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Abstract

Learning to fuse vision and language informa-
tion and representing them is an important re-
search problem with many applications. Re-
cent progresses have leveraged the ideas of pre-
training (from language modeling) and atten-
tion layers in Transformers to learn representa-
tion from datasets containing images aligned
with linguistic expressions that describe the
images. In this paper, we propose learning
representations from a set of implied, visually
grounded expressions between image and text,
automatically mined from those datasets. In
particular, we use denotation graphs to repre-
sent how specific concepts (such as sentences
describing images) can be linked to abstract
and generic concepts (such as short phrases)
that are also visually grounded. This type
of generic-to-specific relations can be discov-
ered using linguistic analysis tools. We pro-
pose methods to incorporate such relations
into learning representation. We show that
state-of-the-art multimodal learning models
can be further improved by leveraging auto-
matically harvested structural relations. The
representations lead to stronger empirical re-
sults on downstream tasks of cross-modal im-
age retrieval, referring expression, and com-
positional attribute-object recognition. Both
our codes and the extracted denotation graphs
on the Flickr30K and the COCO datasets are
publically available on https://sha-lab.

github.io/DG.

1 Introduction

There has been an abundant amount of aligned
visual and language data such as text passages

∗Work done while at Google
†Authors Contributed Equally
‡On leave from USC (feisha@usc.edu)

describing images, narrated videos, subtitles in
movies, etc. Thus, learning how to represent vi-
sual and language information when they are se-
mantically related has been a very actively studied
topic. There are many vision+ language applica-
tions: image retrieval with descriptive sentences or
captions (Barnard and Forsyth, 2001; Barnard et al.,
2003; Hodosh et al., 2013; Young et al., 2014), im-
age captioning (Chen et al., 2015; Xu et al., 2015),
visual question answering (Antol et al., 2015), vi-
sual navigation with language instructions (Ander-
son et al., 2018b), visual objects localization via
short text phrases (Plummer et al., 2015), and oth-
ers. A recurring theme is to learn the representation
of these two streams of information so that they cor-
respond to each other, highlighting the notion that
many language expressions are visually grounded.

A standard approach is to embed the visual and the
language information as points in a (joint) visual-
semantic embedding space (Frome et al., 2013;
Kiros et al., 2014; Faghri et al., 2018). One can
then infer whether the visual information is aligned
with the text information by checking how these
points are distributed.

How do we embed visual and text information?
Earlier approaches focus on embedding each
stream of information independently, using models
that are tailored to each modality. For example,
for image, the embedding could be the features at
the last fully-connected layer from a deep neural
network trained for classifying the dominant ob-
jects in the image. For text, the embedding could
be the last hidden outputs from a recurrent neural
network.

Recent approaches, however, have introduced sev-
eral innovations (Lu et al., 2019; Li et al., 2019a;
Chen et al., 2019). The first is to contextualize

https://sha-lab.github.io/DG
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the embeddings of one modality using informa-
tion from the other one. This is achieved by using
co-attention or cross-attention (in addition to self-
attention) in Transformer layers. The second is to
leverage the power of pre-training (Radford et al.,
2019; Devlin et al., 2019): given a large number of
parallel corpora of images and their descriptions, it
is beneficial to identify pre-trained embeddings on
these data such that they are useful for downstream
vision+ language tasks.

Despite such progress, there is a missed opportu-
nity of learning stronger representations from those
parallel corpora. As a motivating example, suppose
we have two paired examples: one is an image x1

corresponding to the text y1 of TWO DOGS SAT IN

FRONT OF PORCH and the other is an image x2 cor-
responding to the text y2 of TWO DOGS RUNNING

ON THE GRASS. Existing approaches treat the two
pairs independently and compute the embeddings
for each pair without acknowledging that both texts
share the common phrase y1 ∩ y2 = TWO DOGS

and the images have the same visual categories of
two dogs.

We hypothesize that learning the correspondence
between the common phrase y1 ∩ y2 and the set
of images {x1,x2}, though not explicitly anno-
tated in the training data, is beneficial. Enforcing
the alignment due to this additionally constructed
pair introduces a form of structural constraint: the
embeddings of x1 and x2 have to convey similar
visual information that is congruent to the similar
text information in the embeddings of y1 and y2.

In this paper, we validate this hypothesis and show
that extracting additional and implied correspon-
dences between the texts and the visual information,
then using them for learning leads to better repre-
sentation, which results in a stronger performance
in downstream tasks. The additional alignment in-
formation forms a graph where the edges indicate
how visually grounded concepts can be instantiated
at both abstract levels (such as TWO DOGS) and spe-
cific levels (such as TWO DOGS SAT IN FRONT OF

THE PORCH). These edges and the nodes that rep-
resent the concepts at different abstraction levels
form a graph, known as denotation graph, previ-
ously studied in the NLP community (Young et al.,
2014; Lai and Hockenmaier, 2017; Plummer et al.,
2015) for grounding language expressions visually.

Our contributions are to propose creating visually-
grounded denotation graphs to facilitate represen-
tation learning. Concretely, we apply the tech-
nique originally developed for the FLICKR30K

dataset (Young et al., 2014) also to COCO

dataset (Lin et al., 2014) to obtain denotation
graphs that are grounded in each domain respec-
tively (§ 3). We then show how the denotation
graphs can be used to augment training samples
for aligning text and image (§ 4). Finally, we show
empirically that the representation learned with de-
notation graphs leads to stronger performance in
downstream tasks (§ 5).

2 Related Work

Learning representation for image and text
Single-stream methods learn each modality sep-
arately and align them together with a simple fu-
sion model, often an inner product between the two
representations. Frome et al. (Frome et al., 2013)
learns the joint embedding space for images and
labels and use the learned embeddings for zero-
shot learning. Kiros et al. (Kiros et al., 2014) uses
bi-directional LSTMs to encode sentences and then
maps images and sentences into a joint embedding
space for cross-modal retrieval and multi-modal
language models. Li et al. (Li et al., 2019b) designs
a high-level visual reasoning module to contextual-
ize image entity features and obtain a more power-
ful image representation. Vendrov et al. (Vendrov
et al., 2016) improves image retrieval performance
by exploiting the hypernym relations among words.
There is a large body of work that has been focusing
on improving the visual or text embedding func-
tions (Socher et al., 2014; Eisenschtat and Wolf,
2017; Nam et al., 2017; Huang et al., 2018; Gu
et al., 2018).

Another line of work, referred to as cross-stream
methods infer fine-grained alignments between lo-
cal patterns of visual (i.e., local regions) and lin-
guistic inputs (i.e., words) between a pair of image
and text, then use them to derive the similarity be-
tween the image and the text. SCAN (Lee et al.,
2018) uses cross-modal attention mechanism (Xu
et al., 2015) to discover such latent alignments. In-
spired by the success of BERT (Devlin et al., 2019),
recent efforts have conducted visual-linguistic pre-
training on large-scale datasets (Sharma et al.,
2018), using a powerful sequence model such as
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Figure 1: (Left) A schematic example of denotation graph showing the hierarchical organization of linguis-
tic expression (adapted from https://shannon.cs.illinois.edu/DenotationGraph/) (Right) A random-
subgraph from the denotation graph extracted from the FLICKR30K dataset, with images attached to concepts at
different levels of hierarchy.

deep Transformers (Lu et al., 2019; Li et al., 2019a;
Chen et al., 2019; Su et al., 2020; Li et al., 2019c).
The pre-training strategies of these methods typi-
cally involve many self-supervised learning tasks,
including the image-text matching (Lu et al., 2019),
masked language modeling (Devlin et al., 2019; Lu
et al., 2019) and masked region modeling (Chen
et al., 2019).

In contrast to those work, we focus on exploiting
additional correspondences between image and text
that are not explicitly given in the many image and
text datasets. By analyzing the linguistic structures
of the texts in those datasets, we are able to discover
more correspondences that can be used for learning
representation. We show the learned representation
is more powerful in downstream tasks.

Vision+Language Tasks There has been a large
collection of tasks combining vision and lan-
guage, including image captioning (Chen and
Lawrence Zitnick, 2015; Fang et al., 2015; Ho-
dosh et al., 2013; Karpathy and Fei-Fei, 2015;
Kulkarni et al., 2013), visual QA (Antol et al.,
2015), text-based image verification (Suhr et al.,
2017, 2018; Hu et al., 2019), visual common-
sense reasonin (Zellers et al., 2019), and so on.
In the context of this paper, we focus on study-
ing cross-modality retrieval (Barnard et al., 2003;
Barnard and Forsyth, 2001; Gong et al., 2014;
Hodosh et al., 2013; Young et al., 2014; Zhang
et al., 2018), as well as transfer learning on down-
stream tasks, including compositional attribute-
object recognition (Isola et al., 2015; Misra et al.,
2017) and referring expressions (Dale and Reiter,
1995; Kazemzadeh et al., 2014; Kong et al., 2014;
Mitchell et al., 2012). Please refer to § 5 for expla-

nation of these tasks.

3 Denotation Graph (DG)

Visually grounded text expressions denote the im-
ages (or videos) they describe. When examined
together, these expressions reveal structural rela-
tions that do not exhibit when each expression is
studied in isolation. In particular, through linguis-
tic analysis, these expressions can be grouped and
partially ordered and thus form a relation graph,
representing how (visually grounded) concepts are
shared among different expressions and how differ-
ent concepts are related. This insight was explored
by Young et al. (2014) and the resulting graph is
referred to as a denotation graph, schematically
shown in the top part of Fig. 1. In this work, we
focus on constructing denotation graphs from the
FLICKR30K and the COCO datasets, where the text
expressions are sentences describing images.

Formally, a denotation graph G is a polytree where
a node vi in the graph corresponds to a pair of a
linguistic expression yi and a set of imagesXi =
{x1,x2, · · · ,xni}. A directed edge eij from a
node vi to its child vj represents a subsumption
relation between yi and yj . Semantically, yi is
more abstract (generic) than yj , and the tokens
in yi can be a subset of yj’s. For example, TWO

DOGS describes all the images which TWO DOGS

ARE RUNNING describes, though less specifically.
Note that the subsumption relation is defined on the
semantics of these expressions. Thus, the tokens
do not have to be exactly matched on their surface
forms. For instance, IN FRONT OF PERSON or IN

FRONT OF CROWD are also generic concepts that

https://shannon.cs.illinois.edu/DenotationGraph/
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Table 1: Key statistics of the two DGs: averaged over
the all nodes in the graph, internal nodes and leaf nodes
(formated as all/internal/leaf)

Dataset DG-FLICKR30K DG-COCO

# of edges 1.94M 4.57M
# of nodes 597K/452K/145K 1.41M /841K/566K
# of tokens/node 6.78/4.45/14.04 5.88/4.07/8.58
# of images/node 4.46/5.57/1.00 5.06/7.79/1.00

subsume IN FRONT OF A CROWD OF PEOPLE, see
the right-hand side of Fig. 1 for another example.

More formally, the set of images that correspond
to vi is the union of all the images corresponding
to vi’s children ch(vi): Xi =

⋃
vj∈ch(vi)Xj . We

also use pa(vj) to denote the set of vj’s parents.

Denotation graphs (DG) can be seen as a hierar-
chical organization of semantic knowledge among
concepts and their visual groundings. In this sense,
they generalize the tree-structured object hierar-
chies that have been often used in computer vision.
The nodes in the DG are composite phrases that
are semantically richer than object names and the
relationship among them is also richer.

Constructing DG We used the publicly available
tool1, following Young et al. (Young et al., 2014).
For details, please refer to the Appendix and the
reference therein. Once the graph is constructed,
we attach the images to the proper nodes by set-
union images of each node’s children, starting from
the sentence-level node.

DG-FLICKR30K and DG-COCO2 We regenerate
a DG on the FLICKR30K dataset3 (Young et al.,
2014) and construct a new DG on the COCO (Lin
et al., 2014) dataset. The two datasets come from
different visual and text domains where the former
contains more iconic social media photos and the
latter focuses on photos with complex scenes and
has more objects. Figure 1 shows a random sub-
graph of DG-FLICKR30K.

Table 1 lists the key statistics of the two DGs. We

1Available online at https://github.com/aylai/
DenotationGraph

2Both DGs are made publically available at https://
sha-lab.github.io/DG/

3The original DG, while publicly available at https://
shannon.cs.illinois.edu/DenotationGraph/
contains 1.75 million nodes which are significantly less than
ours, due to the difference in the version of the NLP toolkit.

note that in both graphs, a large number of internal
nodes (more abstract concepts or phrases) are in-
troduced. For such concepts, the linguistic expres-
sions are much shorter and the number of images
they correspond to is also larger.

4 Learning with Denotation Graphs

The denotation graphs, as described in the previ-
ous section, provide rich structures for learning
representations of text and image. In what fol-
lows, we describe three learning objectives, start-
ing from the most obvious one that matches images
and their descriptions (§ 4.1), followed by learning
to discriminate between general and specialized
concepts (§ 4.2) and learning to predict concept
relatedness (§ 4.3). We perform ablation studies of
those objectives in § 5.4.

4.1 Matching Texts with Images

We suppose the image x and the text y are rep-
resented by (a set of) vectors φ(x) and ψ(y) re-
spectively. A common choice for φ(·) is the last
layer of a convolutional neural network (He et al.,
2015; Xie et al., 2017) and for ψ(·) the contextu-
alized word embeddings from a Transformer net-
work (Vaswani et al., 2017). The embedding of the
multimodal pair is a vector-valued function over
φ(x) and ψ(y):

v(x,y) = f(φ(x),ψ(y)) (1)

There are many choices of f(·, ·). The simplest
one is to concatenate the two arguments. We
can also use the element-wise product between
the two if they have the same embedding dimen-
sion (Kiros et al., 2014), or complex mappings
parameterized by layers of attention networks and
convolutions (Lu et al., 2019; Chen et al., 2019)
– we experimented some of them in our empirical
studies.

4.1.1 Matching Model

We use the following probabilistic model to char-
acterize the joint distribution

p(x,y) ∝ exp(θTv(x,y)) (2)

where the exponent s(x,y) = θTv is referred as
the matching score. To estimate θ, we use the

https://github.com/aylai/DenotationGraph
https://github.com/aylai/DenotationGraph
https://sha-lab.github.io/DG/
https://sha-lab.github.io/DG/
https://shannon.cs.illinois.edu/DenotationGraph/
https://shannon.cs.illinois.edu/DenotationGraph/
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maximum likelihood estimation

θ∗ = argmax
∑

vi

∑
k
log p(xik,yi) (3)

where xik is the kth element in the set Xi. How-
ever, this probability is intractable to compute as
it requires us to get all possible pairs of (x,y). To
approximate, we use negative sampling.

4.1.2 Negative Sampling

For each (randomly selected) positive sample
(xij ,yi), we explore 4 types of negative examples
and assemble them as a negative sample set D−ik:

Visually mismatched pair We randomly sample
an image x− /∈ Xi to pair with yi, i.e., (x−,yi).
Note that we automatically exclude the images
from vi’s children.

Semantically mismatched pair We randomly sam-
ple a text yj 6= yi to form the pair (xik,yj). Note
that we constrain yj not to include concepts that
could be more abstract than yi as the more abstract
can certainly be used to describe the specific im-
ages xik.

Semantically hard pair We randomly sample a
text yj that corresponds to an image xj that is visu-
ally similar to xik to form (xik,yj). See (Lu et al.,
2019) for details.

DG Hard Negatives We randomly sample a sib-
ling (but not cousin) node vj to vi such that xik /∈
Xj to form (xik,yj)

Note that the last 3 pairs have increasing degrees
of semantic confusability. In particular, the 4th
type of negative sampling is only possible with the
help of a denotation graph. In that type of negative
samples, yj is semantically very close to yi (from
the construction) yet they denote different images.
The “semantically hard pair”, on the other end, is
not as hard as the last type as yi and yj could be
very different despite high visual similarity.

With the negative samples, we estimate θ as the
minimizer of the following negative log-likelihood

`MATCH = −
∑
vi

∑
k

log
es(xik,yi)∑

(x̂,ŷ)∼Di
es(x̂,ŷ)

(4)

where Di = D−ik ∪ {(xik,yi)} contains both the
positive and negative examples.

4.2 Learning to Be More Specific

The hierarchy in the denotation graph introduces an
opportunity for learning image and text representa-
tions that are sensitive to fine-grained distinctions.
Concretely, consider a parent node vi with an edge
to the child node vj . While the description yj
matches any images in its children nodes, the par-
ent node’s description yi on a higher level is more
abstract. For example, the concepts INSTRUMENT

and PLAY PERCUSSION INSTRUMENT in Fig 1 is a
pair of examples showing the latter more accurately
describes the image(s) at the lower-level.

To incorporate this modeling notion, we introduce

`SPEC =
∑
eij

∑
k

[s(xjk,yi)− s(xjk,yj)]+ (5)

as a specificity loss, where [h]+ = max(0, h) de-
notes the hinge loss. The loss is to be minimized
such that the matching score for the less specific
description yi is smaller than that for the more
specific description yj .

4.3 Learning to Predict Structures

Given the graph structure of the denotation graph,
we can also improve the accuracy of image and
text representation by modeling high-order relation-
ships. Specifically, for a pair of nodes vi and vj ,
we want to predict whether there is an edge from vi
to vj , based on each node’s corresponding embed-
ding of a pair of image and text. Concretely, this
is achieved by minimizing the following negated
likelihood

`EDGE = −
∑

eij

∑
k,k′

log p(eij = 1|

v(xik,yi),v(xjk′ ,yj)) (6)

We use a multi-layer perceptron with a binary out-
put to parameterize the log-probability.

4.4 The Final Learning Objective

We combine the above loss functions as the final
learning objective for learning on the DG

`DG = `MATCH + λ1 · `SPEC + λ2 · `EDGE (7)

where λ1, λ2 are the hyper-parameters that trade-
off different losses. Setting them to 1.0 seems to
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work well. The performance under different λ1 and
λ2 are reported in Table 12 and Table 13. We study
how each component could affect the learning of
representation in § 5.4.

5 Experiments

We examine the effectiveness of using denotation
graphs to learn image and text representations. We
first describe the experimental setup and key im-
plementation details (§ 5.1). We then describe key
image-text matching results in § 5.2, followed by
studies about the transfer capability of our learned
representation (§ 5.3). Next, we present ablation
studies over different components of our model
(§ 5.4). Finally, we validate how well abstract con-
cepts can be used to retrieve images, using our
model (§ 5.5).

5.1 Experimental Setup

We list major details in the following to provide
context, with the full details documented in the
Appendix for reproducibility.

Embeddings and Matching Models Our aim is
to show denotation graphs improve state-of-the-art
methods. To this end, we experiment with two
recently proposed state-of-the-art approaches and
their variants for learning from multi-modal data:
ViLBERT (Lu et al., 2019) and UNITER (Chen
et al., 2019). The architecture diagrams and the
implementation details are in the Appendix, with
key elements summarized in the following.

Both the approaches start with an image encoder,
which obtains a set of embeddings of image
patches, and a text encoder which obtains a se-
quence of word (or word-piece) embeddings. For
ViLBERT, text tokens are processed with Trans-
former layers and fused with the image information
with 6 layers of co-attention Transformers. The out-
put of each stream is then element-wise multiplied
to give the fused embedding of both streams. For
UNITER, both streams are fed into 12 Transformer
layers with cross-modal attention. A special token
CLS is used, and its embedding is regarded as the
fused embedding of both streams.

For ablation studies, we use a smaller ViLBERT for

rapid experimentation: ViLBERT (Reduced) where
there are 3 Transformer layers and 2 co-attention
Transformers for the text stream, and 1 Transformer
layer for the image stream.

Constructing Denotation Graphs As de-
scribed in §3, we construct denotation graphs
DG-FLICKR30K and DG-COCO from the
FLICKR30K (Young et al., 2014) and the
COCO (Lin et al., 2014) datasets. FLICKR30K was
originally developed for the tasks of image-based
and text-based retrieval. It contains 29,000 images
for training, 1,000 images for validation, and
1,000 images for testing. COCO is a significantly
larger dataset, developed for the image captioning
task. It contains 565,515 sentences with 113,103
images. We evaluate on both the 1,000 images
testing split and the 5,000 images testing split (in
the Appendix), following the setup in (Karpathy
and Fei-Fei, 2015). Key characteristics for the two
DGs are reported in Table 1.

Evaluation Tasks We evaluate the learned rep-
resentations on three common vision+ language
tasks. In text-based image retrieval, we evaluate
two settings: the text is either a sentence or a phrase
from the test corpus. In the former setting, the sen-
tence is a leaf node on the denotation graph, and in
the latter case, the phrase is an inner node on the de-
notation graph, representing more general concepts.
We evaluate the FLICKR30K and the COCO datasets,
respectively. The main evaluation metrics we use
are precisions at recall R@M where M = 1, 5 or 10
and RSUM which is the sum of the 3 precisions (Wu
et al., 2019). Conversely, we also evaluate using
the task of image-based text retrieval to retrieve the
right descriptive text for an image.

In addition to the above cross-modal retrieval, we
also consider two downstream evaluation tasks,
i.e., Referring Expression and Compositional
Attribute-Object Recognition. (1) Referring Ex-
pression is a task where the goal is to localize the
corresponding object in the image given an expres-
sion (Kazemzadeh et al., 2014). We evaluate on
the dataset REFCOCO+, which contains 141,564
expressions with 19,992 images. We follow the
previously established protocol to evaluate on the
validation split, the TestA split, and the TestB split.
We are primarily interested in zero-shot/few-shot
learning performance. (2) Compositional Attribute-
Object Recognition is a task that requires a model
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Table 2: Text-based Image Retrieval (Higher is better)

Method R@1 R@5 R@10 RSUM

FLICKR30K
ViLBERT 59.1 85.7 92.0 236.7
ViLBERT + DG 63.8 87.3 92.2 243.3
UNITER 62.9 87.2 92.7 242.8
UNITER + DG 66.4 88.2 92.2 246.8

COCO 1K Test Split
ViLBERT 62.3 89.5 95.0 246.8
ViLBERT + DG 65.9 91.4 95.5 252.7
UNITER 60.7 88.0 93.8 242.5
UNITER + DG 62.7 88.8 94.4 245.9

COCO 5K Test Split
ViLBERT 38.6 68.2 79.0 185.7
ViLBERT + DG 41.8 71.5 81.5 194.8
UNITER 37.8 67.3 78.0 183.1
UNITER + DG 39.1 68.0 78.3 185.4

to learn from images of SEEN (attribute, object)
label pairs, such that it can generalize to recog-
nize images of UNSEEN (attribute, object) label
pairs. We evaluate this task on the MIT-STATE
dataset (Isola et al., 2015), following the protocol
by Misra et al. (2017). The training split contains
34,562 images from 1,262 SEEN labels, and the
test split contains 19,191 images from 700 UN-
SEEN labels. We report the Top-1, 2, 3 accuracies
on the UNSEEN test set as evaluation metrics.

Training Details Both ViLBERT and UNITER
models are pre-trained on the Conceptual Cap-
tion dataset (Sharma et al., 2018) and the pre-
trained models are released publicly4. On the DG-
FLICKR30K, ViLBERT and UNITER are trained
with a minibatch size of 64 and ViLBERT is trained
for 17 epochs and UNITER for 15 epochs, with a
learning rate of 0.00004. On the DG-COCO, ViL-
BERT is trained for 17 epochs and UNITER for 15
epochs with a minibatch size of 64 and a learning
rate of 0.00004. The hyperparameters in Eq. (7)
are set to 1.0, unless specified (see the Appendix).

5.2 Main Results

Table 2 and Table 3 report the performances on
cross-modal retrieval. On both datasets, models
trained with denotation graphs considerably outper-
form the corresponding ones which are not.

4The UNITER(Chen et al., 2019) model performs an addi-
tional online hard-negative mining (which we did not) during
the training of image-text matching to improve their results.
This is computationally very costly.

Table 3: Image-based Text Retrieval (Higher is better)

Method R@1 R@5 R@10 RSUM

FLICKR30K
ViLBERT 76.8 93.7 97.6 268.1
ViLBERT + DG 77.0 93.0 95.0 265.0
UNITER 78.3 93.3 96.5 268.1
UNITER + DG 78.2 93.0 95.9 267.1

COCO 1K Test Split
ViLBERT 77.0 94.1 97.2 268.3
ViLBERT + DG 79.0 96.2 98.6 273.8
UNITER 74.4 93.9 97.1 265.4
UNITER + DG 77.7 95.0 97.5 270.2

COCO 5K Test Split
ViLBERT 53.5 79.7 87.9 221.1
ViLBERT + DG 57.5 84.0 90.1 232.2
UNITER 52.8 79.7 87.8 220.3
UNITER + DG 51.4 78.7 87.0 217.1

Table 4: Image Retrieval via Text (Transfer Learning)

SOURCE FLICKR→COCO COCO→FLICKR
→TARGET R@1 RSUM R@1 RSUM

ViLBERT 43.5 199.5 49.0 209.0
+ SOURCE DG 44.9 200.5 52.8 218.2

For the image-based text retrieval task, ViLBERT
and UNITER on FLICKR30K suffers a small drop
in R@10 when DG is used. On the same task,
UNITER on COCO 5K Test Split decreases more
when DG is used. However, note that on both splits
of COCO, ViLBERT is a noticeably stronger model,
and using DG improves its performance.

5.3 Zero/Few-Shot and Transfer Learning

Transfer across Datasets Table 4 illustrates that
the learned representations assisted by the DG
have better transferability when applied to another
dataset (TARGET DOMAIN) that is different from
the SOURCE DOMAIN dataset which the DG is
based on. Note that the representations are not fine-
tuned on the TARGET DOMAIN. The improvement
on the direction COCO →FLICKR30K is stronger
than the reverse one, presumably because the COCO

dataset is bigger than FLICKR30K. (R@5 and
R@10 are reported in the Appendix.)

Zero/Few-shot Learning for Referring Expres-
sion We evaluate our model on the task of referring
expression, a supervised learning task, in the set-
ting of zero/few-shot transfer learning. In zero-shot
learning, we didn’t fine-tune the model on the refer-
ring expression dataset (i.e. REFCOCO+). Instead,
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Table 5: Zero/Few-shot Learning for Referring Expression (Reported in R@1 on validation, TestA and TestB data)

Setting→ 0% (Zero-shot) 25% 50% 100%
Method Val TestA TestB Val TestA TestB Val TestA TestB Val TestA TestB

ViLBERT 35.7 41.8 29.5 67.2 74.0 57.1 68.8 75.6 59.4 71.0 76.8 61.1
ViLBERT + DG-COCO 36.1 43.3 29.6 67.4 74.5 57.3 69.3 76.6 59.3 71.0 77.0 60.8

Table 6: Image Recognition on UNSEEN Attribute-
Object Pairs on the MIT-STATE Dataset

Method Top-1 Top-2 Top-3

VisProd (Misra et al., 2017) 13.6 16.1 20.6
RedWine (Misra et al., 2017) 12.1 21.2 27.6
SymNet (Li et al., 2020) 19.9 28.2 33.8

ViLBERT pre-trained on
N/A 16.2 26.3 33.3
COCO 17.9 28.8 36.2
DG-COCO 19.4 30.4 37.6

we performed a “counterfactual” inference, where
we measure the drop in the compatibility score (be-
tween a text describing the referring object and the
image of all candidate regions) as we removed in-
dividual candidates results. The region that causes
the biggest drop of compatibility score is selected.
As a result, the selected region is most likely to
correspond to the description. In the setting of few-
shot learning, we fine-tune our COCO-pre-trained
model on the task of referring expression in an end-
to-end fashion on the referring expression dataset
(i.e. REFCOCO+).

The results in Table 5 suggest that when the amount
of labeled data is limited, training with DG per-
forms better than training without. When the
amount of data is sufficient for end-to-end train-
ing, the advantage of training with DG diminishes.

Compositional Attribute-Object Recognition
We evaluate our model for supervised composi-
tional attribute-object recognition (Misra et al.,
2017), and report results on recognizing UNSEEN
attribute-object labels on the MIT-STATE test
data (Isola et al., 2015). Specifically, we treat the
text of image labels (i.e., attribute-object pairs as
compound phrases) as the sentences to fine-tune
the ViLBERT models, using the `MATCH objective.
Table 6 reports the results (in top-K accuracies)
of both prior methods and variants of ViLBERT,
which are trained from scratch (N/A), pre-trained
on COCO and DG-COCO, respectively. ViLBERT
models pre-trained with parallel pairs of images
and texts (i.e., COCO and DG-COCO) improve sig-

Table 7: Ablation Studies of Learning from DG

ViLBERT variants→ Reduced Full

w/o DG 215.4 236.7

w/ DG
+ `MATCH 221.5 236.5
− DG HARD NEGATIVES

+ `MATCH 228.4 241.7
+ `MATCH + `SPEC 228.8 242.6
+ `MATCH + `SPEC + `EDGE 231.2 243.3

nificantly over the baseline that is trained on the
MIT-STATE from scratch. The model pre-trained
with DG-COCO achives the best results among ViL-
BERT variants. It performs on par with the previ-
ous state-of-the-art method in top-1 accuracy and
outperforms them in top-2 and top-3 accuracies.

5.4 Ablation Studies

The rich structures encoded in the DGs give rise to
several components that can be incorporated into
learning representations. We study whether they
are beneficial to the performances on the down-
stream task of text-based image retrieval. In the no-
tions of §4, those components are: (1) remove “DG

HARD NEGATIVES” from the `MATCH loss and only
use the other 3 types of negative samples (§ 4.1);
(2) align images with more specific text descrip-
tions (§ 4.2); (3) predict the existences of edges
between pairs of nodes (§ 4.3).

Table 7 shows the results from the ablation studies.
We report results on two versions of ViLBERT: In
ViLBERT (reduced), the number of parameters in
the model is significantly reduced by making the
model less deep, and thus faster for development.
Instead of being pre-trained, they are trained on the
FLICKR30K dataset directly for 15 epochs with a
minibatch size of 96 and a learning rate of 4e−5.
In ViLBERT (Full), we use the aforementioned set-
tings. We report RSUM on the FLICKR30K dataset
for the task of text-based image retrieval.

All models with DG perform better than the mod-
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Figure 2: Image Retrieval using Mid-level Linguistic Ex-
pression on FLICKR30K Denotation Graph. The results are
reported in Mean Average Precision (Mean AP).

els without DG. Secondly, the components of DG

HARD NEGATIVES, `SPEC, and `EDGE contribute pos-
itively and their gains are cumulative.

5.5 Image Retrieval from Abstract Concepts

The leaf nodes in a DG correspond to complete
sentences describing images. The inner nodes are
shorter phrases that describe more abstract con-
cepts and correspond to a broader set of images,
refer to Table 2 for some key statistics in this as-
pect.

Fig. 2 contrasts how well abstract concepts can be
used to retrieve images. The concepts are the lan-
guage expressions corresponding to the leaf nodes,
the nodes that are one level above (LEAF-1), or
two levels above (LEAF-2) the leaf nodes from the
DG-FLICKR30K. Since abstract concepts tend to
correspond to multiple images, we use mean av-
eraged precision (mAP) to measure the retrieval
results. ViLBERT+DG outperforms ViLBERT sig-
nificantly. The improvement is also stronger when
the concepts are more abstract.

It is interesting to note that while the `MATCH used
in ViLBERT w/ DG incorporates learning represen-
tations to align images at both specific and abstract
levels, such learning benefits all levels. The im-
provement of retrieving at abstract levels does not
sacrifice the retrieval at specific levels.

6 Conclusion

Image and text aligned data is rich in semantic cor-
respondence. Besides treating text annotations as
“categorical” labels, in this paper, we show that we

can make full use of those labels. Concretely, de-
notation graphs (DGs) encode structural relations
that can be automatically extracted from those texts
with linguistic analysis tools. We proposed several
ways to incorporate DGs into learning representa-
tion and validated the proposed approach on several
tasks. We plan to investigate other automatic tools
in curating more accurate denotation graphs with a
complex composition of fine-grained concepts for
future directions.
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Appendix

In the Appendix, we provide details omitted from
the main text due to the limited space, including:

• § A describes complete implementation details
(cf. § 3 and § 5.1 of the main text).
• § B provides complete experimental results (cf.
§ 5.2 of the main text).
• § C visualizes the model’s predictions on denota-

tion graphs.

A Implementation Details

A.1 Constructing Denotation Graphs

We summarize the procedures used to extract DG
from vision+ language datasets. For details, please
refer to (Young et al., 2014). We used the publicly
available tool5. The analysis consists of several
steps: (1) spell-checking; (2) tokenize the sen-
tences into words; (3) tag the words with Part-of-
Speech labels and chunk works into phrases; (4)
abstract semantics by using the WordNet (Miller,
1995) to construct a hypernym lexicon table to re-
place the nouns with more generic terms; (5) apply
6 types of templated rules to create fine-to-coarse
(i.e., specific to generic) semantic concepts and
connect the concepts with edges.

We set 3 as the maximum levels (counting from
the sentence level) to extract abstract semantic con-
cepts. This is due to the computation budget we
can afford, as the final graphs can be huge in both
the number of nodes and the edges. Specifically,
without the maximum level constraint, we have
2.83M concept nodes in total for Flickr dataset. If
the training is run on all these nodes, we will con-
sume 19 times more iterations than training on the
original dataset, which has 145K sentences (Young
et al., 2014). As a result, much more time would be
required for every experiment. With the 3 layers of
DG from the leaf concepts, we have in 597K nodes.
In this case, the training time would be cut down
to 4.1 times of the original dataset.

Nonetheless, we experimented with more than 3
levels to train ViLBERT + DG-FLICKR30K with 5

5https://github.com/aylai/
DenotationGraph

Table 8: Text-based Image Retrieval Performance of
ViLBERT trained with different number of DG levels

# of DG levels R@1 R@5 R@10 RSUM

3 levels 65.9 91.4 95.5 252.7
5 levels 62.5 86.4 92.3 241.2
7 levels 62.8 86.3 91.6 240.7

and 7 maximum levels, respectively. The training
hyper-parameters remain the same as ViLBERT
+ DG-FLICKR30K with 3 maximum layers. The
aim is to check how much gain we could get from
the additional annotations. We report the results in
Table 8. It shows that actually, the model trained
with 3 levels of DG achieves the best performance.
This might be because those high-level layers of
DG (counting from the sentences) contain very ab-
stract text concepts, such as “entity” and “physical
object”, which is non-informative in learning the
visual grounding.

Once the graph is constructed, we attach the images
to the proper nodes by set-union images of each
node’s children, starting from the sentence-level
node.

A.2 Model architectures of ViLBERT and
UNITER

A comparison of these models is schematically
illustrate in Fig. 3.

• ViLBERT. It has 6 basic Transformer layers
for text and 8 layers for image. For all the
Transformer layers on the text side, we use 12
attention heads and 256 feature dimensions,
then linearly project down to 1024 feature
dimensions. For all the Transformers on the
image side, we use 8 attention heads and 128
feature dimensions, then combine into 1024
feature dimensions too.

• UNITER. All the Transformer layers have 12
heads and 256 feature dimensions.

The major difference between UNITER and ViL-
BERT is how attentions are used. In ViLBERT, one
modality is used as a query, and the other is used as
value and key. In UNITER, however, both are used
as query, key, and value. Additionally, UNITER

https://github.com/aylai/DenotationGraph
https://github.com/aylai/DenotationGraph
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is similar to another model Unicoder-VL (Li et al.,
2019a). However, the latter has not provided pub-
licly available code for experimenting.

For ViLBERT model, each text and image co-
attention Transformer layer contains 8 attention
heads with 1024 dimensions in total. The text
Transformer layer contains 12 attention heads with
3072 hidden dimensions in total. In contrast, the
image Transformer layer has 8 attention heads with
1024 hidden dimensions in total. For UNITER
model, each cross-attention Transformer layer con-
tains 12 heads with 3072 hidden dimensions in
total.

ViLBERT model contains 121 million parameters,
while UNITER contains 111 million parameters.

A.3 Training Details

All models are optimized with the Adam opti-
mizer (Kingma and Ba, 2015). The learning rate is
initialized as 4e−5. Following ViLBERT (Lu et al.,
2019), a warm-up training session is employed,
during which we linearly increase the learning rate
from 0 to 4e−5 in the first 1.5% part of the training
epochs. The learning rate is dropped to 4e−6 and
4e−7 at the 10th and the 15th epochs, respectively.
For ViLBERT (Reduced), we randomly initialized
the model parameters in the image stream. The
text stream is initialized from the first 3 layers of
the pre-trained BERT model, and its co-attention
Transformer layers are randomly initialized. For
ViLBERT (Full) and UNITER (Chen et al., 2019),
we load the model’s weights pre-trained on the
Conceptual Caption dataset to initialize them.

Training ViLBERT (Full) + DG with a minibatch
size of 64 takes 2 to 3 days on an 8 TitanXp GPU
server, or 1 day on TPU v2 cloud. The GPU server
is equipped with Intel Xeon Gold 6154 CPU and
256G RAM.

A.4 Text Pre-processing

We follow BERT (Devlin et al., 2019) that uses
WordPiece (Wu et al., 2016) tokenizer to tokenize
the texts. For ViLBERT (Reduced) and ViLBERT
(Full), we use the uncased tokenizer with a vocab-
ulary size of 30,522. For UNITER, we use the
cased tokenizer with a vocabulary size of 28,996.

After tokenization, the tokens are transformed to
768 dimension features by a word embedding ini-
tialized from BERT pre-trained model. The 768-
dimensional position features are included in the
input to represent the position of each token.

A.5 Visual Pre-processing

For both ViLBERT and UNITER, we use the image
patch features generated by the bottom-up attention
features, as suggested by the original papers (An-
derson et al., 2018a). The image patch features
contain up to 100 image patches with their dimen-
sions to be 2048. Besides this, a positional feature
is used to represent the spatial location of bounding
boxes for both ViLBERT and UNITER. Specifi-
cally, ViLBERT uses 5-dimensional position fea-
ture that encodes the normalized coordinates of the
upper-left and lower-right corner for the bounding
boxes, as well as one additional dimension encod-
ing the normalized patch size. UNITER uses two
additional spatial features that encode the normal-
ized width and height of the object bounding box.

B Full Experimental Results

In this section, we include additional experimental
results referred to by the main text. Specifically, we
include results from a variety of models (e.g., ViL-
BERT, ViLBERT + DG, UNITER, and UNITER +
DG) on COCO dataset 5K test split (Karpathy and
Fei-Fei, 2015) in § B.1. Then we provide a com-
prehensive ablation study on the impact of λ1 and
λ2 of Eq. 7 in the main text in § B.3.

B.1 Complete Results on COCO Dataset

We report the full results on COCO dataset (1K test
split and 5K test split) in Table 9 and Table 10. Ad-
ditionally, we contrast to other existing approaches
on these tasks. It could be seen that ViLBERT
+ DG and UNITER + DG improves the perfor-
mance over the counterparts without DG by a sig-
nificant margin on both COCO 1K and 5K test split
– the only exception is that on the task of image-
based text retrieval, UNITER performs better than
UNITER+DG.

These results support our claim that training with
DG helps the model to learn better visual and lin-
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(a) ViLBERT
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Figure 3: Architecture of (a) ViLBERT, (b) UNITER. The
⊗

means element-wise product. The [CLS] represents
the embedding of [CLS] token in the last UNITER layer.

guistic features. Although ViLBERT and UNITER
have different architectures, training with DG could
improve the performance consistently.

B.2 Complete Results on FLICKR30K Dataset

We contrast to other existing approaches in Table 11
on the task of text-based image retrieval on the
FLICKR30K dataset.

B.3 Ablation Study on λ1 and λ2

We conduct an ablation study on the impact of the
two hyper-parameters λ1 and λ2 in Eq. 7 of the
main text. We conduct the study with two ViL-
BERT variants: ViLBERT Reduced and ViLBERT.
The results are reported in Table 12 and Table 13.
As we have two hyper-parameters λ1 and λ2, we
analyze their impacts on the final results by fixing
one λ to be 1. Fixing the λ2 = 1 and changing λ1,
we observe that ViLBERT prefers larger λ1, while
ViLBERT Reduced achieves slightly worse perfor-
mance when λ1 is smaller or larger. Fixing the
λ1 = 1 and changing λ2, we observe that perfor-
mance of both architectures slightly reduced when
λ2 = 0.5 and λ2 = 2.

B.4 Full Results on Zero/Few-Shot and
Transfer Learning

Implementation Details for Zero-shot Refer-
ring Expression Specifically, the learned ViL-

BERT and ViLBERT w/DG models are used first to
produce a base matching score sBASE between the
expression to be referred and the whole image. We
then compute the matching score sMASKED between
the expression and the image with each region fea-
ture being replaced by a random feature in turn. As
the masked image region might be a noisy region,
sMASKED might be larger than sBASE. Therefore, the
model’s prediction of which region the expression
refers to is the masked region which causes the
largest score in sREGION, where

sREGION = (sBASE−sMASKED) ·I[sMASKED > sBASE].

Here I[·] is an indicator function. Table 5 shows
that ViLBERT + DG-COCO outperforms ViLBERT
on this task.

Transfer Learning Results Table 14 reports the
full set of evaluation metrics on transferring across
datasets. Training with DG improves training with-
out DG noticeably.

C Visualization of Model’s Predictions
on Denotation Graphs

We show several qualitative examples of both suc-
cess and failure cases of ViLBERT + DG, when
retrieving the text matched images, in Fig. 4 and
Fig. 5. The image and text correspondence is gen-
erated by the Denotation Graph, which are derived
from the caption and image alignment. We observe
that in the Fig.4, the ViLBERT + DG successfully
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Table 9: Results on Cross-Modal Retrieval on COCO dataset 1K test split (Higher is better)

Text-based Image Retrieval Image-based Text Retrieval

Method R@1 R@5 R@10 RSUM

Models ran or implemented by us

ViLBERT 62.3 89.5 95.0 246.8
ViLBERT + DG 65.9 91.4 95.5 252.7
UNITER 60.7 88.0 93.8 242.5
UNITER + DG 62.7 88.8 94.4 245.9

Known results from literature

VSE++(Faghri et al., 2018) 52.0 84.3 92.0 228.3
SCO(Huang et al., 2018) 56.7 87.5 94.8 239.0
SCAN(Lee et al., 2018) 58.8 88.4 94.8 242.0
VSRN(Li et al., 2019b) 62.8 89.7 95.1 247.6

Method R@1 R@5 R@10 RSUM

Models ran or implemented by us

ViLBERT 77.0 94.1 97.2 268.3
ViLBERT + DG 79.0 96.2 98.6 273.8
UNITER 74.4 93.9 97.1 265.4
UNITER + DG 77.7 95.0 97.5 270.2

Known results from literature

VSE++(Faghri et al., 2018) 64.6 90.0 95.7 250.3
SCO(Huang et al., 2018) 69.9 92.9 97.5 260.3
SCAN(Lee et al., 2018) 72.7 94.8 98.4 265.9
VSRN(Li et al., 2019b) 76.2 94.8 98.2 269.2

Table 10: Results on Cross-Modal Retrieval on COCO dataset 5K test split (Higher is better)

Text-based Image Retrieval Image-based Text Retrieval

Method R@1 R@5 R@10 RSUM

Models ran or implemented by us

ViLBERT 38.6 68.2 79.0 185.7
ViLBERT + DG 41.8 71.5 81.5 194.8
UNITER 37.8 67.3 78.0 183.1
UNITER + DG 39.1 68.0 78.3 185.4

Known results from literature

VSE++(Faghri et al., 2018) 30.3 59.4 72.4 162.1
SCO(Huang et al., 2018) 33.1 62.9 75.5 171.5
SCAN(Lee et al., 2018) 38.6 69.3 80.4 188.3
VSRN(Li et al., 2019b) 40.5 70.6 81.1 192.2
UNITER(Chen et al., 2019)† 48.4 76.7 85.9 211.0

Method R@1 R@5 R@10 RSUM

Models ran or implemented by us

ViLBERT 53.5 79.7 87.9 221.1
ViLBERT + DG 57.5 84.0 90.1 232.2
UNITER 52.8 79.7 87.8 220.3
UNITER + DG 51.4 78.7 87.0 217.1

Known results from literature

VSE++(Faghri et al., 2018) 41.3 71.1 81.2 193.6
SCO(Huang et al., 2018) 42.8 72.3 83.0 198.1
SCAN(Lee et al., 2018) 50.4 82.2 90.0 222.6
VSRN(Li et al., 2019b) 53.0 81.1 89.4 223.5
UNITER (Chen et al., 2019)† 63.3 87.0 93.1 243.4

†: The UNITER(Chen et al., 2019) model performs an additional online hard-negative mining (which we did not) during the
training of image-text matching to improve their results, which is computationally very costly.

recognizes the images that are aligned with the text:
“man wear reflective vest”, while the ViLBERT fails
to retrieve the matched image. In the failure case
in Fig. 5, although ViLBERT + DG fails to retrieve
the images that are exactly matched to the text, it
still retrieves very relevant images given the query.



838

Table 11: Results on Text-based Image Retrieval on FLICKR30K test split (Higher is better)

Method R@1 R@5 R@10 RSUM

Models ran or implemented by us

ViLBERT 59.1 85.7 92.0 236.7
ViLBERT + DG 63.8 87.3 92.2 243.3
UNITER 62.9 87.2 92.7 242.8
UNITER + DG 66.4 88.2 92.2 246.8

Known results from literature

VSE++(Faghri et al., 2018) 39.6 70.1 79.5 189.2
SCO(Huang et al., 2018) 41.1 70.5 80.1 191.7
SCAN(Lee et al., 2018) 48.6 77.7 85.2 211.5
VSRN(Li et al., 2019b) 54.7 81.8 88.2 224.7
ViLBERT(Lu et al., 2019) 58.2 84.9 91.5 234.6
UNITER(Chen et al., 2019) 71.5 91.2 95.2 257.9

Table 12: Ablation studies on the impact of λ1 and λ2 of ViLBERT Reduced on Text-based Image Retrieval on
FLICKR30K dataset (Higher is better)

(a) Ablating λ1 (b) Ablating λ2

λ1 λ2 R@1 R@5 R@10 RSUM

0.5 1.0 57.7 83.1 88.5 229.2
1.0 1.0 58.7 83.3 89.3 231.2
2 1.0 56.5 82.6 88.6 227.7

λ1 λ2 R@1 R@5 R@10 RSUM

1.0 0.5 56.3 81.7 87.2 225.2
1.0 1.0 58.7 83.3 89.3 231.2
1.0 2 58.5 82.3 88.0 228.9

Table 13: Ablation studies on the impact of λ1 and λ2 of ViLBERT on Text-based Image Retrieval on FLICKR30K
dataset (Higher is better)

(a) Ablating λ1 (b) Ablating λ2

λ1 λ2 R@1 R@5 R@10 RSUM

0.5 1.0 63.1 86.7 91.7 241.4
1.0 1.0 63.8 87.3 92.2 243.3
2 1.0 64.1 87.6 92.5 244.2

λ1 λ2 R@1 R@5 R@10 RSUM

1.0 0.5 63.7 87.0 92.4 243.2
1.0 1.0 63.8 87.3 92.2 243.3
1.0 2 63.1 86.6 91.9 241.6

Table 14: Transferrability of the learned representations

SOURCE→TARGET FLICKR30K→COCO COCO→FLICKR30K

Model R@1 R@5 R@10 RSUM R@1 R@5 R@10 RSUM

ViLBERT 43.5 72.5 83.4 199.4 49.0 76.0 83.9 209.0
ViLBERT + SOURCE DG 44.9 72.7 83.0 200.5 52.8 79.2 86.2 218.2
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a man wearing a reflective vest sits on the sidewalk and holds up 
pamphlets with bicycles on the cover

Query Text

ViLBERT + DG

ViLBERT

Query Text 
Generated by DG

man wear reflective vest

ViLBERT + DG

ViLBERT

Figure 4: FLICKR30K Denotation Graph: Given Text and Retrieve Image. Qualitative example of ViLBERT + DG
successfully retrieves the text matched images. We mark the correct sample in green and incorrect one in red.

a black and white dog is running through the grassQuery Text

ViLBERT + DG

ViLBERT

Query Text 
Generated by DG

black and white dog run

ViLBERT + DG

ViLBERT

Figure 5: FLICKR30K Denotation Graph: Given Text and Retrieve Image. Qualitative example of ViLBERT + DG fails to
retrieve the text matched images. We mark the correct sample in green and incorrect one in red.


