
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 7346–7359,
November 16–20, 2020. c©2020 Association for Computational Linguistics

7346

Message Passing for Hyper-Relational Knowledge Graphs

Mikhail Galkin1,2, Priyansh Trivedi2, Gaurav Maheshwari2, Ricardo Usbeck2, Jens Lehmann2,3

1TU Dresden, 2Fraunhofer IAIS, 3University of Bonn
{mikhail.galkin, priyansh.trivedi, gaurav.maheshwari,

ricardo.usbeck, jens.lehmann}@iais.fraunhofer.de

Abstract

Hyper-relational knowledge graphs (KGs)
(e.g., Wikidata) enable associating additional
key-value pairs along with the main triple
to disambiguate, or restrict the validity of a
fact. In this work, we propose a message
passing based graph encoder - STARE capable
of modeling such hyper-relational KGs. Un-
like existing approaches, STARE can encode
an arbitrary number of additional information
(qualifiers) along with the main triple while
keeping the semantic roles of qualifiers and
triples intact. We also demonstrate that exist-
ing benchmarks for evaluating link prediction
(LP) performance on hyper-relational KGs suf-
fer from fundamental flaws and thus develop a
new Wikidata-based dataset - WD50K. Our ex-
periments demonstrate that STARE based LP
model outperforms existing approaches across
multiple benchmarks. We also confirm that
leveraging qualifiers is vital for link prediction
with gains up to 25 MRR points compared to
triple-based representations.

1 Introduction

The task of link prediction over knowledge graphs
(KGs) has seen a wide variety of advances over
the years (Ji et al., 2020). The objective of this
task is to predict new links between entities in the
graph based on the existing ones. A majority of
these approaches are designed to work over triple-
based KGs, where facts are represented as binary
relations between entities. This data model, how-
ever, doesn’t allow for an intuitive representation of
facts with additional information. For instance, in
Fig. 1.A, it is non-trivial to add information which
can help disambiguate whether the two universities
attended by Albert Einstein awarded him
with the same degree.

This additional information can be provided in
the form of key-value restrictions over instances of

educated ateducated at

Albert Einstein

Q937

ETH Zurich
University of

Zurich

Academic degree (P512):
 Bachelor (Q787674)

Academic major (P812):
 Mathematics (Q853077)

Academic degree (P512):
 Doctorate (Q849697)

Academic major (P812):
 Physics (Q413)

A. Triple-based facts

B. Hyper-relational facts

P69P69

Q206702Q11942

educated ateducated at

Albert Einstein

Q937

ETH Zurich
University of

Zurich

P69P69

Q206702Q11942

Figure 1: A comparison of triple-based and hyper-
relational facts.

binary relations between entities in recent knowl-
edge graph models (Vrandecic and Krötzsch, 2014;
Pellissier-Tanon et al., 2020; Ismayilov et al.,
2018). Such restrictions are known as qualifiers
in the Wikidata statement model (Vrandecic and
Krötzsch, 2014) or triple metadata in RDF* (Har-
tig, 2017) and RDF reification approaches (Frey
et al., 2019). These complex facts with qualifiers
can be represented as hyper-relational facts (See
Sec. 3). In our example (Fig. 1.B), hyper-relational
facts allow to observe that Albert Einstein
obtained different degrees at those universities.

Existing representation learning approaches
for such graphs largely treat a hyper-relational
fact as an n-ary (n>2) composed relation (e.g.,
educatedAt academicDegree) (Zhang
et al., 2018; Liu et al., 2020) losing entity-relation
attribution; ignoring the semantic difference
between a triple relation (educatedAt) and
qualifier relation (academicDegree) (Guan

7347

et al., 2019), or decomposing a hyper-relational
instance into multiple quintuples comprised of
a triple and one qualifier key-value pair (Rosso
et al., 2020). In this work, we propose an alternate
graph representation learning mechanism capable
of encoding hyper-relational KGs with arbitrary
number of qualifiers, while keeping the semantic
roles of qualifiers and triples intact.

To accomplish this, we leverage the advances in
Graph Neural Networks (GNNs), many of which
are instances of the message passing (Gilmer et al.,
2017) framework, to learn latent representations of
nodes and edges of a given graph. Recently, GNNs
have been demonstrated (Vashishth et al., 2020)
to be capable of encoding mutli-relational (tripled
based) knowledge graphs. Inspired by them, we
further extend this framework to incorporate hyper-
relational KGs, and propose STARE1 , which to
the best of our knowledge is the first GNN-based
approach capable of doing so (see Sec. 4).

Furthermore, we show that WikiPeople (Guan
et al., 2019), and JF17K (Wen et al., 2016) - two
commonly used benchmarking datasets for LP
over hyper-relational KGs exhibit some design
flaws, which render them as ineffective benchmarks
for the hyper-relational link prediction task (see
Sec. 5). JF17K suffers from significant test leak-
age, while most of the qualifier values in WikiPeo-
ple are literals which are conventionally ignored in
KG embedding approaches, rendering the dataset
largely devoid of qualifiers. Instead, we propose
a new hyper-relational link prediction dataset -
WD50K extracted from Wikidata (Vrandecic and
Krötzsch, 2014) that contains statements with vary-
ing amounts of qualifiers, and use it to benchmark
our approach.

Through our experiments (Sec. 6), we find that
STARE based model generally outperforms other
approaches on the task of link prediction (LP) over
hyper-relational knowledge graphs. We provide
further evidence of the fact, independent of STARE,
that triples enriched with qualifier pairs provide
additional signal beneficial for the LP task.

2 Related Work

Early approaches for modelling hyper-relational
graphs stem from conventional triple-based KG
embedding algorithms, which often simplify com-
plex property attributes (qualifiers). For instance,

1The title is inspired by the RDF* (Hartig, 2017) ”RDF
star” proposal for standardizing hyper-relational KGs

m-TransH (Wen et al., 2016) requires star-to-clique
conversion which results in a permanent loss of
entity-relation attribution. Later models, e.g.,
RAE (Zhang et al., 2018), HypE and HSimple in-
troduced in (Fatemi et al., 2020), converted hyper-
relational facts into n-ary facts with one abstract
relation which is supposed to loosely represent a
combination of all relations of the original fact.

Recently, GETD (Liu et al., 2020) extended
TuckER (Balazevic et al., 2019) tensor factoriza-
tion approach for n-ary relational facts. However,
the model still expects only one relation in a fact
and is not able to process facts of different arity in
one dataset, e.g., 3-ary and 4-ary facts have to be
split and trained separately.

NaLP (Guan et al., 2019) is a convolutional
model that supports multiple entities and relations
in one fact. However, every complex fact with k
qualifiers has to be broken down into k + 2 key-
value pairs with an artificial split of the main (s,p,o)
triple into (ps : s) and (po : o) pairs. Conse-
quently, all key-value pairs are treated equally thus
the model does not distinguish between the main
triple and relation-specific qualifiers.

HINGE (Rosso et al., 2020) also adopts a convo-
lutional framework for modeling hyper-relational
facts. A main triple is iteratively convolved with
every qualifier pair as a quintuple followed by min
pooling over quintuple representations. Although it
retains the hyper-relational nature of facts, HINGE
operates on a triple-quintuple level that lacks gran-
ularity of representing a certain relation instance
with its qualifiers. Additionally, HINGE has to be
trained sequentially in a curriculum learning (Ben-
gio et al., 2009) fashion requiring sorting all facts
in a KG in an ascending order of the amount of
qualifiers per fact which might be prohibitively ex-
pensive for large-scale graphs.

Instead, our approach directly augments a rela-
tion representation with any number of attached
qualifiers properly separating auxiliary entities and
relations from those in the main triple. Addition-
ally, we do not force any restrictions on input order
of facts nor on the amount of qualifiers per fact.

Parallel to our approach are the methods that
work over hypergraphs, e.g., DHNE (Tu et al.,
2018), Hyper-SAGNN (Zhang et al., 2020), and
knowledge hypergraphs like HypE (Fatemi et al.,
2020). We deem hyper-relational graphs and hy-
pergraphs are conceptually different. As hyper-
edges contain multiple nodes, such hyperedges are

7348

closer to n-ary relations r(e1, . . . , en) with one ab-
stract relation. The attribution of entities to the
main triple or qualifiers is lost, and qualifying re-
lations are not defined. Combining a certain set of
main and qualifying relations into one abstract rk()
would lead to a combinatorial explosion of typed
hyperedges since, in principle, any relation could
be used in a qualifier, and there the amount of qual-
ifiers per fact is not limited. Therefore, modeling
qualifiers in hypergraphs becomes non-trivial, and
we leave such a study for future work.

3 Preliminaries

GNNs on Undirected Graphs: Consider an undi-
rected graph G = (V, E), where V represents the
set of nodes and E denotes the set of edges. Each
node v ∈ V has an associated vector hv and neigh-
bourhood N (v). In the message passing frame-
work (Gilmer et al., 2017), the node representations
are learned iteratively via aggregating representa-
tions (messages) from their neighbors:

hk+1
v = UPD

(
hkv ,AGGR

u∈N (v)
φ(hkv ,h

k
u, evu)

)
(1)

where AGGR(·) and UPD(·) are differentiable
functions for neighbourhood aggregation and node
update, respectively; h(k)

v is the representation of
a node v at layer k; evu is the representation of an
edge between nodes v and u.

Different GNN architectures implement their
own aggregation and update strategy. For exam-
ple, in case of Graph Convolutional Networks
(GCNs) (Kipf and Welling, 2017) the represen-
tations of neighbours are first transformed via a
weight matrix W and then combined and passed
through a non-linearity f(·) such as ReLU. A GCN
layer k can be represented as:

h(k)
v = f

 ∑
u∈N (v)

W(k)h(k−1)
u

 (2)

GCN and other seminal architectures such as
GAT (Velickovic et al., 2018) and GIN (Xu et al.,
2019) do not model relation embeddings explicitly
and require further modifications to support multi-
relational KGs.

GNN on Directed Multi-Relational Graphs:
In case of a multi-relational graph G = (V,R, E)
where R represents the set of relations r, and E
denotes set of directed edges (s, r, o) where nodes

s ∈ V and o ∈ V are connected via relation r.
The GCN formulation by (Marcheggiani and Titov,
2017) assumes that the information in a directed
edge flows in both directions. Thus for each edge
(s, r, o), an inverse edge (o, r−1, s) is added to E .
Further, self-looping relations (v, rself , v), for each
node v ∈ V are added to E , enabling an update of
a node state based on its previous one, and further
improving normalization.

For directed multi-relational graphs, Equation 2
can be extended by introducing relation spe-
cific weights Wr (Marcheggiani and Titov, 2017;
Schlichtkrull et al., 2018)

h(k)
v = f

 ∑
(u,r)∈N (v)

W(k)
r h(k−1)

u

 (3)

However, such networks are known to be overpa-
rameterized. Instead, CompGCN (Vashishth et al.,
2020) proposes to learn specific edge type vectors:

h(k)
v = f

 ∑
(u,r)∈N (v)

W
(k)
λ(r)φ(h(k−1)

u ,h(k−1)
r)


(4)

where φ(·) is a composition function of a node
u with its respective relation r, and Wλ(r) is a
direction-specific shared parameter for incoming,
outgoing, and self-looping relations. The composi-
tion φ : Rd × Rd → Rd can be any entity-relation
function akin to TransE (Bordes et al., 2013) or
DistMult (Yang et al., 2015).

Hyper-Relational Graphs: In case of
a hyper-relational graph G = (V,R, E),
E is a list (e1, . . . , en) of edges with
ej ∈ V × R × V × P(R × V) for 1 ≤ j ≤ n,
where P denotes the power set. A hyper-
relational fact ej ∈ E is usually written as a
tuple (s, r, o,Q), where Q is the set of quali-
fier pairs {(qri, qvi)} with qualifier relations
qri ∈ R and qualifier values qvi ∈ V . (s, r, o)
is referred to as the main triple of the fact. We
use the notation Qj to denote the qualifier pairs
of ej . For example, under this representation
scheme, one of the edges in Fig. 1.B would
be (Albert Einstein, educated at,
University of Zurich, (academic
degree, Doctorate), (academic
major, Physics))

7349

r qr1 qv1 qr2 qv2 o

ϕq ϕq

∑

P6
9

P5
12

Q8
49
69
7

P8
12

Q8
53
07
7

Q2
06
70
2

Wq

γ ϕr ∑ sWλ(r)

Q937

Figure 2: The mechanism in which STARE encodes
a hyper-relational fact from Fig. 1.B. Qualifier pairs
are passed through a composition function φq , summed
and transformed by Wq . The resulting vector is then
merged via γ, and φr with the relation and object vec-
tor, respectively. Finally, node Q937 aggregates mes-
sages from this and other hyper-relational edges.

4 STARE

In this section, we introduce our main contribution
– STARE, and show how we use it for link predic-
tion (LP). STARE (cf. Fig. 2 for the intuition) in-
corporates statement qualifiers {(qri, qvi)}, along
with the main triple (s, r, o) into a message pass-
ing process. To do this, we extend Equation 4
by combining the edge-type embedding hr with a
fixed-length vector hq representing qualifiers asso-
ciated with a particular relation r between nodes u
and v. The resultant equation is thus:

hv = f

 ∑
(u,r)∈N (v)

Wλ(r)φr(hu, γ(hr,hq)vu)


(5)

where γ(·) is a function that combines the main
relation representation with the representation of
its qualifiers, e.g., concatenation [hr,hq], element-
wise multiplication hr � hrq, or weighted sum:

γ(hr,hq) = α� hr + (1− α)� hq (6)

where α is a hyperparameter that controls the
flow of information from qualifier vector hq to hr.

Finally, the qualifier vector hq is obtained
through a composition φq of a qualifier relation
hqr and qualifier entity hqv. The composition func-
tion φq may be any entity-relation function akin
to φ (Equation 4). The representations of different

Academic degree (P512):
 Bachelor (Q787674)

Academic major (P812):
 Mathematics (Q853077)

Academic degree (P512):
 Doctorate (Q849697)

Academic major (P812):
 Physics (Q413)

B. Hyper-relational facts

educated ateducated at

Albert Einstein

Q937

ETH Zurich
University of

Zurich

P69P69

Q206702Q11942

Q937

P812 Q413 P512 Q849697

φ φΣ

P69 agg(P69, Quals)

Wq

q q

φrWo
Σ

ᵞ Q206702

r qr1 qv1 qr2 qv2 o

ϕq ϕq

∑

P69
P512

Q849697

P812
Q853077

Q206702

Wq

γ

ϕr

r qr1 qe1 qr2 qe2 o

ϕq ϕq

∑

P69
P512

Q849697

P812
Q853077

Q206702

Wq

hq

γ

ϕr

∑

s

Wλ(r)

s

r

qr1

qv1

qr2

qv2

PAD

PAD

s

r

qr1

qv1

qr2

qv2

PAD

PAD

V FC

St
ar

E
En

co
de

r

Tr
an

sf
or

m
er

Po
ol

in
g

E

Initial
Embedding

Matrices
RV

StarE Encoder

R

V

Updated
Embedding

Matrices

Updated
Embedding

Matrices
RV

r qr1 qv1 qr2 qv2 o

ϕq ϕq

∑

P69
P512

Q849697

P812
Q853077

Q206702

Wq

γ

ϕr

∑

s Q937

Wλ

(r)

s

r

qr1

qv1

qr2

qv2

PAD

PAD

FC
St

ar
E

En
co

de
r

Tr
an

sf
or

m
er

Po
ol

in
g

s r o qr1 qv1 qr2 qv2 <PAD> <PAD>

Q
ue

ry
 L

in
ea

riz
at

io
n

V

R

...

...

rs PAD

Transformer + Pooling + Fully Connected

QUERY V⊙() →sigmoid

Q937

Index Select

qr1 qv1 qr2 qv2
PAD

Distribution over ..

Figure 3: Architecture of a STARE based link predic-
tion model. STARE updates the V̄, R̄ matrices, which
are then used to encode the relations in a given query
before passing them through the Transformer, Pooling
and fully connected layers. The fixed-dimensional out-
put is then compared to V̄, the result of which is passed
through a sigmoid function to yield a probability distri-
bution over entities.

qualifier pairs are then aggregated via a position-
invariant summation function and passed through a
parameterized projection Wq:

hq = Wq

∑
(qr,qv)∈Qjrvu

φq(hqr,hqv) (7)

This formalisation allows to (i) incorporate an
arbitrary number of qualifier pairs and (ii) can take
into account whether entities/relations occur in the
main triple or the qualifier pairs. STARE is the first
GNN model for representation learning of hyper-
relational KGs that has these characteristics.

STARE for Link Prediction. STARE is a gen-
eral representation learning framework for captur-
ing the structure of hyper-relational graphs, and
thus can be applied to multiple downstream tasks.
In this work, we focus on LP and leave other tasks
such as node classification for future work. In LP,
given a query (s, r,Q), the task is to predict an
entity corresponding to the object position o.

Our link prediction model (see Fig. 3) is com-
posed of two parts namely (i) a STARE based

7350

Table 1: Datasets - E in quals (R in quals) denote the amount of entities (relations) appearing only in qualifiers.

Dataset Statements w/ Quals (%) Entities Relations E in quals R in quals Train Valid Test

WD50K 236,507 32,167 (13.6%) 47,156 532 5460 45 166,435 23,913 46,159
WD50K (33) 102,107 31,866 (31.2%) 38,124 475 6463 47 73,406 10,568 18,133
WD50K (66) 49,167 31,696 (64.5%) 27,347 494 7167 53 35,968 5,154 8,045
WD50K (100) 31,314 31,314 (100%) 18,792 279 7862 75 22,738 3,279 5,297

WikiPeople 369,866 9,482 (2.6%) 34,839 375 416 35 294,439 37,715 37,712
JF17K 100,947 46,320 (45.9%) 28,645 322 3652 180 76,379 - 24,568

encoder, and (b) a Transformer (Vaswani et al.,
2017) based decoder similar to CoKE (Wang et al.,
2019a), which are jointly trained. We initialize two
embedding matrices R,V corresponding to rela-
tions (R), and entities (V) present in the dataset2.
In every iteration, STARE updates the embeddings
(R̄, V̄) by message passing across every edge in the
training set. In the decoding step, we first linearize
the given query, and use the updated embeddings
(R̄, V̄) to encode the entities and relations within
it. Then, this linearized sequence is passed through
the Transformer block, whose output is averaged
to get a fixed-dimensional vector representation
of the query. The vector is then passed through a
fully-connected layer, multiplied with V̄ and then
passed through a sigmoid, to obtain a probability
distribution over all entities. Thereafter, it is trivial
to retrieve the top n candidate entities for the o
position in the query.

Note that we can use different decoders in this
architecture. An explanation and evaluation of few
decoders is provided in Appendix D.

5 WD50K Dataset

Recent approaches (Guan et al., 2019; Liu et al.,
2020; Rosso et al., 2020) for embedding hyper-
relational KGs often use WikiPeople and JF17K
as benchmarking datasets. We advocate that those
datasets can not fully capture the task complexity.

In WikiPeople, about 13% of statements contain
at least one literal. Literals (e.g. numeric values,
date-time instances or other strings, etc) in KGs are
conventionally ignored (Rosso et al., 2020) by em-
bedding approaches, or are incorporated through
specific means (Kristiadi et al., 2019). However, af-
ter removing statements with literals, less than 3%
of the remaining statements contain any qualifier
pairs. Out of those, about 80% possess only one

2As mentioned in Section 3, while pre-processing, we add
inverse and self-loop relations to the graph. Note, we retain the
same set of qualifiers as in the original fact while generating
inverse hyper-relational facts.

qualifier. This fact renders WikiPeople less sensi-
tive to hyper-relational models as performance on
triple-only facts dominates the overall score.

The authors of JF17K reported3 the dataset to
contain redundant entries. In our own analysis,
we detected that about 44.5% of the test statements
share the same main (s, r, o) triple as the train state-
ments. We consider this fact as a major data leak-
age which allows triple-based models to memorize
subjects and objects appearing in the test set.

To alleviate the above problems, we propose
a new dataset, WD50K, extracted from Wikidata
statements. The following steps are used to sam-
ple our dataset from the Wikidata RDF dump of
August 2019 4. We begin with a set of seed nodes
corresponding to entities from FB15K-237 having
a direct mapping in Wikidata (P646 ”Freebase
ID”). Then, for each seed node, all statements
whose main object and qualifier values correspond
to wikibase:Item are extracted. This step re-
sults in the removal of all literals in object position.
Similarly, all literals are filtered out from the qual-
ifiers of the obtained statements. To increase the
connectivity in the statements graph, all the entities
mentioned less than twice are dropped.

All the statements of WD50K are randomly split
into the train, test, and validation sets. To elim-
inate test set leakages we remove all statements
from train and validation sets that share the same
main triple (s,p,o) with test statements. Finally, we
remove statements from the test set that contain
entities and relations not present in the train or val-
idation sets. WD50K contains 236,507 statements
describing 47,156 entities with 532 relations where
about 14% of statements have at least one quali-
fier pair. See Table 3, and Appendix A for further
details. The dataset is publicly available5.

3http://www.site.uottawa.ca/˜yymao/
JF17K/

4https://dumps.wikimedia.org/
wikidatawiki/20190801/

5https://zenodo.org/record/4036498

http://www.site.uottawa.ca/~yymao/JF17K/
http://www.site.uottawa.ca/~yymao/JF17K/
https://dumps.wikimedia.org/wikidatawiki/20190801/
https://dumps.wikimedia.org/wikidatawiki/20190801/
https://zenodo.org/record/4036498

7351

Table 2: Link prediction on WikiPeople and JF17K. Results of m-TransH, RAE, NaLP-Fix and HINGE are taken
from (Rosso et al., 2020). Best results among hyper-relational models are in bold.

Exp Method
WikiPeople JF17K

MRR H@1 H@5 H@10 MRR H@1 H@5 H@10

1 m-TransH 0.063 0.063 - 0.300 0.206 0.206 - 0.463
1 RAE 0.059 0.059 - 0.306 0.215 0.215 - 0.469
1 NaLP-Fix 0.420 0.343 - 0.556 0.245 0.185 - 0.358
1 HINGE 0.476 0.415 - 0.585 0.449 0.361 - 0.624

1,4 Transformer (H) 0.469 0.403 0.538 0.586 0.512 0.434 0.593 0.665
1,4 STARE (H) + Transformer(H) 0.491 0.398 0.592 0.648 0.574 0.496 0.658 0.725

4 Transformer (T) 0.474 0.419 0.532 0.575 0.537 0.473 0.606 0.663
4 STARE (T) + Transformer (T) 0.493 0.400 0.592 0.648 0.562 0.493 0.637 0.702

6 Experiments

In this section, we discuss the setup and results
of multiple experiments conducted towards (i) as-
sessing the performance of our proposed approach
on the link prediction task, and (ii) analyzing the
effects of including hyper-relational information
during link prediction.

6.1 Evaluating STARE on the LP Task
In this experiment, we evaluate our proposed ap-
proach on the task of LP over hyper-relational
graphs. We designed it to both compare STARE
with the state of the art algorithms, and to better
understand the contribution of the STARE encoder.

Datasets: We use WikiPeople6 and JF17K7, de-
spite their design flaws (see Sec. 5) to illustrate the
performance differences with existing approaches.
We also provide a benchmark of our approach on
the WD50K dataset introduced in this article. Note
that as described by (Rosso et al., 2020), we drop
all statements containing literals in WikiPeople.
Further datasets statistics are presented in Table 1.

Baselines: In this experiment, we com-
pare against previous hyper-relational approaches
namely: (i) m-TransH (Wen et al., 2016), ii)
RAE (Zhang et al., 2018), (iii) NaLP-Fix (an
improved version of NaLP (Guan et al., 2019)
as proposed in (Rosso et al., 2020)), and (iv)
HINGE (Rosso et al., 2020).

To assess the significance of the STARE encoder,
we also train a simpler model where the Trans-

6Downloaded from: https://github.com/
gsp2014/NaLP/tree/master/data/WikiPeople

7Downloaded from: https://www.
dropbox.com/sh/ryxohj363ujqhvq/
AAAoGzAElmNnhXrWEj16UiUga?dl=0

former based decoder directly uses the randomly
initialized embedding matrices without the STARE
encoder. We call this model Transformer (H),
and the one with the STARE encoder STARE (H) +
Transformer (H). Here (H) represents that the in-
put to the model is a hyper-relational fact. Later, we
also experiment with triples as input and represent
them with (T) (see Sec. 6.4).

Evaluation: For all the systems discussed
above, we report various performance metrics
when predicting the subject and object of hyper-
relational facts. We adopt the filtered setting intro-
duced in (Bordes et al., 2013) for computing mean
reciprocal rank (MRR) and hits at 1, 5, and 10
(H@1, H@5, H@10). The metrics are computed
for subject and object prediction separately and are
then averaged.

Training: We train the model in 1-N setting us-
ing binary cross entropy loss with label smoothing
as in (Dettmers et al., 2018; Vashishth et al., 2020)
with Adam (Kingma and Ba, 2015) optimizer for
500 epochs on WikiPeople and for 400 epochs on
JF17K and WD50K datasets. Hyperparameters
were selected by manual fine tuning with further
details in Appendix C. STARE is implementated
with PyTorch Geometric (Fey and Lenssen, 2019)
and is publicly available here8.

Results and Discussion: The results of this ex-
periment can be found in Table 2. We observe that
the STARE encoder based model outperforms the
other hyper-relational models across WikiPeople
and JF17K. On JF17K, STARE (H) + Transformer
(H) reports a gain of 11.3 (25%) MRR points, 13
(33%) H@1, and 7.8 (12%) H@10 points when

8https://github.com/migalkin/StarE

https://github.com/gsp2014/NaLP/tree/master/data/WikiPeople
https://github.com/gsp2014/NaLP/tree/master/data/WikiPeople
https://www.dropbox.com/sh/ryxohj363ujqhvq/AAAoGzAElmNnhXrWEj16UiUga?dl=0
https://www.dropbox.com/sh/ryxohj363ujqhvq/AAAoGzAElmNnhXrWEj16UiUga?dl=0
https://www.dropbox.com/sh/ryxohj363ujqhvq/AAAoGzAElmNnhXrWEj16UiUga?dl=0
https://github.com/migalkin/StarE

7352

Table 3: Link prediction on WD50K graphs with different ratio of qualifiers. Best results are in bold.

Exp
#

Dataset→ WD50K WD50K (33) WD50K (66) WD50K (100)

Method ↓ MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

4 Baseline (Transformer (T)) 0.275 0.207 0.404 0.218 0.158 0.334 0.270 0.197 0.417 0.351 0.261 0.530
4 STARE (T) + Transformer(T) 0.308 0.228 0.465 0.246 0.173 0.388 0.297 0.212 0.470 0.380 0.276 0.584

4 NaLP-Fix 0.177 0.131 0.264 0.204 0.164 0.277 0.334 0.284 0.423 0.458 0.398 0.563
4 HINGE 0.243 0.176 0.377 0.253 0.190 0.372 0.378 0.307 0.512 0.492 0.417 0.636

1,2,4 Baseline (Transformer (H)) 0.286 0.222 0.406 0.276 0.227 0.371 0.404 0.352 0.502 0.562 0.499 0.677
1,2,4 STARE (H) + Transformer(H) 0.349 0.271 0.496 0.331 0.268 0.451 0.481 0.420 0.594 0.654 0.588 0.777

compared to the next-best approach. Recall that
JF17K suffers from a major test set leakage (Sec. 5),
which we investigate in greater detail in Exp. 4
(Sec. 6.4) below. On WikiPeople, HINGE has a
higher H@1 score than STARE (H) + Transformer
(H). However, its H@10 is lower than H@5 of our
approach, i.e., top five predictions of the STARE
model are more likely to contain a correct answer
than top 10 predictions of HINGE. We can thus
claim our STARE based model to be competitive
with, if not outperforming the state of the art on the
task of link prediction over hyper-relational KGs,
albeit on less-than-ideal baselines.

We further present the performance of our ap-
proach as a baseline on the WD50K dataset in Ta-
ble 3. With an MRR score of 0.349, H@1 of 0.271,
and H@10 of 0.496, we find that the task is far from
solved, however, the STARE-based approaches pro-
vide effective, non-trivial baselines.

Note that Transformer (H) (without STARE) also
performs competitively to HINGE. This suggests
that the aforementioned gains in metrics of our ap-
proach cannot all be attributed to STARE’s innate
ability to effectively encode the hyper-relational
information. That said, upon comparing the per-
formance of STARE (H) + Transformer (H) and
Transformer (H), we find that using STARE is con-
sistently advantageous across all the datasets.

6.2 Impact of Ratio of Statements with and
Without Qualifier Pairs

Based on the relatively high performance of Trans-
former (H) (without the encoder) in the previous
experiment, we study the relationship between the
amount of hyper-relational information (qualifiers),
and the ability of STARE to incorporate it for the LP
task. Here, we sample datasets from WD50K, with
varying ratio of facts with qualifier pairs to the total
number of facts in the KG. Specifically, we sample
three datasets namely, WD50K (33), WD50K (66),
and WD50k (100) containing approximately 33%,

66%, and 100% of such hyper-relational facts, re-
spectively. We use the same experimental setup as
the one discussed in the previous section. Table 3
presents the result of this experiment.

We observe that across all metrics, STARE (H) +
Transformer (H) performs increasingly better than
Transformer (H), as the ratio of qualifier pairs in-
creases in the dataset. Concretely, the difference
in their H@1 scores is 4.1, 6.8, and 8.9 points on
WD50K (33), WD50K (66), and WD50K (100) re-
spectively. These and the Sec. 6.1 results confirm
that STARE is better suited to utilize the qualifier
information available in the KG, (ii) which when
leveraged by a transformer decoder, outperforms
other hyper-relational LP approaches, and (iii) that
STARE’s positive effects increases as the amount
of qualifiers in the task increases.

6.3 Impact of Number of Qualifiers per
Statement

In WD50K, as in Wikidata, the number of qualifiers
corresponding to a statement varies significantly
(see Appendix A). In this experiment, we intend to
quantify its effect on the model performance.

To do so, we create multiple variants of
WD50K, each containing statements with up to
n qualifiers(n ∈ [1, 6]). In other words, for a given
number n, we collect all the statements which have
less than n qualifiers. If a statement contains more
than n qualifiers, we arbitrarily choose n qualifiers
amongst them. Thus, the total number of facts
remains the same across these variants. Figure 4
presents the result of this experiment.

For all the datasets, we find that two qualifier
pairs are enough for our model performance to sat-
urate. This might be an attribute of the underlying
characteristic of the dataset or the model’s inability
to aggregate information from longer statements.
We leave the further analysis of this for the future
work. However, we observe that in case of WD50K
and other datasets, STARE (H) + Transformer (H)

7353

1 2 3 4 5 6
qual pairs

0.2

0.3

0.4

0.5

0.6

0.7

0.8
va

ls
metric = MRR

1 2 3 4 5 6
qual pairs

metric = H@1

1 2 3 4 5 6
qual pairs

metric = H@5

1 2 3 4 5 6
qual pairs

metric = H@10

DATASET wd50k(100) wd50k(66) wd50k(33) wd50k MODEL StarE Trf(S)

Figure 4: Statement length experiment. STARE (H) + Transformer (H) saturates after two qualifiers with slightly
increase, whereas Transformer (H) is unstable in handling qualifiers.

slightly improves or remains stable with increase
of statement length, while Transformer (H) shows
degradation in performance.

6.4 Comparison to Triple Baselines

To further understand the role of qualifier in-
formation in the LP task, we design an exper-
iment to gauge the performance difference be-
tween models on hyper-relational KG and triple-
based KG. Concretely, we create a new triple-
only dataset by pruning all qualifier information
from the statements in WikiPeople, JF17K, and
WD50K. That is, two statements that describe
the same main fact (s, r, o, {(qr1, qv1), (qr2, qv2)}
and (s, r, o, {(qr3, qv3), (qr4, qv4)}) are reduced
to one triple (s, r, o). Thus, the overall amount of
distinct entities and relations is reduced, but the
amount of subjects and objects in main triples for
the LP task is the same.

We introduce STARE (T) + Transformer (T), a
model for this experiment. STARE (T) is similar to
CompGCN (Vashishth et al., 2020), and can only
model triple-based (s, r, o) facts. Since inputs to
the Transformer decoder are linearized queries, we
can trivially implement Transformer (T) by ignor-
ing qualifier pairs during this linearization. The
results are available in Table 2, and Table 3.

We observe that triple-only baselines yield com-
petitive results on JF17K and WikiPeople com-
pared to hyper-relational models (See Table 2).
As WikiPeople contains less than 3% of hyper-
relational facts, the biggest contribution to the over-
all performance is dominated by the triple-only
performance. We attribute the strong performance
of the triple-only baseline on JF17K to the iden-
tified data leakage pertaining to this dataset. In
other words, JF17K in its hyper-relational form ex-
hibits similar issues identified by (Akrami et al.,
2020) as in FB15k and WN18 datasets proposed

in (Bordes et al., 2013) for triple-based LP task.
We thus perform another experiment after cleaning
JF17K from the assumed data leakage and report
the results in Table 4 below.

Table 4: StarE (H) + Transformer (H) denoted as (H)
and Transformer (T) as (T) on the original JF17K and
cleaned JF17K

JF17K (original) JF17K (cleaned)

H T H T

MRR 0.574 0.534 0.376 0.334
H@1 0.496 0.471 0.278 0.242
H@5 0.658 0.602 0.485 0.428
H@10 0.725 0.661 0.582 0.514

We observe a drastic performance drop of about
20 MRR points in both models which provide ex-
perimental evidence of the flaws discussed in Sec. 5.
We encourage future works in this domain to re-
frain from using these datasets in experiments.

In the case of WD50K (where about 13% of
facts have qualifiers) the STARE (H) + Transformer
(H) yields about 16%, 23%, and 11% of relative
improvement over the best performing triple-only
baseline across MRR, H@1 and H@10, respec-
tively (see Table 3). Akin to the previous experi-
ment, we observe that increasing the ratio of hyper-
relational facts in the dataset leads to even higher
performance boosts. In particular, on WD50K
(100), the H@1 of our hyper-relational model is
higher than the H@10 of the triple baseline. This
difference corresponds to 30 MRR and 32 H@1
points which is about 85% and 123% relative im-
provement, respectively.

Based on the above observations we therefore
conclude, that information in hyper-relational facts
indeed helps to better predict subjects and objects
in the main triples of those facts.

7354

7 Conclusion

We presented STARE, an instance of the message
passing framework for representation learning over
hyper-relational KGs. Experimental results suggest
that STARE performs competitively on link predic-
tion tasks over existing hyper-relational approaches
and greatly outperforms triple-only baselines. In
the future, we aim at applying STARE for node
and graph classification tasks as well as extend our
approach to large-scale KGs.

We also identified significant flaws in existing
link prediction datasets and proposed WD50K, a
novel, Wikidata-based hyper-relational dataset that
is closer to real-world graphs and better captures
the complexity of the link prediction task. In the
future, we plan to enrich WD50K entities with class
labels and probe it against node classification tasks.

Acknowledgments

We thank the Center for Information Services and
High Performance Computing (ZIH) at TU Dres-
den for generous allocations of computer time. We
acknowledge the support of the following projects:
SPEAKER (FKZ 01MK20011A), JOSEPH (Fraun-
hofer Zukunftsstiftung), H2020 Cleopatra (GA
812997), ML2R (FKZ 01 15 18038 A/B/C), ML-
win (01IS18050 D/F), ScaDS (01IS18026A), TAI-
LOR (GA 952215).

References
Farahnaz Akrami, Mohammed Samiul Saeef,

Qingheng Zhang, Wei Hu, and Chengkai Li.
2020. Realistic re-evaluation of knowledge graph
completion methods: An experimental study. CoRR,
abs/2003.08001.

Ivana Balazevic, Carl Allen, and Timothy M.
Hospedales. 2019. Tucker: Tensor factorization for
knowledge graph completion. In EMNLP-IJCNLP
2019, pages 5184–5193.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, page 41–48.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, pages 2787–2795.

Nilesh Chakraborty, Denis Lukovnikov, Gaurav Ma-
heshwari, Priyansh Trivedi, Jens Lehmann, and Asja
Fischer. 2019. Introduction to neural network based

approaches for question answering over knowledge
graphs. CoRR, abs/1907.09361.

William W. Cohen, Haitian Sun, R. Alex Hofer, and
Matthew Siegler. 2020. Scalable neural methods for
reasoning with a symbolic knowledge base. In Inter-
national Conference on Learning Representations.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of
the Thirty-Second AAAI Conference on Artificial In-
telligence, pages 1811–1818.

Mohnish Dubey, Debayan Banerjee, Abdelrahman Ab-
delkawi, and Jens Lehmann. 2019. Lc-quad 2.0: a
large dataset for complex question answering over
wikidata and dbpedia. In International Semantic
Web Conference.

Bahare Fatemi, Perouz Taslakian, David Vazquez, and
David Poole. 2020. Knowledge hypergraphs: Pre-
diction beyond binary relations. In Proceedings of
the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, pages 2191–2197.

Matthias Fey and Jan Eric Lenssen. 2019. Fast
graph representation learning with pytorch geomet-
ric. CoRR, abs/1903.02428.

Johannes Frey, Kay Müller, Sebastian Hellmann, Er-
hard Rahm, and Maria-Esther Vidal. 2019. Evalu-
ation of metadata representations in RDF stores. Se-
mantic Web, 10(2):205–229.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,
Oriol Vinyals, and George E. Dahl. 2017. Neural
message passing for quantum chemistry. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Ma-
chine Learning Research, pages 1263–1272. PMLR.

Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and
Xueqi Cheng. 2019. Link prediction on n-ary re-
lational data. In The World Wide Web Conference,
WWW 2019, pages 583–593.

Olaf Hartig. 2017. Foundations of rdf? and sparql? (an
alternative approach to statement-level metadata in
RDF). In Proceedings of the 11th Alberto Mendel-
zon International Workshop on Foundations of Data
Management and the Web.

Hiroaki Hayashi, Zecong Hu, Chenyan Xiong, and Gra-
ham Neubig. 2019. Latent relation language models.
CoRR, abs/1908.07690.

Ali Ismayilov, Dimitris Kontokostas, Sören Auer, Jens
Lehmann, and Sebastian Hellmann. 2018. Wiki-
data through the eyes of dbpedia. Semantic Web,
9(4):493–503.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and Philip S. Yu. 2020. A survey on knowledge
graphs: Representation, acquisition and applications.
CoRR, abs/2002.00388.

http://arxiv.org/abs/1908.07690

7355

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

Agustinus Kristiadi, Mohammad Asif Khan, Denis
Lukovnikov, Jens Lehmann, and Asja Fischer. 2019.
Incorporating literals into knowledge graph embed-
dings. In The Semantic Web - ISWC 2019, volume
11778 of Lecture Notes in Computer Science, pages
347–363. Springer.

Yu Liu, Quanming Yao, and Yong Li. 2020. Generaliz-
ing tensor decomposition for n-ary relational knowl-
edge bases. In Proceedings of The Web Conference
2020, page 1104–1114.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2017, Copenhagen, Den-
mark, September 9-11, 2017, pages 1506–1515.

Filipe Mesquita, Matteo Cannaviccio, Jordan
Schmidek, Paramita Mirza, and Denilson Bar-
bosa. 2019. Knowledgenet: A benchmark dataset
for knowledge base population. In EMNLP-
IJCNLP 2019, pages 749–758. Association for
Computational Linguistics.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc
Nguyen, and Dinh Q. Phung. 2018. A novel embed-
ding model for knowledge base completion based on
convolutional neural network. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT, pages
327–333.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso A.
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. AAAI Press.

Thomas Pellissier-Tanon, Gerhard Weikum, and
Fabian Suchanek. 2020. Yago 4: A reason-able
knowledge base. In Extended Semantic Web Con-
ference, ESWC 2020.

Paolo Rosso, Dingqi Yang, and Philippe Cudré-
Mauroux. 2020. Beyond triplets: Hyper-relational
knowledge graph embedding for link prediction. In
Proceedings of The Web Conference 2020, page
1885–1896.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter
Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with graph
convolutional networks. In The Semantic Web - 15th

International Conference, ESWC 2018, Heraklion,
Crete, Greece, June 3-7, 2018, Proceedings, pages
593–607.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Compo-
sitionality, pages 57–66.

Ke Tu, Peng Cui, Xiao Wang, Fei Wang, and Wenwu
Zhu. 2018. Structural deep embedding for hyper-
networks. In Proceedings of the 23rd AAAI Confer-
ence on Artificial Intelligence.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and
Partha Talukdar. 2020. Composition-based multi-
relational graph convolutional networks. In Interna-
tional Conference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems NIPS 2017, pages 5998–6008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In 6th Inter-
national Conference on Learning Representations,
ICLR.

Denny Vrandecic and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Quan Wang, Pingping Huang, Haifeng Wang, Songtai
Dai, Wenbin Jiang, Jing Liu, Yajuan Lyu, Yong Zhu,
and Hua Wu. 2019a. Coke: Contextualized knowl-
edge graph embedding. CoRR, abs/1911.02168.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan
Liu, Juanzi Li, and Jian Tang. 2019b. KE-
PLER: A unified model for knowledge embedding
and pre-trained language representation. CoRR,
abs/1911.06136.

Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen,
and Richong Zhang. 2016. On the representation
and embedding of knowledge bases beyond binary
relations. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI 2016, pages 1300–1307.

Wenhan Xiong, Jingfei Du, William Yang Wang, and
Veselin Stoyanov. 2020. Pretrained encyclopedia:
Weakly supervised knowledge-pretrained language
model. In International Conference on Learning
Representations.

7356

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2019. How powerful are graph neural net-
works? In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In 3rd International Conference on Learning
Representations, ICLR 2015.

Richong Zhang, Junpeng Li, Jiajie Mei, and Yongyi
Mao. 2018. Scalable instance reconstruction in
knowledge bases via relatedness affiliated embed-
ding. In The World Wide Web Conference, WWW
2018, pages 1185–1194.

Ruochi Zhang, Yuesong Zou, and Jian Ma. 2020.
Hyper-sagnn: a self-attention based graph neural
network for hypergraphs. In International Confer-
ence on Learning Representations.

7357

A Further details on WD50K

In contrast with Freebase which is no longer sup-
ported nor updated, we choose Wikidata as the
source KG for our dataset since it has an active
community and has seen contributions from various
companies that merge their knowledge with it. Ad-
ditionally, many new NLP tasks (Xiong et al., 2020;
Hayashi et al., 2019; Chakraborty et al., 2019), as
well as datasets (Wang et al., 2019b; Mesquita et al.,
2019; Dubey et al., 2019), are using Wikidata as a
reference KG.

The combined statistics of our dataset are pre-
sented in Table 1. WD50k consists of 47,156 enti-
ties, and 532 relations, amongst which 5,460 enti-
ties and 45 relations are found only within qualifier
(qp, qe) pairs. Fig. 5 illustrates how qualifiers are
distributed among statements, i.e., 236,393 state-
ments (99.9%) contain up to five qualifiers whereas
remaining 114 statements in a long tail contain up
to 20 qualifiers. Fig. 6 illustrates the in-degree dis-

0 1 2 3 4 5 6 7 8 9 101112131516171920

10
1

10
2

10
3

10
4

10
5

st

at
em

en
ts

Figure 5: Number of qualifiers per statement

tribution (with 50 bins, values higher than 1000
are omitted) of the WD50K graph structure where
most of the nodes have in-degrees up to 200.

Recall that we augmented our dataset to reduce
test set leakage by removing all instances from the
train, and validation sets whose main triple (s, p, o)
can be found in the test instances (Sec. 5). Another
form of test leakage, as discovered in (Toutanova
and Chen, 2015), may still persist in our dataset.
To estimate this, we count the instances in the test
set whose main triple’s ”direct” inverse (o, p, s),
or ”semantic” inverse (based on the relation P1696
in Wikidata, i.e., inverse of) is present in the train
set. This amounts to less than 4% (1.6k out of 46k)
instances in the test set.

0 200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

no

de
s

Figure 6: In-degree distribution

B Sparse Representation

Sparse Triple Representation
s Q937
o Q206702
r P69

index k k+1 k+2

Sparse Qualifier Representation
index k k ...
qr P812 P512 ...
qv Q413 Q849697 ...

Figure 7: Sparse representation for hyper-relational
facts. Each fact has a unique integer index k which is
shared between two COO matrices, i.e., the first one is
for main triples, the second one is for qualifiers. Quali-
fiers that belong to the same fact share the index k.

Storing full adjacency matrices of large KGs is
impractical due to O(|V|2) memory consumption.
GNNs encourage using sparse matrix representa-
tions and adopting sparse matrices is shown (Cohen
et al., 2020) to be scalable to graphs with millions
of edges. As illustrated in Figure 7, we employ
two sparse COO matrices to model hyper-relational
KGs. The first COO matrix is of a standard format
with rows containing indices of subjects, objects,
and relations associated with the main triple of a
hyper-relational fact.

In addition, we store index k that uniquely iden-
tifies each fact. The second COO matrix contains
rows of qualifier relations qr and entities qe that
are connected to their main triple (and the overall
hyper-relational fact) through the index k, i.e., if
a fact has several qualifiers those columns corre-
sponding to the qualifiers of the fact will share the
same index k. The overall memory consumption

7358

is therefore O(|E|+ |Q|) and scales linearly to the
total number of qualifiers |Q|. Given that most
open-domain KGs rarely qualify each fact, e.g.,
as of August 2019, out of 734M Wikidata state-
ments approximately 128M (17.4%) have at least
one qualifier, this sparse qualifier representation
saves limited GPU memory.

C Hyperparameters

We tuned the model (STARE encoder with Trans-
former decoder) on the validation set using the
hyperparameters reported in Table 5. Implemen-
tations of mult, ccorr, and rotate functions in φq
and φr correspond to DistMult (Yang et al., 2015),
circular correlation (Nickel et al., 2016), and Ro-
tatE (Sun et al., 2019), respectively.

Table 5: This table reports the major hyperparameters
of our approach, and their corresponding bounds. Note
that ”Trf” refers to Transformers. Selected values are
in bold.

Parameter Value

STARE layers {1, 2}
Embedding dim {100, 200}
Batch size {128, 256, 512}
Learning rate {0.0001, 0.0005, 0.001}
φq mult, ccorr, rotate
φr mult, ccorr, rotate
γ weighted sum concat, mul
Weighted sum α [0.0, 1.0] step 0.1
Quals aggregation sum, mean
Trf layers {1, 2}
Trf hidden dim {256, 512, 768}
Trf heads {2, 4}
StarE dropout {0.1, 0.2, 0.3}
Trf dropout {0.1, 0.2, 0.3}
Label smoothing {0.0, 0.1}

The selected hyperparameters include two
STARE layers, embedding dimension of 200, batch
size of 128, Adam optimizer with 0.0001 learning
rate and 0.1 label smoothing. φr and φq are rotate
functions, γ(·) is a weighted sum function with
α of 0.8, qualifiers are aggregated using a simple
summation, and 0.3 dropout rate. We use 2-layer
Transformer block with the hidden dimension of
512, and 4 attention heads with 0.1 dropout rate
as our decoder. For WD50K and JF17K datasets
we set the maximum length of a hyper-relational
fact to 15 (i.e., a statement can contain at most 6
qualifier pairs), and 7 for WikiPeople.

Infrastructure and Parameters. We train all
models on one Tesla V100 GPU. Due to a large
number of parameters, owing to large trainable em-
bedding matrices, it is advisable to a GPU with
at least 12GB of VRAM. Running STARE (H) +
Transformer (H) models with the selected hyper-
params on WD50K requires approximately 2 days
to train and has 10.8M parameters9; on JF17k the
model has 7.1M parameters and takes about 10
hours to train; on WikiPeople the model has 8.2M
parameters which we run for 500 epochs and takes
about 4 days.

StarE (H) + Transformer (H) models on reduced
datasets: the model corresponding to WD50K (33)
has 9M parameters and takes 20 hours to train
while WD50K model has 6.8M parameters and
takes about 9 hours to train. In case of WD50K
(100), the model has 5M parameters and takes 5
hours to train.

D Decoders

As an additional experiment, we pair STARE with
different decoders and evaluate them over WD50K
datasets. Along with the main reported model de-
noted as StarE + Trf, we implemented two CNN-
based decoders and another Transformer-based de-
coder. All models are trained with the same en-
coder hyperparameters as chosen in the main re-
ported model.

StarE + ConvE relies on the ConvE (Dettmers
et al., 2018)-like decoder but expanded for state-
ments with qualifiers. Given a query (s, r, {(qri,
qvi), ... }), we stack entities and relations em-
beddings row-wise and reshape the tensor into an
image of size H×W . For instance, for a statement
with 6 qualifier pairs, i.e., query length of 14, and
an embedding size of 200, we obtain images of size
40× 70. We then apply a 2D convolutional layer
with a 7 × 7 kernel for each image, apply ReLU,
flatten the resulting tensor, and pass it through a
fully-connected layer. We used 200 filters and the
learning rate was set to 0.001.

StarE + ConvKB is based on the Con-
vKB (Nguyen et al., 2018)-like decoder adjusted
for statements with qualifiers. Given a query (s,
r, {(qri, qvi), ... }), we stack entities and rela-
tions embeddings row-wise and apply a 2D con-
volutional layer with a LQ × 7 kernel, e.g., for
queries of length 14 the kernel size is 14× 7. We
then apply ReLU, flatten the resulting tensor, and

9According to a built-in PyTorch counter.

7359

Table 6: Effect of different decoders on the link prediction task over WD50K, and its variations.

Dataset→ WD50K WD50K (33) WD50K (66) WD50K (100)

Method ↓ MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

STARE + Trf 0.349 0.271 0.496 0.331 0.268 0.451 0.481 0.420 0.594 0.654 0.588 0.777
STARE + ConvE 0.341 0.260 0.496 0.323 0.254 0.456 0.460 0.392 0.590 0.627 0.550 0.772
STARE + ConvKB 0.323 0.241 0.479 0.316 0.247 0.448 0.448 0.377 0.584 0.621 0.544 0.763
STARE + MskTrf 0.341 0.262 0.489 0.324 0.260 0.446 0.479 0.417 0.595 0.649 0.579 0.774

wd50k(100) wd50k(66) wd50k(33) wd50k
dataset

0.0

0.2

0.4

0.6

0.8

va
ls

metric = MRR

wd50k(100) wd50k(66) wd50k(33) wd50k
dataset

metric = H@1

wd50k(100) wd50k(66) wd50k(33) wd50k
dataset

metric = H@5

wd50k(100) wd50k(66) wd50k(33) wd50k
dataset

metric = H@10

sum concat mul

Figure 8: Gamma experiment.

pass it through a fully-connected layer. We used
200 filtersand the learning rate was set to 0.001.

StarE + MskTrf denotes a Transformer decoder
with an explicit [MASK] token at the object po-
sition of each query. Given a query (s, r, {(qri,
qvi), ... }), we extract relevant entities and relation
embeddings and insert the [MASK] token, trans-
forming it into (s, r, [MASK], {(qri, qvi), ... }).
We then pass it through the Transformer layers and
retrieve the representation of the [MASK] token.
Finally, the token representation is passed through
a fully-connected layer. We trained the model with
0.0001 as the learning rate.

Table 6 reports link prediction results on a va-
riety of WD50K datasets with with different de-
coders. The default StarE + Trf decoder generally
attains superior results with biggest gains along
H@1 metric.

E Relation-Qualifiers Aggregation

In this experiment, we measure the impact of the
choice of γ(·) function which is used for aggregat-
ing representations of a relation and its qualifiers
(see Eq. 5). To evaluate its impact we use STARE
(H) + Transformer (H) models, on four WD50K
datasets using three functions, i.e., concatenation
[hr,hq], element-wise multiplication hr � hq, and
weighted sum α� hr + (1− α)� hq where α is
fixed to 0.8.

The results are presented in Fig.8. We find that
all the three settings have similar performance indi-

cating model’s stability with respect to the choice
of γ(·) function.

