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Abstract

The lack of large and diverse discourse tree-
banks hinders the application of data-driven
approaches, such as deep-learning, to RST-
style discourse parsing. In this work, we
present a novel scalable methodology to auto-
matically generate discourse treebanks using
distant supervision from sentiment-annotated
datasets, creating and publishing MEGA-DT,
a new large-scale discourse-annotated corpus.
Our approach generates discourse trees in-
corporating structure and nuclearity for doc-
uments of arbitrary length by relying on an
efficient heuristic beam-search strategy, ex-
tended with a stochastic component. Experi-
ments on multiple datasets indicate that a dis-
course parser trained on our MEGA-DT tree-
bank delivers promising inter-domain perfor-
mance gains when compared to parsers trained
on human-annotated discourse corpora.

1 Introduction

Discourse parsing is an important Natural Lan-
guage Processing (NLP) task, aiming to uncover
the hidden structure underlying coherent docu-
ments, as described by theories of discourse like
Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) or PDTB (Prasad et al., 2008).
Not only has discourse parsing been shown to en-
hance key downstream tasks, such as text classifica-
tion (Ji and Smith, 2017), summarization (Gerani
et al., 2014) and sentiment analysis (Bhatia et al.,
2015; Nejat et al., 2017; Hogenboom et al., 2015),
but it also appears to complement contextual em-
beddings, like BERT (Devlin et al., 2018), in tasks
where discourse information is critical, such as ar-
gumentation analysis (Chakrabarty et al., 2019).
Traditionally, RST-style discourse parsing builds
a complete, hierarchical constituency tree for a doc-
ument (Morey et al., 2018), where leaf nodes are
clause-like sentence fragments, called elementary-
discourse-units (EDUs), while internal tree nodes

are labelled with discourse relations (e.g., Evi-
dence, Contrast). In addition, each node is given a
nuclearity attribute, which encodes the importance
of the node in its local context.

A key limitation for further research in RST-style
discourse parsing is the scarcity of training data.
Only a few human annotated discourse treebanks
exist, each only containing a few hundred docu-
ments. Although our recent efforts using distant
supervision from sentiment to generate large-scale
discourse treebanks have already partly addressed
this dire situation (Huber and Carenini, 2019), the
previously proposed solution is still limited in: (i)
Scope, by only building the RST constituency struc-
ture without nuclearity and relation labels; and (ii)
Applicability, by relying on a non-scalable CKY so-
Iution, which cannot be applied to many real-world
datasets with especially long documents.

In this work, we propose a significant extension
to this line of research by introducing a scalable so-
lution for documents of arbitrary length and further
moving beyond just predicting the tree-structure by
incorporating the nuclearity attribute, oftentimes
critical in informing downstream tasks (Marcu,
2000; Ji and Smith, 2017; Shiv and Quirk, 2019).
Inspired by the recent success of heuristic search in
NLP tasks involving trees (e.g., Fried et al. (2017);
Mabona et al. (2019)), we develop a beam-search
strategy implementing an exploration-exploitation
trade-off, as commonly used in reinforcement-
learning (RL) (Poole and Mackworth, 2010).

Remarkably, by following this heuristic ap-
proach, any large corpus annotated with sentiment
can be turned into a discourse treebank on which
a domain/genre specific discourse parser can be
trained. As a case study for this process, we anno-
tate, evaluate and publicly release a new discourse-
augmented Yelp '13 corpus (Tang et al., 2015)
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called MEGA-DT! (comprising ~250,000 docu-
ments) with nuclearity attributed “silver-standard”
discourse trees, solely leveraging the corpus’
document-level sentiment annotation.

To evaluate the quality of our newly proposed
MEGA-DT corpus, we conduct a series of exper-
iments. We train the top-performing discourse
parser by Wang et al. (2017) on MEGA-DT and
compare its performance with the same parser
trained on previously proposed treebanks. Specifi-
cally, we compare our discourse-annotated dataset
against a smaller “silver-standard” treebank (Huber
and Carenini, 2019) containing around ~100,000
documents with <20 EDUs and two standard hu-
man annotated corpora in the news domain (RST-
DT) (Carlson et al., 2002) and in the instructional
domain (Subba and Di Eugenio, 2009).

Results indicate that while training a parser on
MEGA-DT does not yet match the performance
of training and testing on the same treebank (intra-
domain), it does push the boundaries of what is
possible with distant supervision. In most cases,
training on MEGA-DT delivers statistically signifi-
cant improvements on the arguably more difficult
and useful task of inter-domain discourse predic-
tion, where a parser is trained on one domain and
tested/applied to another one.

Overall, this suggests that our new approach to
distant supervision from sentiment can generate
large-scale, high-quality treebanks, with MEGA-
DT being the best publicly available resource for
training a discourse parser in domains where no
gold-standard discourse annotation is available.

2 Related Work

The most closely related line of work is RST-style
discourse parsing, with the goal to obtain a com-
plete discourse tree, including structure, nuclearity
and relations. Based on the observation that these
three aspects are correlated, most previous work
has explored models to learn them jointly (e.g.,
Joty et al. (2015); Ji and Eisenstein (2014); Yu
et al. (2018)). However, while this strategy seems
intuitive, the state-of-the-art (SOTA) system on
structure-prediction by Wang et al. (2017) applies
a rather different strategy, first jointly predicting
structure and nuclearity and then subsequently pre-

'Our new Discourse Treebank and the code to generate
further “silver-standard” discourse treebanks can be found at:
https://www.cs.ubc.ca/
cs-research/lci/research-groups/
natural-language—-processing/

dicting relations. The main motivation behind this
separation is the large number of possible output
classes when predicting these three aspects together.
The success of the system by Wang et al. (2017) on
the widely used RST-DT corpus inspires us to also
learn structure and nuclearity jointly, rather than
combining all three aspects.

The second line of related work infers fine-
grained information from coarse-grained super-
vision signals using machine learning. Due to
the lack of annotated data in many domains and
for many real-world tasks, methods to automat-
ically generate reliable, fine-grained data-labels
have been explored for many years. One promising
approach in this area is Multiple Instance Learning
(MIL) (Keeler et al., 1991). The general task of
MIL is to retrieve fine-grained information (called
instance-labels) from high-level supervision (called
bag-labels), using correlations of discriminative
features within and between bags to predict labels
for instances. With the recent rise of deep-learning,
neural MIL approaches have also been proposed
(Angelidis and Lapata, 2018).

We previously combined the two lines of re-
lated work described above to create discourse
structures from large-scale datasets, solely using
document-level supervision (Huber and Carenini,
2019). When applied to the auxiliary task of sen-
timent analysis, we generated a “silver-standard”
discourse structure treebank using the neural MIL
model by Angelidis and Lapata (2018) in com-
bination with a sentiment-guided CKY-style tree-
construction algorithm, generating near-optimal
discourse trees in bottom-up fashion (Jurafsky and
Martin, 2014). Although our approach has shown
clear benefits, it is inapplicable to many real-world
datasets, as it does not scale to long documents
and cannot predict nuclearity- and relation-labels.
Addressing these limitations is a major motivation
of this paper.

Further efforts to automatically generate dis-
course trees from auxiliary tasks have been mostly
focused on latent tree induction, generating trees
from text classification (Karimi and Tang, 2019) or
summarization tasks (Liu et al., 2019). For both
approaches, domain dependent discourse trees are
induced during the neural training process. While
either method has shown to improve the perfor-
mance on the downstream task itself, subsequent
research by Ferracane et al. (2019) indicates that
the induced trees are often trivial and shallow, and
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do not represent valid discourse structures.

The third stream of related work is on leverag-
ing heuristic search algorithms in NLP tasks in-
volving trees. For syntactic parsing, Vinyals et al.
(2015) and Fried et al. (2017) show that a static,
small beam size (e.g. 10) already achieves good
performance, with Dyer et al. (2016) delivering
promising results by using greedy decoding. As a
recent example for discourse parsing, Mabona et al.
(2019) successfully combine standard beam-search
with shift-reduce parsing using two parallel beams
for shift and reduce actions. Overall, recent work
shows that beam-search approaches and their pos-
sible extensions can effectively address scalability
issues in multiple parsing scenarios. In this pa-
per, we extend the standard beam-search approach
with a stochastic exploration-exploitation trade-off,
as used in Reinforcement Learning, where signals
also tend to be sparse and noisy.

3 Predicting Discourse from Sentiment

Previous work has shown that incorporating RST-
style discourse trees can help to predict document-
level sentiment (Bhatia et al., 2015; Nejat et al.,
2017; Hogenboom et al., 2015). These findings
give rise to the assumption that the sentiment of
a document can also provide important informa-
tion on its discourse structure. In the following
sub-section, we shortly revisit our previous ap-
proach to exploit this assumption by solely relying
on document-level sentiment annotations (Huber
and Carenini, 2019). Afterwards, we will present
our new approach to overcome scalability issues
and jointly predict structure and nuclearity.

3.1 Predicting Discourse Structure for Short
Documents

The discourse-structure tree of a document can be
predicted from its global sentiment by combining
Multiple Instance Learning (MIL) and the CKY
algorithm. We will illustrate the process on the
following negative sentiment example with a polar-
ity of —0.5, pre-segmented into five EDUs: [Bad
poutine.|;, [Fries were nice and thin,[,, [had a
good taste, |3, [however, the gravy was cold]y, [and
the cheese was not melted.|s. The first step in
generating the discourse structure for this example
consist of assigning each EDU a sentiment polarity
prpu within the interval of [—1, 1] and an attention
score appy between [0, 1], both learned through
MIL from the overall document sentiment polarity.

To obtain the tuple {prpy,arpy} for each
EDU in a document, the neural MIL model (Ange-
lidis and Lapata, 2018) is trained on a document-
level sentiment dataset, with the goal to predict
sentiment-labels for EDU-level instances. The
model therefore generates a mapping from in-
puts (EDUs) to the respective outputs (sentiment-
classes) by exploiting correlations between the ap-
pearance of EDUs in documents and the respective
document gold-labels across a corpus. For exam-
ple, the EDU [had a good taste, |3 will most likely
appear predominantly in positive documents, allow-
ing the MIL model to infer a positive EDU-level
sentiment polarity pgp for this input. When ap-
plying the neural model by Angelidis and Lapata
(2018), an attention mechanism is internally used
to weight the importance of EDUs for the overall
document sentiment. An attention-weight agpgr is
also extracted for each EDU and subsequently used
as an importance score when aggregating subtrees
using the CKY approach.

From those tuples {prpu,arppy} assigned to
leaf-nodes, the sentiment polarity p and attention
score a for any internal node in an arbitrary con-
stituency tree can be computed bottom-up by aggre-
gating its two child nodes ¢;, ¢,. Out of the set of
potential aggregation functions proposed in Huber
and Carenini (2019), the best performing approach
has shown to be:

D= Pe; * Qg + De, * Qe, o= Qg + ac, (1)

G, + Q. 2

By recursively applying this function from the leaf-
nodes, we can compute the sentiment and attention
of the root node, representing the full document.

The process of selecting the best discourse tree
for a given document can be framed as finding
the tree for which the sentiment of the root node
(spanning the whole document) is the closest to the
gold-standard sentiment annotation. A brute-force
solution to this problem is to generate all possible
discourse trees using the general CKY algorithm
and selecting the best tree amongst all candidates.
However, the computational complexity of this ap-
proach quickly explodes, as shown for our running
example with 5 EDU leaf-nodes in Figure 1. From
the decision-space of possible tree-structures, the
tree with the shortest sentiment-distance from the
gold-standard, computed at the root node, is se-
lected.

Although this method has been shown to pro-
vide reasonably good trees when leveraged for
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Figure 1: All 14 projective discourse trees annotated
with sentiment for a 5 EDU document (using a sim-
plified color-scheme, green = positive, red = negative,
grey = neutral, omitting the attention attribute)

discourse-structure parsing, it is limited in two fun-
damental ways: (1) The approach is not scalable.
Since its space complexity grows with the Catalan
number C,, = n_lH ( ) for trees with n + 1 EDUs,
it can only be applied to short (=< 20 EDUs) doc-
uments (see bottom row in Table 1), making it
impractical for many real-world datasets contain-
ing longer documents, such as the Yelp ’13 (Tang
et al., 2015), IMDB (Diao et al., 2014) or Amazon
Review dataset (Zhang et al., 2015). (2) Due to
the high computational complexity of the structure
prediction itself, the inference of further RST-tree
properties, such as nuclearity and relations, often
critical for downstream tasks, are not feasible with
this unconstrained CKY approach.

3.2 Predicting Discourse Structure and
Nuclearity from Arbitrary Documents

Inspired by the recent success in applying beam-
search to enhance the scalability of multiple NLP
parsing tasks (Mabona et al., 2019; Fried et al.,
2017; Dyer et al., 2016; Vinyals et al., 2015), we
propose a novel heuristic beam-search approach
that can automatically generate discourse trees con-
taining structure- and nuclearity-attributes for doc-
uments of arbitrary length.

Stochastic Beam-Search In essence, the general
CKY dynamic programming algorithm creates all
possible binary trees covering the n EDUs by inter-
nally filling an (n x n) matrix, where each cell(3, j)
contains the information on all subtrees covering
the text spans from £ DU; to EDUj. Our heuris-
tic beam-search solution limits the computational
complexity of this process by reducing the number
of subtrees stored in each cell to a constant beam-
size B. This naturally raises the question on how

to select the B subtrees to preserve in each cell.
We follow the intuitive assumption that subtrees for
which the sentiment diverges most from the overall
document sentiment (the only available supervision
for this task) can be safely discarded. Out of the
set of possible subtrees 1" for a given cell, only the
subset 7" with |T’| = B is kept, containing the
B subtrees with the closest sentiment polarity p;,
to the gold-label (gl) sentiment of the document.
Formally:

T' = arg min |p;, — gl| (2)
€T, T'|=B

However, one limitation of this heuristic rule
is that it strictly prefers subtrees with sentiment
closer to the overall document sentiment, indepen-
dent of their distance from the root node. This can
be problematic when applied in early stages of the
tree-generation process, where only a few EDUs
are combined. For instance, a mostly positive docu-
ment might still contain certain negative subtrees at
its lowest levels, which also need to be aggregated
appropriately.

Ideally, we would like to support a high de-
gree of exploration on low levels of the tree, only
loosely forcing the sentiment of subtrees in the
beam to align with the overall document gold-label
sentiment; while on higher levels of the tree, the
requirement of closely reflecting the document’s
gold-standard sentiment should be strictly enforced
(i.e., exploiting the distant supervision).

We implement this strategy through a stochas-
tic beam-search approach, which relies on a soft-
max selection using the Boltzmann—Gibbs dis-
tribution (Poole and Mackworth, 2010). The
temperature coefficient 7 thereby modulates the
exploration-exploitation trade-off (similar to previ-
ous work in RL), by influencing the divergence
of the softmax outputs. We then sample from
the resulting, categorical probability distribution
P = ((Prob(t1), ..., Prob(ty)), computed for ev-
ery local subtree t; € T to obtain a subset 7" of
size B (as shown in equation 3).

S/
/T
e 1Pt; =9l

Prob(t;)) = —————— 3)
Z e\pzj—gl\/T
t; €T
T=f(n,e)=(Mn—-c)+1 4)

In this work, the parameter 7 is defined as a lin-
ear function f(n, ¢) parameterized by the number
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Figure 2: Standard beam-search approach (left) pick-
ing the top B = 2 tree-candidates with the small-
est distance |p;, — gl| in every CKY cell. Stochas-
tic beam-search approach (right) calculating the Boltz-
mann—Gibbs distribution with the tree-coverage depen-
dent temperature 7, modulating the subtree sampling
process of the tree-candidates. (For readability, we only
show a maximum of 4 subtrees per CKY cell)

of EDUs ¢ covered under the subtree ¢; as well as
the total number of EDUs n (see equation 4). This
way, 7 influences equation 3 such that for larger
values of ¢ (at the top of the tree), 7 gets close to
1 and the sampling is likely to select subtrees with
low distance |p;; — gl|. For subtrees with a small
coverage c (at the bottom of the tree), 7 becomes
>> 1 and Prob(t;) resembles the uniform distribu-
tion, allowing for a high degree of exploration. For
illustration, Figure 2 highlights the differences be-
tween the standard and the stochastic beam-search
approach.

Analysis of Spacial Complexity The described
system significantly reduces the spatial complexity,
independent from whether a stochastic component
is used. The complexity reduction can be easily ob-
served by comparing the theoretical upper-bounds
for the space consumption of the unrestricted CKY
approach (eq. 5) against the upper-bounds for the
heuristically constrained CKY method (eq. 6).

G B

i=1
4n’B + 4(n — 1) B? (6)

In both equations, n represents the number of
leaf-nodes (EDUs) in the discourse tree. In eq. 5,
the number of generated trees at every level of the
tree is bound by the Catalan number, while in eq. 6
the bound has a quadratic dependency on the input-
size and the beam-size. For the equations shown,

| Beam | 20EDUs 30 EDUs 100 EDUs
1] 16KB  3.7KB 40KB

10| 24KB  48KB  440KB

100 | 920KB  1.5MB 7.9MB

o | 36GB  1.9PB 400SB

Table 1: Upper-bounds for growth of spatial complex-
ity using different beam sizes and unconstrained CKY
(00), assuming 1Byte per unit in memory. KB = 103,
MB =10%, GB = 10%, PB = 10'%, SB = 10°*

we assume that on every level of the tree, each of
the possible subtrees is represented by 2 pointers to
the child-nodes as well as a sentiment and attention
value for the subtree itself. Table 1 compares the
space capacities required with increasing document
length, indicating that with a proper beam size, our
heuristic strategy can deal with the tree structures
for very long documents.

Integration of Nuclearity With this scalable so-
lution, it is now possible to also take additional
properties, like nuclearity, into account. The inher-
ent advantage of generating nuclearity-attributed
discourse trees becomes obvious when revisiting
the definition in RST (Mann and Thompson, 1988),
where the nuclearity-attribute encodes a notion of
“importance” in the local context, with Nucleus-
Statellite (N-S) and Satellite-Nucleus (S-N) attribu-
tions defining the directionality between two nodes,
while the Nucleus-Nucleus (N-N) attribution im-
plies equal importance (Morey et al., 2018). Ex-
pressing this notion of importance, it is not surpris-
ing that nuclearity-attribution is frequently critical
in informing many downstream tasks like summa-
rization and text categorization (e.g., Marcu (2000);
Ji and Smith (2017); Shiv and Quirk (2019)).
Technically, we integrate the nuclearity attribute
into the tree-generation process by assigning each
subtree one of the three nuclearity classes N-S, S-N
or N-N, following the assumption that the attention
values a,, a., capture the nodes’ relative impor-
tance in the tree. Starting from the leaf-node at-
tention, extracted from MILNet, we propagate the
attention values through the tree structure accord-
ing to equation (1). More specifically, for a subtree
where the attention value a., is greater than the
attention a.,., we will assign the N-S label, while
S-N is assigned if the opposite is true. However,
in this way, only two of the three possible nucle-
arity classes can be represented (namely N-S and
S-N), as the attention values are distinct. To fur-
ther account for the third class of N-N, we include
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Treebank #Documents . #EDUs*

min avg max
Instr-DT 176 2 33 248
RST-DT 385 2 56 240
Yelp13-DT 100,000 2 10 20
MEGA-DT 250,000 2 19 150

Table 2: Treebank size and distribution (*calculated on
the training set)

an additional subtree at every merge in the CKY
procedure, which averages not only the two atten-
tion values ac,, a., (as shown in eq. 1) but also
the child polarity scores p,, p.,. This reflects the
definition of the N-N nuclearity class according to
RST, where an even importance for all child nodes
is assumed in the multi-nucleus case. The addi-
tional complexity of doubling the number of trees
in each cell is only manageable due to the use of
our heuristic approach.

4 Evaluation

In this section, we evaluate our proposed method
to generate the MEGA-DT discourse treebank by
assessing the performance of a discourse parser
when trained on MEGA-DT against our previously
proposed “silver-standard” treebank (Huber and
Carenini, 2019) as well as two commonly used,
human-annotated, discourse corpora.

4.1 Treebanks

The two human-annotated treebanks are:
Instructional-DT (from here on called Instr-DT)
by Subba and Di Eugenio (2009), which comprises
of documents on home-repair instructions anno-
tated with full RST-style discourse trees, separated
into training- and test-set with a 90-10 split.
RST-DT by Carlson et al. (2002), containing news
articles alongside with full RST-style discourse
trees, in the standard 90-10 train-test split.

The two automatically annotated treebanks are:
Yelp13-DT, generated according to our previously
proposed unconstrained CKY approach as de-
scribed in Huber and Carenini (2019). We use
the pre-segmented version of the Yelp’13 customer
review dataset by Angelidis and Lapata (2018),
separated into EDUs by applying the publicly avail-
able discourse segmenter proposed in Feng and
Hirst (2014). Yelp13-DT contains short documents
with < 20 EDUs, only considering two nuclearity
classes (namely N-S and S-N).

MEGA-DT, our novel treebank, is also generated

from the original Yelp’13 corpus, akin to Yelp13-
DT. However, due to our newly proposed, scalable
solution, MEGA-DT is much larger and more com-
prehensive, integrating all three nuclearity classes.
A comparison of the key dimensions of all tree-
banks used in this work is shown in Table 2.

4.2 Discourse Parsers

To interpret our results in the context of existing
work, we consider a diverse set of top-performing
discourse parsers. Previous work by Morey et al.
(2017) compares a set of competitive parsers, in-
cluding DPLP (Ji and Eisenstein, 2014), gCRF
(Feng and Hirst, 2014), CODRA (Joty et al., 2015)
and Li et al. (2016). We further add the Two-Stage
discourse parser by Wang et al. (2017) and the neu-
ral approach by Yu et al. (2018) into our final eval-
uation. Due to the top performance of the parser
by Wang et al. (2017) on the structure-prediction
of the widely used RST-DT corpus, and even more
importantly, due to the separation of the relation
computation from the structure/nuclearity predic-
tion, we use the parser by Wang et al. (2017) in our
inter-domain experiments.

4.3 Preliminary Evaluation

We run a set of preliminary evaluations on a ran-
domly selected subset containing 10,000 docu-
ments from the Yelp’13 dataset. In general, the
preliminary evaluation suggests that (1) A beam-
size of 10 delivers the best trade-off between com-
putational complexity and performance (out of {1,
5, 10, 50, 100}), when tested according to the dis-
tance between gold-label sentiment and model pre-
diction. (2) We employ a sentence-first aggregation
strategy, using sentence-boundary predictions from
the NLTK toolkit?>. By not allowing inter-sentence
connections, unless the complete sentence is al-
ready represented by a subtree, we reach superior
results in the preliminary evaluation compared to
exploring the complete CKY space. This is consis-
tent with previous findings showing that sentence
boundaries are key signals for tree aggregations
(Joty et al., 2015).

4.4 Experiments and Results

We train the discourse parser by Wang et al. (2017)?
on our newly generated MEGA-DT corpus as well
as the Yelp13-DT and the original RST-DT and

Zwww.nltk.org/api/nltk.tokenize.html
Swww.github.com/yizhongw/StageDP/
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Structure Nuclearity
Approach RST-DT Instr-DT RST-DT Instr-DT
Par. R-Par. Par. R-Par. Par. R-Par. Par. R-Par.
Right Branching 9.27 54.64 | 2545 62.72 X X X X
Left Branching 745  53.73 432 52.16 X X X X
Hier. Right Branching 48.74 7437 | 50.68 75.34 X X X X
Hier. Left Branching 41.16  70.58 | 27.50 63.75 X X X X
Majority Class X X X x | ¥961.28 M™N61.33 | VN 5233 N 76,48
Intra-Domain Evaluation
DPLP(2014)* 64.10  82.00 - - 54.20 68.20 - -
gCRF(2014)* 68.60  84.30 - - 55.90 69.40 - -
CODRA(2015)* 65.10 82.60 - 82.88 55.50 68.30 - 64.13
Li(2016)* 64.50 82.20 - - 54.00 66.50 - -
Two-Stage(2017) 70.97 86.00 | 58.86 79.43 57.97 72.40 40.00 62.39
Yu(2018) - 8550 - - - 73.10 - -
Inter-Domain Evaluation
Two-StagersT.oT X X | 4595 73.57 X X 27.18 49.78
Two-Stagemsi-pDT 46.01 74.32 X X 22.22 44.68 X X
TWO—StageYelpB,DT(z()lg) 52.95 76.41 46.59 74.14 15.51 35.72 7.27 33.35
Two-StagemeGA-DT 155,76 777.82 | 150.23 175.18 1586  44.88 2031  754.87
| Human (2017) [ 7870 8830 | - — | 66.80 77.30 | - — |

Table 3: Results of the micro-averaged precision measure using the original Parseval method (Par.) and RST Parse-
val (R-Par.). Inter-domain subscripts identify the training set. Inter-domain results averaged over 10 independent
runs. Models with stochastic components are averaged over 3 distinct generation processes. The best performance
per sub-table is bold. * Results taken from Morey et al. (2017), T statistically significant with p-value < .05 to the
best inter-domain baseline (Bonferroni adjusted), — non-published values, x not feasible combinations

Instr-DT corpora®. To verify the ability of the

training treebanks to support the discourse parser
in extracting domain-independent features of gen-
eral discourse, we evaluate the performance on the
inter-domain discourse parsing task, training the
Two-Stage discourse parser on one domain (e.g.,
Yelp user reviews in MEGA-DT) and evaluating
it on documents in a different domain (e.g., news
articles in RST-DT). We compare the obtained per-
formances against the classic and arguably easier
intra-domain measure (training and testing on doc-
uments within the same domain).

The results of the final evaluation are summa-
rized and aggregated in three sets of experiments
in Table 3. In the first set (on top of Table 3), we
show the micro-averaged original Parseval perfor-
mance (Par.) (Morey et al., 2017) as well as the
RST-Parseval measures (R-Par.) of standard lin-
guistic baselines for the structure- and nuclearity-
prediction task. Regarding the structure prediction
(left), we compare the performance when apply-
ing a strictly right- or left-branching tree to the
data, as well as hierarchical versions of those (right-
/left-branching trees on sentence-level combined by
right-/left-branching trees on document level). The

“Trained on an Intel Core i9 (10 Cores, 3.30 GHz) CPU

results indicate that the hierarchical right-branching
tree resembles the original tree structure the clos-
est on both metrics and either evaluation treebank>.
As a baseline for the nuclearity prediction task, we
compute the majority class on the training corpora.
It is important to note that while the linguistic base-
lines for structure do not require available training
data, the majority class measure depends on access
to an annotated corpus in the target domain.

The second set of results shows the intra-domain
performance of top performing discourse parsers,
frequently evaluated against in the past. While all
parsers except CODRA (Joty et al., 2015) have
been only evaluated on RST-DT, we additionally
train and evaluate the Two-Stage parser on the Instr-
DT corpus. When comparing the intra-domain dis-
course parsing performance, the Two-Stage parser
reaches the consistently best performance on RST-
DT structure prediction, while the discourse parser
by Yu et al. (2018) achieves the best results on the
RST-DT nuclearity prediction using RST-Parseval.
CODRA reaches the best performance on the Instr-

Note that the performance of the Hierarchical Right-
Branching baseline is higher than reported in Huber and
Carenini (2019), because of an additional clean-up step re-
quired during data preprocessing. The competitive perfor-
mance of this baseline is most likely attributed to the highly
structured nature of the target domains.
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Structure Nuclearity
Approach RST-DT Instr-DT RST-DT Instr-DT
Par. R-Par. | Par. R-Par. | Par. R-Par. | Par. R-Par.
Two-StageMEGA-DT-Base 51.85 7592 | 47.05 73.87 | 1722 3646 | 8.64 3448
Two-StagemMeGA-DT +Stoch | 95.05  77.58 | 4375 73.76 | 17.76 3743 | 822 35.89
Two-Stagemeca-DT +Nue | 9455 76.76 | 50.01 7435 | 13.82 4422 | 19.82 54.10
Two-Stagemgca-DT 55.76 77.82 | 50.23 75.18 | 15.86 44.88 | 20.31 54.87

Table 4: Ablation study showing the influence of nuclearity and stochasticity on the overall performance, measured
as the micro-average precision using original Parseval (Par.) and RST Parseval (R-Par.). Results averaged over 10
runs (using 3 distinct generation processes if a stochastic components is included). The best performance is bold.

77.8
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7.4
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Figure 3: Performance-trend over increasingly large
subsets tested on RST-DT (top) and Instr-DT (bottom).
Each sample is generated as the average performance
over 10 random subsets, drawn from 3 independently
created treebanks.

DT corpus when evaluated with RST-Parseval.
The main contribution of this work is placed
in the third set of results, where the Two-Stage
discourse parser is trained and tested on different,
non-overlapping domains (i.e., inter-domain). This
task is arguably more useful and significantly more
difficult than the task evaluated in the second set,
which is reflected in the performance decrease for
structure and nuclearity in the first two rows of the
sub-table, confirming that the transfer of discourse-
structures and -nuclearity between domains is a
challenging task. The results presented in the third
row of the sub-table show the performance of the
Two-Stage parser when trained on Yelp13-DT, con-
taining short documents with limited nuclearity an-
notations. The approach achieves consistently bet-
ter performance compared to the first two rows on
the inter-domain structure prediction task (For both,
original Parseval and RST-Parseval), as we have
previously shown in Huber and Carenini (2019).
However, only considering two out of three nu-
clearity classes (N-S and S-N), the system per-
forms rather poorly on the nuclearity classification
task. The bottom row of the third sub-table dis-

plays the performance of the Two-Stage discourse
parser when trained on our new MEGA-DT corpus.
Training on MEGA-DT delivers statistically sig-
nificant improvements over the best inter-domain
baseline in all structure prediction tasks. Further-
more, our new system also achieves statistically
significant gains on the Instr-DT nuclearity predic-
tion, when evaluated according to the RST-Parseval
metric. The nuclearity measure on RST-DT using
RST-Parseval is statistically equivalent to the best
baseline system. Overall, our MEGA-DT corpus
appears to outperform previously published tree-
banks for inter-domain discourse parsing on every
sub-task on at least one competitive metric.

In order to gain deeper insights into the effective-
ness of our proposed treebank generation approach,
we run a set of four additional evaluations. First,
we evaluate the individual components of our sys-
tem by showing an ablation study in Table 4, start-
ing with the performance of the discourse parser
trained with MEGA-DT-Base, a treebank gener-
ated with the standard beam-search approach and
without integrating nuclearity. Adding each feature
separately (+Stoch, +Nuc) we observe improve-
ments on at least one of the sub-tasks; however,
the combination of the two components produces
the best performing MEGA-DT corpus. Second,
we show the performance-trend over increasingly
large subsets of MEGA-DT in Figure 3, tested on
RST-DT (top) and Instr-DT (bottom). The two
trends highlight consistent improvements with in-
creasingly large dataset sizes, suggesting further
possible gains with even larger treebanks. Third,
we further analyze the nuclearity classification per-
formance in Table 5, which presents four confu-
sion matrices for the discourse parsing output of
our MEGA-DT treebank, evaluated according to
the original Parseval and RST-Parseval metrics on
RST-DT and Instr-DT. The matrices show a poten-
tial explanation for the performance-gap between
the original Parseval and the RST-Parseval metrics,
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Predicted
Predicted

N-N N-S S-N
N S

N-N | 243 | 11 40
% N | 1947 | 186

® N-S | 570 | 28 96
S | 1321 | 141

S-N | 244 5 47

N-N N-S S-N
N S

N-N | 85 1 9
% N | 470 | 30

® NS | 77 2 16
S| 149 | 7

S-N | 23 1 3

Table 5: Confusion Matrices for the model trained on
MEGA-DT, evaluated on RST-DT (top) and Instr-DT
(bottom). Left: Original Parseval, Right: RST-Parseval

identifying the over-prediction of the N-N class,
especially for gold-label N-S nuclearities. Further,
we frequently misclassify the gold-label N-S nucle-
arity class as S-N. Lastly, we present an additional
qualitative analysis in Appendix A to investigate
the strength and potential weaknesses of trees in
MEGA-DT. We therefore show three randomly se-
lected trees that closely/poorly reflect the authors
gold-label sentiment respectively (see Figure 4 for
a teaser). In general, the qualitative analysis shows
that trees in MEGA-DT are non-trivial, reasonably
balanced, strongly linked to the EDU-level sen-
timent and mostly well-aligned with meaningful
discourse-structures.

5 Conclusions and Future Work

In this work, we present a novel distant supervision
approach to predict the discourse-structure and -
nuclearity for documents of arbitrary length solely
using document-level sentiment information. To
deal with the increasing spatial complexity, we ap-
ply and compare heuristic beam-search strategies,
including a stochastic variant inspired by RL tech-
niques. Our results on the challenging inter-domain
discourse-structure and -nuclearity prediction task
strongly suggests that the heuristic approach taken
(1) enhances the structure prediction task through
more diversity in the early-stage tree selection, (2)
allows us to effectively predict nuclearity and (3)
helps to significantly reduce the complexity of the
unrestricted CKY approach to scale for arbitrary
length documents.

In conclusion, our new approach allows the NLP
community to augment any existing sentiment-
annotated dataset with discourse trees, enabling the
automated generation of large-scale domain/genre-
specific discourse treebanks. As a case study for the

effectiveness of the approach, we annotate and pub-
lish our MEGA-DT corpus as a high quality RST-
style discourse treebank, which has been shown
to outperform previously proposed discourse tree-
banks (namely Yelp13-DT, RST-DT and Instr-DT)
on most tasks of inter-domain discourse parsing.
This suggests that parsers trained on our MEGA-
DT corpus (or further domain-specific treebanks
generated according to our approach) should be
used to derive discourse trees in target domains
where no gold-labeled data is available.

This work can be extended in several ways: (i)
We plan to investigate into further functions for
7 to enhance the exploration-exploitation trade-
off. (i1) Additional strategies to assign nuclearity
should be explored, considering the excessive N-N-
classification shown in our evaluation. (iii) We plan
to apply our approach to more sentiment datasets
(e.g., Diao et al. (2014)), creating even larger tree-
banks. (iv) Our new and scalable solution can be
extended to also predict discourse relations besides
structure and nuclearity. (v) We also plan to use
a neural discourse parser (e.g. Yu et al. (2018))
in combination with our large-scale treebank to
fully leverage the potential of data-driven discourse
parsing approaches. (vi) Taking advantage of the
new MEGA-DT corpus, we want to revisit the po-
tential of discourse-guided sentiment analysis, to
enhance current systems, especially for long docu-
ments. (vii) Finally, more long term, we intend to
explore other auxiliary tasks for distant supervision
of discourse, like summarization, question answer-
ing and machine translation, for which plenty of
annotated data exists (e.g., Nallapati et al. (2016);
Cohan et al. (2018); Rajpurkar et al. (2016, 2018)).

Figure 4: Teaser for a tree analyzed in Appendix A con-
taining 72 EDUs and neutral document-level sentiment.
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A Qualitative Analysis of Generated
Discourse Trees

The following examples are automatically gener-
ated trees from our MEGA-DT corpus. EDU leaf-
nodes are enumerated and can be referenced with
the discourse units in the description. The colour-
saturation and -hue values represents the sentiment
of the nodes, with a dark red (high saturation) rep-
resenting a strongly negative subtree, white (low
saturation) representing a neutral sentiment sub-
tree and a dark green (high saturation) represents a
strongly positive subtree. The thickness of edges
and the size of nodes represent the attention of
the subtree, which is strongly correlated with the
subtree nuclearity.
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Figure 5: Accurately predicted example, Gold-label polarity: 0, Predicted polarity: 0.03,

Discourse: [amazing food.];, [awful, awful service.]s, [the garlic bread. very good.]s, [softer than i expected,]y,
[which was nice.]s, [i also just wasn’t expecting garlic bread.]g, [so it was a nice surprise.]7, [escargot -]g, [i was the
only one at the table (of 10)]g, [to eat it.]1¢, [they were great!];;, [served bubbling hot, not rubbery at all, delicious
sauce.]12, [i kept the dish]y3, [to dip bread into just because of the sauce.]i4, [veal - amazing.];5, [everything
tasted fantastic.]1¢, [0k, the carrots];7, [that were on the side were a bit plain];g, [and could have been softer, but
the veal itself and the sauce];g, [it was in, and the mushrooms and pasta.]s, [i left nothing on my plate.]o;, [my
husband got the same]22, [and also had the same impression.]s3, [creme brulee - fantastic.]o4, [tasted great, good
texture.]o5, [pleasantly surprised.]og, [my husband got the tiramisu]s7, [and said]og, [it was great.]og, [so why the
3 stars]3p, [when the food was so amazing?]31, [because of the terrible service. 1 -]32, [we got water.]3s, [great.]34,
[but our server * never * asked us]ss, [if we wanted anything else.]sg, [When my husband finally stopped him to
ask for a glass for my father in law, a coke for]s7, [and other drinks, our server looked very inconvenienced by it.
2 -]3g, [didn’t get to order appetizers.]sg, [you seelso, [1 got escargot?]y;, [i ordered that with my meal.]42, [our
server never asked about appetizers],3, [and went straight to meals.]44, [also, my husband was walking with our
daughter]s, [when the ordering was starting]4¢6, [and needed an extra minute.]47, [our server wanted to start with
him.]4s, [when asked if he could start with someone else’s order,]49, [our server protested,]so, [but eventually did
move on to the next person.]s1, [you’d think]so, [starting at the next person was]ss, [asking him to cut off his hand.
3 - empty glasses everywhere!]s4, [never got or was offered a refill on my drink.]s5, [or anyone else’s.]sg, [When
my father stopped our server well]s7, [after our meal was over]ss, [and asked]sg, [if i could get a coke,]gg, [our
server said]g1, [i had never ordered one.]go, [well of course i hadn’t.]gs, [i never had a chance to! 4 -]g4, [offering
dessert seemed a complete afterthought.]gs, [will i recommend this place to anyone else?]gg, [conditionally.]¢7,
[i’1l make sure to tell them]gs, [that the food was very good, but not to golgg, [if they want attentive service,]7o,
[are on any kind of time constraint, expect refills on their drinks,]7;, [or are at all shy about getting a server’s
attention.]7o
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Figure 6: Accurately predicted example, Gold-label polarity: 0.5, Predicted polarity: 0.345,

Discourse: [it has been a hell of a work week];, [and friday could not have come any sooner.]s, [this week was
rough especially with the announcement]s, [that we are officially in a recession],, [and the ambiguity was hitting
me from all sides.]s, [man, did]g, [i need some distraction from all my worries.]7, [so the bf ( bacon ) and i
decided on thai]g, [but wanted to venture out from the norm]gy, [and we are very glad]io, [we did.];1, [the thai
hut exceeded our expectations.]12, [we were a little skeptical at first with so many lackluster reviews];3, [but we
hit the jackpot on our night.]14, [this place has a great vibe !];5, [we were seated immediately];¢, [and staff was
beyond courteous and attentive.]; 7, [we were approached by a few staff members];g, [Which gave us the feeling of
true teamwork.]; g, [our server was attentive]sg, [and even sparked up some conversation throughout our meal.]o1,
[we started with a hot pot of chicken tom kha kai]so, [and this soup hit the spot.]o3, [my worries were vanishing
with every spoonful.]oy, [they say]ss, [chicken soup will cure a cold]z¢, [and that menudo will feed a hangover.]o7,
[well, i]og, [now believe]ag, [tom kha kai is the cure for the blues]sg, [because it sure made me happy !]31, [for our
main dish we shared the red chicken curry.]39, [a little heavy on the red and green peppers but very tasty and was
the perfect match with the soup]ss, [so we will definitely be back]s4, [and will be sharing this place with some of
our closest friends.]ss, [i’ve already made lunch plans for next wednesday.]sg

21 22 23 24

Figure 7: Accurately predicted example, Gold-label polarity: —0.5, Predicted polarity: —0.391,

Discourse: [stopped in here for a friday happy hour with co-workers.];, [the beer was decently],, [priced for happy
hour.]s, [the appetizers were decently priced,]4, [which would be awesome]s, [if they were good.]g, [the chicken
strips were terrible.]7, [i have never eaten something so greasy and yet dry all at once.]g, [they are beer battered (
like fish )]g, [which could be good, ], [but the execution on this was terrible.];1, [the outside was really greasy];s,
[which took away all of the crispy goodness]is, [that usually happens];4, [when things are battered and deep
fried.];5, [the chicken itself was dry as a bone.];4, [We also got an order of fries];7, [that came out cold];s, [and
were just below mediocre.];9, [the place was really warm,]og, [which could be attributed to the summer heat,]21,
[but we were sitting inside,]22, [so there is a fair assumption]s3, [that air conditioning would be involved.]sq4, [1'1l
pass next time]os, [my coworkers are planning a trip here.]»g, [i’d be better off],7, [eating at mcdonald’s.]sg
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Figure 8: Inaccurately predicted example, Gold-label polarity: 1, Predicted polarity: —0.098,

Discourse: [upon first moving here 2 years ago,];, [i had the worse experience]., [attempting to get an airbrush
spray tan at this salon.]3, [they had only 2 people at specific times]y, [that could spray you custom.]s, [no problem
showed uplg, [and the tech could not figure out how to use the gun.]7, [so awkward enough]gs, [him being a male]y,
[and standing there naked, i to get my money back];, [after waiting 20 min.];;, [well a couple months back]; 2,
[they ran a deal for versa,];3, [which is a booth spray tan.]y4, [i love this booth.];5, [it is like airbrushing but
private,]1¢, [and this spray tan absolutely does not smell or stain your sheets!];7, [i found this];g, [upon leaving
denver, co. and just]g, [until i saw it online on living deals for amazon. :)]2g, [one down two]s1, [to go.]22, [all
for $ 29 :) love !]o3, [as far as the gym goes, )24, [never used it !]o5

16 17

Figure 9: Inaccurately predicted example, Gold-label polarity: —0.5, Predicted polarity: 0.085,

Discourse: [i hate having];, [to write a poor review for this joint!]s, [the owner is a really great guy]s, [and the
service was excellent.]4, [the place is decorated well]s, [and has a clean finished look.]g, [i really wanted to love
the pudding];, [but it really did n’t work out for my wife and i. from first glance]s, [the pudding was all very
soupy]g, [and while it tasted];, [okay, was not anything to write home about.];;, [the shop is trying too hard];s,
[to be an ice cream or gelato setup.];s, [i think all the flavors and take away from their core business model.]4,
[i think]ys, [they should focus on making the rice pudding more solid];¢, [and have a couple];7, [warm pudding
options.]1g, [i can envision a warm rice pudding with some nuts and raisins with some brown sugar or cinnamon
on top]ig, [yum !]q, [shoot for rich, creamy and full of flavor.]21, [my best wishes go out to them]ss, [and hope]2s,
[that the masses will enjoy it more than we did.]24, [they are good folks]ss, [and deserve to be successful.]sg
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Figure 10: Inaccurately predicted example, Gold-label polarity: —0.5, Predicted polarity: —0.006,

Discourse: [i’ve been here a couple of times in the past.];, [usually at someone else’s suggestion.]s, [i ca n’t say]s,
[that i recommend this place,]4, [unless you like]s, [your lunch served up with a lot of attitude.]g, [the lady], [that
takes the orders at the counter]g, [is usually abrasive and rude.]q, [i am the type of person];g, [Who will kill the
meanest person with kindness,];1, [but there are places];o, [where i draw the line.];3, [so, i have drawn the line
with rome’s pizza.]14, [the funny part about it all is];5, [that my line is often zig-zag and curvy,]¢, [so 1 still go
here];7, [when someone else wants to go.]1g, [hehe.] 9, [my friends like the abuse i guess.]sq, [one friend says]s1,
[the lady is nice to him.]ss, [the plus side]os, [of going here is the fact]o4, [that they serve an average pizza by
the slice with your custom toppings.]ss, [they also make hoagies and some other dishes.]s6, [they have a nice
lunch special]o7, [that includes soda for a few bucks.]ss, [they also serve some typical american favorites like hot
wings.]29, [i usually order the of pizza lunch special]3p, [and get the unsweetened tea.]s;, [i’m not sure]ss, [Why
i forget,]s3, [but their tea tastes horrible]s,, [because the water from the fountain tastes terrible !]35, [but it never
fails, i forget]sg, [that i need to of water with me.]s7, [all in all, this place is a dive.]sg, [give it a try.]3g
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