the-blank task.
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cabulary discrepancy. Devlin et al. (2019) look
to mitigate this issue by occasionally replacing
[mask] with the original token or sampling from
the vocabulary. Yang et al. (2019) convert the dis-
criminative objective into an autoregressive one,
which allows the [mask] token to be discarded
entirely. Naively, this would result in unidirectional
context. By sampling permutations of the factoriza-
tion order of the joint probability of the sequence,
they preserve bidirectional context. Similar ideas
for permutation language modeling (PLM) have
also been studied for sequence generation (Stern
et al., 2019; Chan et al., 2019; Gu et al., 2019). The
MLM and PLM objectives have since been unified
architecturally (Song et al., 2020; Bao et al., 2020)
and mathematically (Kong et al., 2020).

ELECTRA (Clark et al., 2020) replaces
[mask] through the use of a small generator
(trained with MLM) to sample a real token from
the vocabulary. The main encoder, a discriminator,
then determines whether each token was replaced.

A natural extension would mask units that
are more linguistically meaningful, such as rarer
words,4 whole words, or named entities (Devlin
et al., 2019; Sun et al., 2019b). This idea can be
simplified to random spans of texts (Yang et al.,
2019; Song et al., 2019). Specifically, Joshi et al.
(2020) add a reconstruction objective which pre-
dicts the masked tokens using only the span bound-
aries. They find that masking random spans is more
effective than masking linguistic units.

An alternative architecture uses an encoder-
decoder framework (or denoising autoencoder)
where the input is a corrupted (masked) sequence
the output is the full original sequence (Wang et al.,
2019d; Lewis et al., 2020; Raffel et al., 2019).

3.2 Nontoken Prediction

Bender and Koller (2020) argue that for the goal
of natural language understanding, we cannot rely
purely on a language modeling objective; there
must be some grounding or external information
that relates the text to each other or to the world.
One solution is to introduce a secondary objective
to directly learn these biases.

Self-supervised discourse structure objectives,
such as text order, has garnered significant atten-
tion. To capture relationships between two sen-
tences,5 Devlin et al. (2019) introduce the next

4Clark et al. (2020) report negative results for rarer words.
5Sentence unfortunately refers to a text segment containing

sentence prediction (NSP) objective. In this task,
either sentence B follows sentence A or B is a ran-
dom negative sample. Subsequent works showed
that this was not effective, suggesting the model
simply learned topic (Yang et al., 2019; Liu et al.,
2019d). Jernite et al. (2017) propose a sentence
order task of predicting whether A is before, after,
or unrelated to B, and Wang et al. (2020b) and Lan
et al. (2020) use it for pretraining encoders. They
report that (1) understanding text order does con-
tribute to improved language understanding; and
(2) harder-to-learn pretraining objectives are more
powerful, as both modified tasks have lower in-
trinsic performance than NSP. It is still unclear,
however, if this is the best way to incorporate dis-
course structure, especially since these works do
not use real sentences.

Additional work has focused on effectively in-
corporating multiple pretraining objectives. Sun
et al. (2020a) use multi-task learning with contin-
ual pretraining (Hashimoto et al., 2017), which
incrementally introduces newer tasks into the set
of pretraining tasks from word to sentence to doc-
ument level tasks. Encoders using visual features
(and evaluated only on visual tasks) jointly opti-
mize multiple different masking objectives over
both token sequences and regions of interests in the
image (Tan and Bansal, 2019).6

Prior to token prediction, discourse information
has been used in training sentence representations.
Conneau et al. (2017, 2018a) use natural language
inference sentence pairs, Jernite et al. (2017) use
discourse-based objectives of sentence order, con-
junction classifier, and next sentence selection, and
Nie et al. (2019) use discourse markers. While
there is weak evidence suggesting that these types
of objectives are less effective than language mod-
eling (Wang et al., 2019a), we lack fair studies
comparing the relative influence between the two
categories of objectives.

3.3 Comments on Evaluation

We reviewed the progress on pretraining tasks, find-
ing that token prediction is powerful but can be
improved further by other objectives. Currently,
successful techniques like span masking or arbitrar-
ily sized “sentences” are linguistically unmotivated.
We anticipate future work to further incorporate

no more than a fixed number of subtokens. It may contain any
(fractional) number of real sentences.

6Table 5 in Su et al. (2020) provides a recent summary of
efforts in visual-linguistic representations.
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more meaningful linguistic biases in pretraining.
Our observations are informed by evaluations

that are compared across different works. These
benchmarks on downstream tasks do not ac-
count for ensembling or finetuning and can only
serve as an approximation for the differences
between the models. For example, Jiang et al.
(2020) develop a finetuning method over a suppos-
edly weaker model which leads to gains in GLUE
score over reportedly stronger models. Further-
more, these evaluations aggregate vastly different
tasks. Those interested in the best performance
should first carefully investigate metrics on their
specific task. Even if models are finetuned on an
older encoder,7 it may be more cost-efficient and
enable fairer future comparisons to reuse those over
restarting the finetuning or reintegrating new en-
coders into existing models when doing so does
not necessarily guarantee improved performance.

4 Area II: Efficiency

As models perform better but cost more to train,
some have called for research into efficient models
to improve deployability, accessibility, and repro-
ducibility (Amodei and Hernandez, 2018; Strubell
et al., 2019; Schwartz et al., 2019). Encoders tend
to scale effectively (Lan et al., 2020; Raffel et al.,
2019; Brown et al., 2020), so efficient models will
also result in improvements over inefficient ones of
the same size. In this section, we give an overview
of several efforts aimed to decrease the computa-
tion budget (time and memory usage) during train-
ing and inference of text encoders. While these two
axes are correlated, reductions in one axis do not
always lead to reductions in the other.

4.1 Training

One area of research decreases wall-clock train-
ing time through more compute and larger batches.
You et al. (2020) reduce the time of training BERT
by introducing the LAMB optimizer, a large batch
stochastic optimization method adjusted for atten-
tion models. Rajbhandari et al. (2020) analyze
memory usage in the optimizer to enable paral-
lelization of models resulting in higher throughput
in training. By reducing the training time, models
can be practically trained for longer, which has also
been shown to lead to benefits in task performance
(Liu et al., 2019d; Lan et al., 2020, inter alia).

7This the case with retrieval-based QA (Guu et al., 2020;
Herzig et al., 2020), which builds on BERT.

Another line of research reduces the compute
through attention sparsification (discussed in §4.2)
or increasing the convergence rate (Clark et al.,
2020). These works report hardware and estimate
the reduction in floating point operations (FPOs).8

These kinds of speedup are orthogonal to hardware
parallelization and are most encouraging as they
pave the path for future work in efficient training.

Note that these approaches do not necessarily
affect the latency to process a single example nor
the compute required during inference, which is a
function of the size of the computation graph.

4.2 Inference

Reducing model size without impacting perfor-
mance is motivated by lower inference latency,
hardware memory constraints, and the promise that
naively scaling up dimensions of the model will
improve performance. Size reduction techniques
produce smaller and faster models, while occasion-
ally improving performance. Rogers et al. (2020)
survey BERT-like models and present in Table 1 the
differences in sizes and performance across several
models focused on inference efficiency.

Architectural changes have been explored as one
avenue for reducing either the model size or infer-
ence time. In Transformers, the self-attention pat-
tern scales quadratically in sequence length. To re-
duce the asymptotic complexity, the self-attention
can be sparsified: each token only attending to a
small “local” set (Vaswani et al., 2017; Child et al.,
2019; Sukhbaatar et al., 2019). This has further
been applied to pretraining on longer sequences, re-
sulting in sparse contextualized encoders (Qiu et al.,
2019; Ye et al., 2019; Kitaev et al., 2020; Beltagy
et al., 2020, inter alia). Efficient Transformers is an
emerging subfield with applications beyond NLP;
Tay et al. (2020) survey 17 Transformers that have
implications on efficiency.

Another class of approaches carefully selects
weights to reduce model size. Lan et al. (2020)
use low-rank factorization to reduce the size of the
embedding matrices, while Wang et al. (2019f) fac-
torize other weight matrices. Additionally, parame-
ters can be shared between layers (Dehghani et al.,
2019; Lan et al., 2020) or between an encoder and
decoder (Raffel et al., 2019). However, models that
employ these methods do not always have smaller
computation graphs. This greatly reduces the use-
fulness of parameter sharing compared to other

8We borrow this terminology from Schwartz et al. (2019).
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methods that additionally offer greater speedups
relative to the reduction in model size.

Closely related, model pruning (Denil et al.,
2013; Han et al., 2015; Frankle and Carbin, 2018)
during training or inference has exploited the over-
parameterization of neural networks by removing
up to 90%-95% parameters. This approach has
been successful in not only reducing the number
of parameters, but also improving performance on
downstream tasks. Related to efforts for pruning
deep networks in computer vision (Huang et al.,
2016), layer selection and dropout during both
training and inference have been studied in both
LSTM (Liu et al., 2018a) and Transformer (Fan
et al., 2020) based encoders. These also have a reg-
ularization effect resulting in more stable training
and improved performance. There are additional
novel pruning methods that can be performed dur-
ing training (Guo et al., 2019; Qiu et al., 2019).
These successful results are corroborated by other
efforts (Gordon et al., 2020) showing that low lev-
els of pruning do not substantially affect pretrained
representations. Additional successful efforts in
model pruning directly target a downstream task
(Sun et al., 2019a; Michel et al., 2019; McCarley,
2019; Cao et al., 2020a). Note that pruning does
not always lead to speedups in practice as sparse
operations may be hard to parallelize.

Knowledge distillation (KD) uses an overparam-
eterized teacher model to rapidly train a smaller stu-
dent model with minimal loss in performance (Hin-
ton et al., 2015) and has been used for translation
(Kim and Rush, 2016), computer vision (Howard
et al., 2017), and adversarial examples (Carlini and
Wagner, 2016). This has been applied to ELMo
(Li et al., 2019) and BERT (Tang et al., 2019; Sanh
et al., 2019; Sun et al., 2020b, inter alia). KD can
also be combined with adaptive inference, which
dynamically adjusts model size (Liu et al., 2020b),
or performed on submodules which are later sub-
stituted back into the full model (Xu et al., 2020).

Quantization with custom low-precision hard-
ware is also a promising method for both reducing
the size of models and compute time, albeit it does
not reduce the number of parameters or FPOs (Shen
et al., 2020; Zafrir et al., 2019). This line of work is
mostly orthogonal to other efforts specific to NLP.

4.3 Standardizing Comparison

There has yet to be a comprehensive and fair eval-
uation across all models. The closest, Table 1 in

Rogers et al. (2020), compares 12 works in model
compression. However, almost no two papers
are evaluated against the same BERT with the
same set of tasks. Many papers on attention spar-
sification do not evaluate on NLU benchmarks. We
claim this is because finetuning is itself an expen-
sive task, so it is not prioritized by authors: works
on improving model efficiency have focused only
on comparing to a BERT on a few tasks.

While it is easy for future research on pretrain-
ing to report model sizes and runtimes, it is harder
for researchers in efficiency to report NLU bench-
marks. We suggest extending versions of the leader-
boards under different resource constraints so that
researchers with access to less hardware could still
contribute under the resource-constrained condi-
tions. Some work has begun in this direction: the
SustaiNLP 2020 Shared Task is focused on the
energy footprint of inference for GLUE.9

5 Area III: (Pretraining) Data

Unsurprisingly for our field, increasing the size of
training data for an encoder contributes to increases
in language understanding capabilities (Yang et al.,
2019; Raffel et al., 2019; Kaplan et al., 2020). At
current data scales, some models converge before
consuming the entire corpus. In this section, we
identify a weakness when given less data, advocate
for better data cleaning, and raise technical and
ethical issues with using web-scraped data.

5.1 Data Quantity
There has not yet been observed a ceiling to the
amount of data that can still be effectively used in
training (Baevski et al., 2019; Liu et al., 2019d;
Yang et al., 2019; Brown et al., 2020). Raffel et al.
(2019) curate a 745GB subset of Common Crawl
(CC),10 which starkly contrasts with the 13GB used
in BERT. For multilingual text encoding, Wenzek
et al. (2020) curate 2.5TB of language-tagged CC.
As CC continues to grow, there will be even larger
datasets (Brown et al., 2020).

Sun et al. (2017) explore a similar question for
computer vision, as years of progress iterated over
1M labeled images. By using 300M images, they
improved performance on several tasks with a basic
model. We echo their remarks that we should be
cognizant of data sizes when drawing conclusions.

9https://sites.google.com/view/
sustainlp2020/shared-task

10https://commoncrawl.org/ scrapes publicly ac-
cessible webpages each month.

https://sites.google.com/view/sustainlp2020/shared-task
https://sites.google.com/view/sustainlp2020/shared-task
https://commoncrawl.org/
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Is there a floor to the amount of data needed
to achieve current levels of success on language
understanding benchmarks? As we decrease the
data size, LSTM-based models start to dominate in
perplexity (Yang et al., 2019; Melis et al., 2020),
suggesting there are challenges with either scaling
up LSTMs or scaling down Transformers. While
probing contextualized models and representations
is an important area of study (see §6), prior work
focuses on pretrained models or models further
pretrained on domain-specific data (Gururangan
et al., 2020). We are not aware of any work which
probes identical models trained with decreasingly
less data. How much (and which) data is necessary
for high performance on probing tasks?11

5.2 Data Quality

While text encoders should be trained on language,
large-scale datasets may contain web-scraped and
uncurated content (like code). Raffel et al. (2019)
ablate different types of data for text representa-
tions and find that naively increasing dataset size
does not always improve performance, partially
due to data quality. This realization is not new.
Parallel data and alignment in machine translation
(Moore and Lewis, 2010; Duh et al., 2013; Xu and
Koehn, 2017; Koehn et al., 2018, inter alia) and
speech (Peddinti et al., 2016) often use language
models to filter out misaligned or poor data. Sun
et al. (2017) use automatic data filtering in vision.
These successes on other tasks suggest that im-
proved automated methods of data cleaning would
let future models consume more high-quality data.

In addition to high quality, data uniqueness ap-
pears to be advantageous. Raffel et al. (2019) show
that increasing the repetitions (number of epochs)
of the pretraining corpus hurts performance. This
is corroborated by Liu et al. (2019d), who find
that random, unique masks for MLM improve over
repeated masks across epochs. These findings to-
gether suggest a preference to seeing more new text.
We suspect that representations of text spans ap-
pearing multiple times across the corpus are better
shaped by observing them in unique contexts.

Raffel et al. (2019) find that differences in do-
main mismatch in pretraining data (web crawled vs.
news or encyclopedic) result in strikingly different
performance on certain challenge sets, and Guru-
rangan et al. (2020) find that continuing pretraining

11Conneau et al. (2020a) claim we need a few hundred MiB
of text data for BERT.

on both domain and task specific data lead to gains
in performance.

5.3 Datasets and Evaluations

With these larger and cleaner datasets, future re-
search can better explore tradeoffs between size
and quality, as well as strategies for scheduling
data during training.

As we continue to scrape data off the web and
publish challenge sets relying on other web data,
we need to cautiously construct our training and
evaluation sets. For example, the domains of
many benchmarks (Wang et al. (2019c, GLUE),
Rajpurkar et al. (2016, 2018, SQuAD), Wang et al.
(2019b, SuperGLUE), Paperno et al. (2016, LAM-
BADA), Nallapati et al. (2016, CNN/DM)) now
overlap with the data used to train language repre-
sentations. Section 4 in Brown et al. (2020) more
thoroughly discuss the effects of overlapping test
data with pretraining data. Gehman et al. (2020)
highlight the prevalance of toxic language in the
common pretraining corpora and stress the impor-
tant of pretraining data selection, especially for
deployed models. We are not aware of a compre-
hensive study that explores the effect of leaving out
targeted subsets of the pretraining data. We hope
future models note the domains of pretraining and
evaluation benchmarks, and for future language un-
derstanding benchmarks to focus on more diverse
genres in addition to diverse tasks.

As we improve models by training on increasing
sizes of crawled data, these models are also being
picked up by NLP practitioners who deploy them
in real-world software. These models learn biases
found in their pretraining data (Gonen and Gold-
berg, 2019; May et al., 2019, inter alia). It is crit-
ical to clearly state the source12 of the pretrain-
ing data and clarify appropriate uses of the re-
leased models. For example, crawled data can
contain incorrect facts about living people; while
webpages can be edited or retracted, publicly re-
leased “language” model are frozen, which can
raise privacy concerns (Feyisetan et al., 2020).

6 Area IV: Interpretability

While it is clear that the performance of text en-
coders surpass human baselines, it is less clear
what knowledge is stored in these models; how do
they make decisions? In their survey, Rogers et al.
(2020) find answers to the first question and also

12How was the data generated, curated, and processed?
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raise the second. Inspired by prior work (Lipton,
2018; Belinkov and Glass, 2019; Alishahi et al.,
2019), we organize here the major probing meth-
ods that are applicable to all encoders in hopes that
future work will use comparable techniques.

6.1 Probing with Tasks
One technique uses the learned model as initializa-
tion for a model trained on a probing task consist-
ing of a set of targeted natural language examples.
The probing task’s format is flexible as additional,
(simple) diagnostic classifiers are trained on top
of a typically frozen model (Ettinger et al., 2016;
Hupkes et al., 2018; Poliak et al., 2018; Tenney
et al., 2019b). Task probing can also be applied
to the embeddings at various layers to explore the
knowledge captured at each layer (Tenney et al.,
2019a; Lin et al., 2019; Liu et al., 2019a). Hewitt
and Liang (2019) warn that expressive (nonlinear)
diagnostic classifiers can learn more arbitrary infor-
mation than constrained (linear) ones. This revela-
tion, combined with the differences in probing task
format and the need to train, leads us to be cautious
in drawing conclusions from these methods.

6.2 Model Inspection
Model inspection directly opens the metaphorical
black box and studies the model weights without
additional training. For examples, the embeddings
themselves can be analyzed as points in a vector
space (Ethayarajh, 2019). Through visualization,
attention heads have been matched to linguistic
functions (Vig, 2019; Clark et al., 2019b). These
works suggest inspection is a viable path to debug-
ging specific examples. In the future, methods for
analyzing and manipulating attention in machine
translation (Lee et al., 2017; Liu et al., 2018b; Bau
et al., 2019; Voita et al., 2019) can also be applied
to text encoders.

Recently, interpreting attention as explanation
has been questioned (Serrano and Smith, 2019; Jain
and Wallace, 2019; Wiegreffe and Pinter, 2019;
Clark et al., 2019b). The ongoing discussion sug-
gests that this method may still be insufficient for
uncovering the rationale for predictions, which is
critical for real-world applications.

6.3 Input Manipulation13

Input manipulation draws conclusions by recasting
the probing task format into the form of the pre-

13This is analogous to the “few-shot“ and “zero-shot” anal-
ysis in Brown et al. (2020).

training task and observing the model’s predictions.
As discussed in §3, word prediction (cloze task) is a
popular objective. This method has been used to in-
vestigate syntactic and semantic knowledge (Gold-
berg, 2019; Ettinger, 2020; Kassner and Schütze,
2019). For a specific probing task, Warstadt et al.
(2019) show that cloze and diagnostic classifiers
draw similar conclusions. As input manipulation
is not affected by variables introduced by prob-
ing tasks and is as interpretable than inspection,
we suggest more focus on this method: either by
creating new datasets (Warstadt et al., 2020) or re-
casting existing ones (Brown et al., 2020) into this
format. A disadvantage of this method (especially
for smaller models) is the dependence on both the
pattern used to elicit an answer from the model and,
in the few-shot case where a couple examples are
provided first, highly dependent on the examples
(Schick and Schütze, 2020).

6.4 Future Directions in Model Analysis

Most probing efforts have relied on diagnostic clas-
sifiers, yet these results are being questioned. In-
spection of model weights has discovered what the
models learn, but cannot explain their causal struc-
ture. We suggest researchers shift to the paradigm
of input manipulation. By creating cloze tasks
that assess linguistic knowledge, we can both ob-
serve decisions made by the model, which would
imply (lack of) knowledge of a phenomenon. Fur-
thermore, it will also enable us to directly interact
with these models (by changing the input) with-
out additional training, which currently introduces
additional sources of uncertainty.

Bender and Koller (2020) also recommend a top-
down view for model analysis that focuses on the
end-goals for our field over hill-climbing individual
datasets. While language models continue to out-
perform each other on these tasks, they argue these
models do not learn meaning.14 If not meaning,
what are these models learning?

We are overinvesting in BERT. While it is fruit-
ful to understand the boundaries of its knowledge,
we should look more across (simpler) models to
see how and why specific knowledge is picked up
as our models both become increasingly complex
and perform better on a wide set of tasks. For ex-
ample, how many parameters does a Transformer-
based model need to outperform ELMo or even
rule-based baselines?

14A definition is given in §3 of Bender and Koller (2020).
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7 Area V: Multilinguality

The majority of research on text encoders has been
in English.15 Cross-lingual shared representations
have been proposed as an efficient way to target
multiple languages by using multilingual text for
pretraining (Mulcaire et al., 2019; Devlin et al.,
2019; Lample and Conneau, 2019; Liu et al., 2020c,
inter alia). For evaluation, researchers have de-
vised multilingual benchmarks mirroring those for
NLU in English (Conneau et al., 2018b; Liang et al.,
2020; Hu et al., 2020). Surprisingly, without any
explicit cross-lingual signal, these models achieve
strong zero-shot cross-lingual performance, outper-
forming prior cross-lingual word embedding-based
methods (Wu and Dredze, 2019; Pires et al., 2019).

A natural follow-up question to ask is why these
models learn cross-lingual representations. Some
answers include the shared subword vocabulary
(Pires et al., 2019; Wu and Dredze, 2019), shared
Transformer layers (Conneau et al., 2020b; Artetxe
et al., 2020) across languages, and depth of the net-
work (K et al., 2020). Studies have also found the
geometry of representations of different languages
in the multilingual encoders can be aligned with
linear transformations (Schuster et al., 2019; Wang
et al., 2019e, 2020c; Liu et al., 2019b), which has
also been observed in independent monolingual en-
coders (Conneau et al., 2020b). These alignments
can be further improved (Cao et al., 2020b).

7.1 Evaluating Multilinguality

All of the areas discussed in this paper are applica-
ble to multilingual encoders. However, progress in
training, architecture, datasets, and evaluations are
occurring concurrently, making it difficult to draw
conclusions. We need more comparisons between
competitive multilingual and monolingual systems
or datasets. To this end, Wu and Dredze (2020) find
that monolingual BERTs in low-resource languages
are outperformed by multilingual BERT. Addi-
tionally, as zero-shot (or few-shot) cross-lingual
transfer has inherently high variance (Keung et al.,
2020), the variance of models should also be re-
ported.

We anticipate cross-lingual performance being
a new dimension to consider when evaluating text
representations. For example, it will be exciting
to discover how a small, highly-performant mono-

15Of the monolingual encoders in other languages, core
research in modeling has only been performed so far for a few
non-English languages (Sun et al., 2019b, 2020a).

lingual encoder contrasts against a multilingual
variant; e.g., what is the minimum number of pa-
rameters needed to support a new language? Or,
how does model size relate to the phylogenetic
diversity of languages supported?

8 Discussion

8.1 Limitations and Recommendations

This survey, like others, is limited to only what
has been shared publicly so far. The papers of
many models described here highlight their best
parts, where potential flaws are perhaps obscured
within tables of numbers. Leaderboard submis-
sions that do not achieve first place may never be
published. Meanwhile, encoders are expensive to
work with, yet they are a ubiquitous component in
most modern NLP models. We strongly encourage
more publication and publicizing of negative re-
sults and limitations. In addition to their scientific
benefits,16 publishing negative results in contextu-
alized encoders can avoid significant externalities
of rediscovering what doesn’t work: time, money,
and electricity. Furthermore, we ask leaderboard
owners to periodically publish surveys of their
received submissions.

The flourishing research in improving encoders
is rivaled by research in interpreting them, mainly
focused on discovering the boundary of what
knowledge is captured by the models. For inves-
tigations that aim to sharpen the boundary, it is
logical to build off of these prior results. How-
ever, we raise a concern that these encoders are
all trained on similar data and have similar sizes.
Future work in probing should also look across
different sizes and domains of training data, as
well as study the effect of model size. This can be
further facilitated by model creators who release
(data) ablated versions of their models.

We also raise a concern about reproducibility and
accessibility of evaluation. Already, several papers
focused on model compression do not report full
GLUE results, possibly due to the expensive fine-
tuning process for each of the nine datasets. Fine-
tuning currently requires additional compute and
infrastructure,17 and the specific methods used im-
pact task performance. As long as finetuning is still
an essential component of evaluating encoders, de-

16An EMNLP 2020 workshop is motivated by better science
(https://insights-workshop.github.io/).

17Pruksachatkun et al. (2020) is a library that reduces some
infrastructural overhead of finetuning.

https://insights-workshop.github.io/
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vising cheap, accessible, and reproducible met-
rics for encoders is an open problem.

Ribeiro et al. (2020) suggest a practical solution
to both probing model errors and reproducible eval-
uations by creating tools that quickly generate test
cases for linguistic capabilities and find bugs in
models. This task-agnostic methodology may be
extensible to both challenging tasks and probing
specific linguistic phenomenon.

8.2 Which *BERT should we use?

Here, we discuss tradeoffs between metrics and
synthesize the previous sections. We provide a
series of questions to consider when working with
encoders for research or application development.

Task performance vs. efficiency An increas-
ingly popular line of recent work has investigated
knowledge distillation, model compression, and
sparsification of encoders (§4.2). These efforts
have led to significantly smaller encoders that boast
competitive performance, and under certain set-
tings, non-contextual embeddings alone may be
sufficient (Arora et al., 2020; Wang et al., 2020a).
For downstream applications, ask: Is the extra
iota of performance worth the significant costs
of compute?

Leaderboards vs. real data As a community,
we are hill-climbing on curated benchmarks that
aggregate dozens of tasks. Performance on these
benchmarks does not necessarily reflect that of spe-
cific real-world tasks, like understanding social me-
dia posts about a pandemic (Müller et al., 2020).
Before picking the best encoder determined by av-
erage scores, ask: Is this encoder the best for
our specific task? Should we instead curate a
large dataset and pretrain again? Gururangan
et al. (2020) suggest continued pretraining on in-
domain data as a viable alternative to pretraining
from scratch.

For real-world systems, practitioners should
be especially conscious of the datasets on which
these encoders are pretrained. There is a tradeoff
between task performance and possible harms
contained within the pretraining data.

Monolingual vs. Multilingual For some higher
resource languages, there exist monolingual pre-
trained encoders. For tasks in those languages,
those encoders are a good starting point. However,
as we discussed in §7, multilingual encoders can,

surprisingly, perform competitively, yet these met-
rics are averaged over multiple languages and tasks.
Again, we encourage looking at the relative per-
formance for a specific task and language, and
whether monolingual encoders (or embeddings)
may be more suitable.

Ease-of-use vs. novelty With a constant stream
of new papers and models (without peer review) for
innovating in each direction, we suggest using and
building off encoders that are well-documented
with reproduced or reproducible results. Given
the pace of the field and large selection of mod-
els, unless aiming to reproduce prior work or im-
prove underlying encoder technology, we recom-
mend proceeding with caution when reimplement-
ing ideas from scratch.

9 Conclusions

In this survey we categorize research in contextu-
alized encoders and discuss some issues regarding
its conclusions. We cover background on contextu-
alized encoders, pretraining objectives, efficiency,
data, approaches in model interpretability, and re-
search in multilingual systems. As there is now a
large selection of models to choose from, we dis-
cuss tradeoffs that emerge between models. We
hope this work provides some assistance to both
those entering the NLP community and those al-
ready using contextualized encoders in looking be-
yond SOTA (and Twitter) to make more educated
choices.
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