
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 7317–7331,
November 16–20, 2020. c©2020 Association for Computational Linguistics

7317

Embedding Words in Non-Vector Space
with Unsupervised Graph Learning

Max Ryabinin1,2 Sergei Popov1,2 Liudmila Prokhorenkova1,2,3 Elena Voita4,5

1Yandex, Russia
2National Research University Higher School of Economics, Russia

3Moscow Institute of Physics and Technology, Russia
4University of Edinburgh, Scotland 5University of Amsterdam, Netherlands

{mryab, sapopov, ostroumova-la, lena-voita}@yandex-team.ru

Abstract

It has become a de-facto standard to represent
words as elements of a vector space (word2vec,
GloVe). While this approach is convenient,
it is unnatural for language: words form a
graph with a latent hierarchical structure, and
this structure has to be revealed and encoded
by word embeddings. We introduce Graph-
Glove: unsupervised graph word representa-
tions which are learned end-to-end. In our set-
ting, each word is a node in a weighted graph
and the distance between words is the short-
est path distance between the corresponding
nodes. We adopt a recent method learning a
representation of data in the form of a differen-
tiable weighted graph and use it to modify the
GloVe training algorithm. We show that our
graph-based representations substantially out-
perform vector-based methods on word simi-
larity and analogy tasks. Our analysis reveals
that the structure of the learned graphs is hier-
archical and similar to that of WordNet, the ge-
ometry is highly non-trivial and contains sub-
graphs with different local topology.1

1 Introduction

Effective word representations are a key compo-
nent of machine learning models for most natu-
ral language processing tasks. The most popu-
lar approach to represent a word is to map it to
a low-dimensional vector (Mikolov et al., 2013b;
Pennington et al., 2014; Bojanowski et al., 2017;
Tifrea et al., 2019). Several algorithms can pro-
duce word embedding vectors with distances or
dot products capturing semantic relationships be-
tween words; the vector representations can be use-
ful for solving numerous NLP tasks such as word
analogy (Mikolov et al., 2013b), hypernymy detec-

1The training algorithm, preprocessing scripts and evalua-
tion benchmarks are available at https://github.com/
yandex-research/graph-glove

tion (Tifrea et al., 2019) or serving as features for
supervised learning problems.

While representing words as vectors may be con-
venient, it is unnatural for language: words form a
graph with a hierarchical structure (Miller, 1995)
that has to be revealed and encoded by unsuper-
vised learned word embeddings. A possible step to-
wards this can be made by choosing a vector space
more similar to the structure of the data: for ex-
ample, a space with hyperbolic geometry (Dhingra
et al., 2018; Tifrea et al., 2019) instead of com-
monly used Euclidean (Mikolov et al., 2013b; Pen-
nington et al., 2014; Bojanowski et al., 2017) was
shown beneficial for several tasks. However, learn-
ing data structure by choosing an appropriate vector
space is likely to be neither optimal nor general-
izable: Gu et al. (2018) argue that not only are
different data better modelled by different spaces,
but even for the same dataset the preferable type
of space may vary across its parts. It means that
the quality of the representations obtained from
vector-based embeddings is determined by how
well the geometry of the embedding space matches
the structure of the data. Therefore, (1) any vector-
based word embeddings inherit limitations imposed
by the structure of the chosen vector space; (2) the
vector space geometry greatly influences the prop-
erties of the learned embeddings; (3) these proper-
ties may be the ones of a space geometry and not
the ones of a language.

In this work, we propose to embed words into a
graph, which is more natural for language. In our
setting, each word is a node in a weighted undi-
rected graph and the distance between words is the
shortest path distance between the corresponding
nodes; note that any finite metric space can be rep-
resented in such a manner. We adopt a recently
introduced method which learns a representation of
data as a weighted graph (Mazur et al., 2019) and
use it to modify the GloVe algorithm for unsuper-

https://github.com/yandex-research/graph-glove
https://github.com/yandex-research/graph-glove

7318

vised word embeddings (Pennington et al., 2014).
The former enables simple end-to-end training by
gradient descent, the latter — learning a graph in
an unsupervised manner. Using the fixed training
regime of GloVe, we vary the choice of a distance:
the graph distance we introduced, as well as the
ones defined by vector spaces: Euclidean (Penning-
ton et al., 2014) and hyperbolic (Tifrea et al., 2019).
This allows for a fair comparison of vector-based
and graph-based approaches and analysis of limita-
tions of vector spaces. In addition to improvements
on a wide range of word similarity and analogy
tasks, analysis of the structure of the learned graphs
suggests that graph-based word representations can
potentially be used as a tool for language analysis.

Our key contributions are as follows:

• we introduce GraphGlove — graph word em-
beddings;

• we show that GraphGlove substantially out-
performs both Euclidean and Poincaré GloVe
on word similarity and word analogy tasks;

• we analyze the learned graph structure and
show that GraphGlove has hierarchical, sim-
ilar to WordNet, structure and highly non-
trivial geometry containing subgraphs with
different local topology.

2 Graph Word Embeddings

For a vocabulary V = {v0, v1, . . . , vn}, we define
graph word embeddings as an undirected weighted
graph G(V,E,w). In this graph,

◦ V is a set of vertices corresponding to the
vocabulary words;

◦ E={e0, e1, . . . , em} is a set of edges:
ei=e(vsrci , vdsti), vsrci , vdsti ∈ V ;

◦ w(ei) are non-negative edge weights.

When embedding words as vectors, the distance
between words is defined as the distance between
their vectors; the distance function is inherited
from the chosen vector space (usually Euclidean).
For graph word embeddings, the distance between
words is defined as the shortest path distance be-
tween the corresponding nodes of the graph:

dG(vi, vj) = min
π∈ΠG(vi,vj)

∑
ek∈π

w(ek), (1)

where ΠG(vi, vj) is the set of all paths from vi to
vj over the edges of G.

To learn graph word embeddings, we use a re-
cently introduced method for learning a representa-
tion of data in a form of a weighted graph (Mazur
et al., 2019) and modify the training procedure
of GloVe (Pennington et al., 2014) for learning
unsupervised word embeddings. We give neces-
sary background in Section 2.1 and introduce our
method, GraphGlove, in Section 2.2.

2.1 Background
2.1.1 Learning Weighted Graphs
PRODIGE (Mazur et al., 2019) is a method for
learning a representation of data in a form of a
weighted graph G(V,E,w). The graph requires
(i) inducing a set of edges E from the data and (ii)
learning edge weights. To induce a set of edges, the
method starts from some sufficiently large initial
set of edges and, along with edge weights, learns
which of the edges can be removed from the graph.
Formally, it learnsG(V,E,w, p), where in addition
to a weight w(ei), each edge ei has an associated
Bernoulli random variable bi ∼ Bern(p(ei)); this
variable indicates whether an edge is present in G
or not. For simplicity, all random variables bi are
assumed to be independent and the joint probability
of all edges in the graph can be written as p(G) =∏m
i=0 p(ei). Since each edge is present in the graph

with some probability, the distance is reformulated
as the expected shortest path distance:

d(vi, vj) = E
G∼p(G)

dG(vi, vj) =

= E
G∼p(G)

min
π∈ΠG(vi,vj)

∑
ei∈π

w(ei), (2)

where dG(vi, vj) is computed efficiently using Di-
jkstra’s algorithm. The probabilities p(ei) are
used only in training; at test time, edges with
probabilities less than 0.5 are removed, and the
graph G(V,E,w, p) can be treated as a determinis-
tic graph G(V,E,w).

Training. Edge probabilities p(ei) = pθ(ei) and
weights w(ei) = wθ(ei) are learned by minimizing
the following training objective:

R(θ) = E
G∼p(G)

[L(G, θ)] +λ· 1

|E|

|E|∑
i=1

pθ(ei). (3)

Here L(G, θ) is a task-specific loss, and
1
|E|
∑|E|

i=1 pθ(ei) is the average probability of an
edge being present. The second term is the L0 reg-
ularizer on the number of edges, which penalizes
edges for being present in the graph. Training with

7319

such regularization results in a graph where an edge
becomes either redundant (with probability close
to 0) or important (with probability close to 1).

To propagate gradients through the second
term in (3), the authors use the log-derivative
trick (Glynn, 1990) and Monte-Carlo estimate of
the resulting gradient; when sampling, they also ap-
ply a heuristic to reduce variance. For more details
on the optimization procedure, we refer the reader
to the original paper (Mazur et al., 2019).

Initialization. An important detail is that train-
ing starts not from the set of all possible edges for
a given set of vertices, but from a chosen subset;
this subset is constructed using task-specific heuris-
tics. The authors restrict training to a subset of
edges to make it feasible for large datasets: while
the number of all edges in a complete graph scales
quadratically to the number of vertices, the initial
subset can be constructed to scale linearly with the
number of vertices.

2.1.2 GloVe
GloVe (Pennington et al., 2014) is an unsupervised
method which learns word representations directly
from the global corpus statistics. Each word vi in
the vocabulary V is associated with two vectors wi
and w̃i; these vectors are learned by minimizing

J=

|V |∑
i,j=1

f(Xi,j)(w
T
i w̃j+bi+b̃j−logXi,j)

2. (4)

Here Xi,j is the co-occurrence between words
vi and vj ; bi and b̃j are trainable word biases,
and f(Xi,j) is a weight function: f(Xi,j) =

min(1, [
Xi,j

xmax
]α) with xmax = 100 and α = 3/4.

The original GloVe learns embeddings in the Eu-
clidean space; Poincaré GloVe (Tifrea et al., 2019)
adapts this training procedure to hyperbolic vector
spaces. This is done by replacing wTi w̃j in for-
mula (4) with −h(d(wi, w̃j)), where d(wi, w̃j) is
a distance in the hyperbolic space, and h is either
h(d) = d2 or h(d) = cosh2(d) (see Table 1).

2.2 Our Approach: GraphGlove
We learn graph word embeddings within the gen-
eral framework described in Section 2.1.1. There-
fore, it is sufficient to (i) define a task-specific
loss L(G, θ) in formula (3), and (ii) specify the
initial subset of edges.

2.2.1 Loss function
We adopt GloVe training procedure and learn edge
weights and probabilities directly from the co-

“�” in the loss term
f(Xi,j)(� +bi+b̃j−logXi,j)

2

Euclidean
wTi w̃j

Poincaré
d2 −d2(wi, w̃j)
cosh2 d − cosh2 (d(wi, w̃j))

Graph
d −dG(vi, vj)
〈·, ·〉 1

2

(
−d2

G(vi, vj)+d2
G(vi, 0)+d2

G(vj , 0)
)

Table 1: Original GloVe loss and several extensions.
For Poincaré GloVe, d is distance in the hyperbolic
space; for GraphGlove, d is the shortest path distance.

occurrence matrix X . We define L(G, θ) by modi-
fying formula (4) for weighted graphs:

1. replace wTi w̃j with either graph distance or
graph dot product as shown in Table 1 (see
details below);

2. since we learn one representation for each
word in contrast to two representations
learned by GloVe, we set b̃j = bj .

Distance. We want negative distance between
nodes in a graph to reflect similarity between the
corresponding words; therefore, it is natural to re-
place wTi w̃j with the graph distance. The resulting
loss L(G, θ) is:
|V |∑
i,j=1

f(Xi,j)(−dG(vi, vj)+bi+bj−logXi,j)
2. (5)

Dot product. A more honest approach would be
replacing dot product wTi w̃j with a “dot product”
on a graph. To define dot product of nodes in a
graph, we first express the dot product of vectors
in terms of distances and norms. Let wi, wj be
vectors in a Euclidean vector space, then

||wi − wj ||2 = ||wi||2+||wj ||2−2wTi wj , (6)

wTiwj =
1

2

(
||wi||2+||wj ||2−||wi−wj ||2

)
. (7)

Now it is straightforward to define the dot product2

of nodes in our weighted graph:

〈vi, vj〉=
1

2

(
d2(vi,0)+d2(vj ,0)−d2(vi, vj)

)
, (8)

2Note that our “dot product” for graphs does not have
properties of dot product in vector spaces; e.g., linearity by
arguments.

7320

where d(vi, vj) is the shortest path distance.
Note that dot product (8) contains distances to a

zero element; thus in addition to word nodes, we
also need to add an extra “zero” node in a graph.
This is not necessary for the distance loss (5), but
we add this node anyway to have a unified setting;
a model can learn to use this node to build paths
between other nodes.

All loss functions are summarized in Table 1.

2.2.2 Initialization

We initialize the set of edges by connecting each
word with itsK nearest neighbors andM randomly
sampled words. The nearest neighbors are com-
puted as closest words in the Euclidean GloVe em-
bedding space,3 random words are sampled uni-
formly from the vocabulary.

We initialize biases bi from the normal distribu-
tion N (0, 0.01), edge weights by the cosine sim-
ilarity between the corresponding GloVe vectors,
and edge probabilities with 0.9.

3 Experimental Setup

3.1 Baselines

Our baselines are Euclidean GloVe (Pennington
et al., 2014) and Poincaré GloVe (Tifrea et al.,
2019); for both, we use the original implemen-
tation4 with recommended hyperparameters. We
chose these models to enable a comparison of our
graph-based method and two different vector-based
approaches within the same training scheme.

3.2 Corpora and Preprocessing

We train all embeddings on Wikipedia 2017 cor-
pus. To improve the reproducibility of our results,
we (1) use a standard publicly available Wikipedia
snapshot from gensim-data5, (2) process the
data with standard GenSim Wikipedia tokenizer6.
Also, we release preprocessing scripts and the re-
sulting corpora as a part of the supplementary code.

3In preliminary experiments, we also used as nearest neigh-
bors the words which have the largest pointwise mutual infor-
mation (PMI) with the current one. However, such models
have better loss but worse quality on downstream tasks, e.g.
word similarity.

4Euclidean GloVe: https://nlp.stanford.
edu/projects/glove/, Poincaré GloVe: https:
//github.com/alex-tifrea/poincare_glove.

5https://github.com/RaRe-Technologies/
gensim-data , dataset wiki-english-20171001

6gensim.corpora.wikicorpus.tokenize , commit de0dcc3

3.3 Setup
We compare embeddings with the same vocabu-
lary and number of parameters per token. For
vector-based embeddings, the number of parame-
ters equals vector dimensionality. For GraphGlove,
we compute number of parameters per token as pro-
posed by Mazur et al. (2019): (|V |+2·|E|)/|V |. To
obtain the desired number of parameters in Graph-
Glove, we initialize it with several times more
parameters and train it with L0 regularizer until
enough edges are dropped (see Section 2.2).

We consider two vocabulary sizes: 50k and 200k.
For 50k vocabulary, the models are trained with
either 20 or 100 parameters per token; for 200k
vocabulary — with 20 parameters per token. For
initialization of GraphGlove with 20 parameters
per token we set K = 64, M = 10; for a model
with 100 parameters per token, K = 480, M = 32.

In preliminary experiments, we discovered that
increasing bothK andM leads to better final repre-
sentations at a cost of slower convergence; decreas-
ing the initial graph size results in lower quality and
faster training. However, starting with no random
edges (i.e. M = 0) also slows convergence down.

3.4 Training
Similarly to vectorial embeddings, GraphGlove
learns to minimize the objective (either distance or
dot product) by minibatch gradient descent. How-
ever, doing so efficiently requires a special graph-
aware batching strategy. Namely, a batch has to
contain only a small number of rows with poten-
tially thousands of columns per row. This strategy
takes advantage of the Dijkstra algorithm: a sin-
gle run of the algorithm can find the shortest paths
between a single source and multiple targets. For-
mally, one training step is as follows:

1. we choose b = 64 unique “anchor” words;
2. sample up to n = 104 words that co-occur

with each of b “anchors”;
3. multiply the objective by importance sampling

weights to compensate for non-uniform sam-
pling strategy.7

This way, a single training iteration with b ·n batch
size requires only O(b) runs of Dijkstra algorithm.

7Let X be the co-occurrence matrix. Then for a pair of
words (vi, vj), an importance sampling weight is pi,j

qi,j
, where

pi,j = 1
|{(k,l):Xk,l 6=0}| is the probability to choose a pair (vi,

vj) in the original GloVe, qi,j = 1
|V | ·

1
|{k:Xi,k 6=0}| is the

probability to choose this pair in our sampling strategy.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/alex-tifrea/poincare_glove
https://github.com/alex-tifrea/poincare_glove
https://github.com/RaRe-Technologies/gensim-data
https://github.com/RaRe-Technologies/gensim-data

7321

SCWS WS353 RW SL SV

Euclidean
54.0 46.1 31.4 20.1 8.7

Poincaré
d2 45.5 41.0 33.7 23.0 10.9
cosh2 d 53.5 51.3 36.1 23.5 11.6

Graph
d 56.2 56.7 37.2 30.4 10.3
〈·, ·〉 53.4 58.6 35.5 30.0 14.4

Table 2: Spearman rank correlation on word similarity
tasks; best is bold, second best is underlined. 50k vo-
cabulary, 20 parameters per token. Results for other
setups can be found in the supplementary material.

After computing the gradients for a mini-
batch, we update GraphGlove parameters us-
ing Adam (Kingma and Ba, 2014) with learn-
ing rate α=0.01 and standard hyperparameters
(β1=0.9, β2=0.999).

It took us less than 3.5 hours on a 32-core CPU
to train GraphGlove on 50k tokens until conver-
gence. This is approximately 3 times longer than
Euclidean GloVe in the same setting.

4 Experiments

In the main text, we report results for 50k vocab-
ulary with 20 parameters per token. Results for
other settings, as well as the standard deviations,
can be found in the supplementary material.

4.1 Word Similarity

To measure similarity of a pair of words, we use co-
sine distance for Euclidean GloVe, the hyperbolic
distance for Poincaré GloVe and the shortest path
distance for GraphGlove. In the main experiments,
we exclude pairs with out-of-vocabulary (OOV)
words. In the supplementary material, we also pro-
vide results with inferred distances for OOV words.

We evaluate word similarity on standard bench-
marks: WS353, SCWS, RareWord, SimLex and
SimVerb. These benchmarks evaluate Spearman
rank correlation of human-annotated similarities
between pairs of words and model predictions8.
Table 2 shows that GraphGlove outperforms vector-
based embeddings by a large margin.

8We use standard evaluation code
from https://github.com/kudkudak/
word-embeddings-benchmarks

4.2 Word Analogy

Analogy prediction is a standard method for eval-
uation of word embeddings. This task typically
contains tuples of 4 words: (a, a∗, b, b∗) such that
a is to a∗ as b is to b∗. The model is tasked to
predict b∗ given the other three words: for example,
“a = Athens is to a∗ = Greece as b = Berlin
is to b∗ = (Germany)”. Models are com-
pared based on accuracy of their predictions across
all tuples in the benchmark.

Datasets. We use two test sets: standard bench-
marks (Mikolov et al., 2013b,c) and the Bigger
Analogy Test Set (BATS) (Gladkova et al., 2016).

The standard benchmarks contain Google anal-
ogy (Mikolov et al., 2013a) and MSR (Mikolov
et al., 2013c) test sets. MSR test set contains only
morphological category; Google test set contains 9
morphological and 5 semantic categories, with 20 –
70 unique word pairs per category combined in all
possible ways to yield 8,869 semantic and 10,675
syntactic questions. Unfortunately, these test sets
are not balanced in terms of linguistic relations,
which may lead to overestimation of analogical rea-
soning abilities as a whole (Gladkova et al., 2016).9

The Bigger Analogy Test Set (BATS) (Gladkova
et al., 2016) contains 40 linguistic relations, each
represented with 50 unique word pairs, making up
99,200 questions in total. In contrast to the stan-
dard benchmarks, BATS is balanced across four
groups: inflectional and derivational morphology,
and lexicographic and encyclopedic semantics.

Evaluation. Euclidean GloVe solves analogies
by maximizing the 3COSADD score:

b∗= argmax
b̂∈V \{a∗,a,b}

(
cos(b̂, a∗)− cos(b̂, a)+ cos(b̂, b)

)
.

We adapt this for GraphGlove by substituting
cos(x, y) with a graph-based similarity function.
As a simple heuristic, we define the similarity be-
tween two words as the correlation of vectors con-
sisting of distances to all words in the vocabulary:

~dG(x) = (dG(x, v0), ..., dG(x, vN))

simG(x, y) := corr(~dG(x), ~dG(y))

This function behaves similarly to the cosine sim-
ilarity: its values are from -1 to 1, with unrelated

9For example, 56.7% of semantic questions in the Google
dataset exploit the same capital:country relation, and the MSR
dataset only concerns morphological relations.

https://github.com/kudkudak/word-embeddings-benchmarks
https://github.com/kudkudak/word-embeddings-benchmarks

7322

Sem. Syn. Full MSR

Euclidean
30.8 20.9 25.2 15.5

Poincaré
d2 31.5 20.3 25.4 19.7
cosh2 d 30.5 16.9 23.1 18.1

Graph
d 31.3 20.5 25.4 16.1
〈·, ·〉 33.0 24.2 28.2 21.7

Table 3: Accuracy word analogy tasks; best is bold, sec-
ond best is underlined. 50k vocabulary, 20 parameters
per token. Results for other setups can be found in the
supplementary material. (SEM., SYN. and FULL are
Google benchmarks (Mikolov et al., 2013a)).

words having similarity close to 0 and semantically
close words having similarity close to 1. Another
alluring property of simG(x, y) is efficient compu-
tation: we can get full distance vector ~dG(x) with
a single pass of Dijkstra’s algorithm.

We use simG(x, y) to solve the analogy task in
GraphGlove:

b∗= argmax
b̂∈V \{a∗,a,b}

(
sim(b̂, a∗)−sim(b̂, a)+sim(b̂, b)

)
.

For details on how Poincaré GloVe solves the
analogy problem, we refer the reader to the original
paper (Tifrea et al., 2019).

Results. GraphGlove shows substantial improve-
ments over vector-based baselines (Tables 3 and 4).
Note that for Poincaré GloVe, the best-performing
loss functions for the two tasks are different
(cosh2 d for similarity and d2 for analogy), and
there is no setting where Poincaré GloVe outper-
forms Euclidean Glove on both tasks. While for
GraphGlove best-performing loss functions also
vary across tasks, GraphGlove with the dot product
loss outperforms all vector-based embeddings on
10 out of 13 benchmarks (both analogy and simi-
larity). This shows that when removing limitations
imposed by the geometry of a vector space, embed-
dings can better reflect the structure of the data. We
further confirm this by analyzing the properties of
the learned graphs in Section 5.

5 Learned Graph Structure

In this section, we analyze the graph structure
learned by our method and reveal its differences
from the structure of vector-based embeddings.

Inf. Der. Lex. Enc.

Euclidean
14.3 2.1 18.3 3.7

Poincaré
d2 14.8 2.3 18.9 4.3
cosh2 d 15.7 2.4 19.2 4.4

Graph
d 15.9 2.3 19.3 4.6
〈·, ·〉 16.9 2.2 20.6 5.4

Table 4: Spearman rank correlation on BATS word
analogy dataset; best is bold, second best is underlined.
50k vocabulary, 20 parameters per token.

We compare graph GG learned by Graph-
Glove (d) with graphs GE and GP induced from
Euclidean and Poincaré (cosh2 d) embeddings re-
spectively.10 For vector embeddings, we consider
two methods of graph construction:

1. THR – connect two nodes if they are closer
than some threshold τ ,

2. KNN – connect each node to its K nearest
neighbors and combine multiple edges.

The values τ andK are chosen to have similar edge
density for all graphs.11

We find that in contrast to the graphs induced
from vector embeddings:

• in GraphGlove frequent and generic words are
highly interconnected;

• GraphGlove has hierarchical, similar to Word-
Net, structure;

• GraphGlove has non-trivial geometry contain-
ing subgraphs with different local topology.

5.1 Important words

Here we identify which words correspond to “cen-
tral” (or important) nodes in different graphs; we
consider several notions of node centrality fre-
quently used in graph theory. Note that in this
section, by word importance we mean graph-based
properties of nodes (e.g. the number of neighbors),
and not semantic importance (e.g., high importance
for content words and low for function words).

10We take the same models as in Section 4.
11Namely, K = 13 and τ = 0.112 for Euclidean GloVe,

K = 13 and τ = 0.444 for Poincaré Glove.

7323

Graph

Poincaré KNN

Poincaré THR

Euclidean KNN

Euclidean THR

0.28

0.41

0.35

0.41

0.33

0.20

0.34

0.43

0.36

0.62

0.14

0.12

0.12

0.11

0.14

0.853

0.450

0.488

0.499

0.958

Average freq.

percentile

NN

NNP

ADV

ADJ

VERB

IN

Other

Figure 1: Top-200 words, the degree centrality. POS
distribution and the average frequency percentile.

Graph

Poincaré KNN

Poincaré THR

Euclidean KNN

Euclidean THR

0.12

0.45

0.39

0.31

0.31

0.32

0.38

0.66

0.65

0.26 0.14

0.12

0.12

0.21 0.14 0.11

0.867

0.894

0.516

0.477

0.979

Average freq.

percentile

NN

NNP

ADV

ADJ

VERB

IN

Other

Figure 2: Top-200 words, the eigenvector centrality.
POS distribution and the average frequency percentile.

Degree centrality. The simplest measure of node
importance is its degree. For the top 200 nodes
with the highest degree, we show the distribution
of parts of speech and the average frequency per-
centile (higher means more frequent words). Fig-
ure 1 shows that for all vector-based graphs, the
top contains a significant fraction of proper nouns
and nouns. For GG, distribution of parts of speech
is more uniform and the words are more frequent.
We provide the top words and all subsequent im-
portance measures in the supplementary material.

Eigenvector centrality. A more robust measure
of node importance is the eigenvector central-
ity (Bonacich, 1987). This centrality takes into
account not only the degree of a node but also
the importance of its neighbors: a high eigenvec-
tor score means that a node is connected to many
nodes who themselves have high scores.

Figure 2 shows that for GG the top changes in
a principled way: the average frequency increases,
proper nouns almost vanish, many adverbs, prepo-
sitions, linking and introductory words appear (e.g.,
‘well’, ‘but’, ‘in’, ‘that’).12 For GG, the top con-
sists of frequent generic words; this agrees with the
intuitive understanding of importance. Differently
fromGG, top words forGE andGP have lower fre-
quencies, fewer adverbs and prepositions. This can
be because it is hard to make generic words from
different areas close for vector-based embeddings,
while GraphGlove can learn arbitrary connections.

12See the words in the supplementary material.

size k

Euclidean 275 198
Poincaré 235 156
Graph 197 21

Table 5: The main core size and its k value. For vector-
based embeddings, the THR graphs are shown (by con-
struction, the main core of a KNN graph is trivial).

k-core. To further support this claim, we looked
at the main k-core of the graphs. Formally, k-core
is a maximal subgraph that contains nodes of de-
gree k or more; the main core is non-empty core
with the largest k. Table 5 shows the sizes of the
main cores and the corresponding values of k. Note
that the maximum k is much smaller for GG; a pos-
sible explanation is that the cores in GE and GP
are formed by nodes in highly dense regions of
space, while in GG the most important nodes in
different parts can be interlinked together.

5.2 The Structure is Hierarchical

In this section, we show that the structure of our
graph reflects the hierarchical nature of words. We
do so by comparing the structure learned by Graph-
Glove to the noun hierarchy from WordNet. To
extract hierarchy from GG, we (1) take all (lemma-
tized) nouns in our dataset which are also present
in WordNet (22.5K words), (2) take the root noun
‘entity’ (which is the root of the WordNet tree), and
(3) construct the hierarchy: the k-th level is formed
by all nodes at edge distance k from the root.

We consider two ways of measuring the agree-
ment between the hierarchies: word correlation and
level correlation. Word correlation is Spearman’s
rank correlation between the vectors of levels for
all nouns. Level correlation is Spearman’s rank
correlation between the vectors l and lavg, where li
is the level in WordNet tree and lavgi is the average
level of li’s words in our hierarchy.

We performed these measurements for all graphs
(see Table 6).13 We see that, according to both
correlations, GG is in better agreement with the
WordNet hierarchy.

5.3 The Geometry is Non-trivial

In contrast to vector embeddings, graph-based rep-
resentations are not constrained by a vector space

13The low performance of threshold-based graphs can be
explained by the fact that they are highly disconnected (we
assume that all nodes which are not connected to the root form
the last level).

7324

(a) δ ≈ 0 (b) δ ≈ 0.15 (c) δ ≈ 0.35

Figure 3: Examples of clusters with various δ-hyperbolicities. For more interactive cluster visualizations, visit
https://yandex-research.github.io/graph-glove/

Word Level
correlation correlation

Euclidean THR 0.016 0.118
KNN 0.149 0.539

Poincaré THR 0.018 0.122
KNN 0.124 0.094

Graph 0.199 0.650

Table 6: Correlations of hierarchies extracted from
graphs and WordNet levels.

geometry and potentially can imitate arbitrarily
complex spaces. Here we confirm that the geome-
try learned by GraphGlove is indeed non-trivial.

We cluster GG using the Chinese Whispers algo-
rithm for graph node clustering (Biemann, 2006)
and measure Gromov δ-hyperbolicity for each clus-
ter. Gromov hyperbolicity measures how close is a
given metric to a tree metric (see, e.g., Tifrea et al.
(2019) for the formal definition) and has previously
been used to show the tree-like structure of the
word log-co-occurrence graph (Tifrea et al., 2019).
Low average δ indicates tree-like structure with δ
being exactly zero for trees; δ is usually normalized
by the average shortest path length to get a value
invariant to metric scaling.

Figure 4 shows the distribution of average δ-
hyperbolicity for clusters of size at least 10. Firstly,
we see that for many clusters the normalized aver-
age δ-hyperbolicity is close to zero, which agrees
with the intuition that some words form a hierarchy.
Secondly, δ-hyperbolicity varies significantly over
the clusters and some clusters have relatively large
values; it means that these clusters are not tree-like.
Figure 3 shows examples of clusters with different
values of δ-hyperbolicity: both tree-like (Figure 3a)
and more complicated (Figure 3b-c).

6 Related Work

Word embedding methods typically represent
words as vectors in a low-dimensional space; usu-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2δavg/davg

0.00

0.05

0.11

0.16

0.21

0.26

0.32

F
re

q
u

en
cy

Figure 4: Distribution of cluster δ-hyperbolicities, nor-
malized by the average shortest path length in a cluster.

ally, the vector space is Euclidean (Mikolov et al.,
2013b; Pennington et al., 2014; Bojanowski et al.,
2017), but recently other spaces, e.g. hyperbolic,
have been explored (Leimeister and Wilson, 2018;
Dhingra et al., 2018; Tifrea et al., 2019). However,
vectorial embeddings can have undesired proper-
ties: e.g., in dot product spaces certain words can-
not be assigned high probability regardless of their
context (Demeter et al., 2020). A conceptually
different approach is to model words as probabil-
ity density functions (Vilnis and McCallum, 2015;
Athiwaratkun and Wilson, 2017; Bražinskas et al.,
2018; Muzellec and Cuturi, 2018; Athiwaratkun
and Wilson, 2018). We propose a new setting: em-
bedding words as nodes in a weighted graph.

Representing language data in the form of a
graph has been a long-standing task (Miller, 1995;
Motter et al., 2002; Cancho and Solé, 2001; Niyogi,
2006; Masucci and Rodgers, 2006). Graph lexicons
were used to learn word embeddings specialized to-
wards certain types of lexical knowledge (Nguyen
et al., 2017; Vulić and Mrkšić, 2018; Liu et al.,
2015; Ono et al., 2015; Mrkšić et al., 2017; Bolle-
gala et al., 2016). It is also possible to incorporate
external linguistic information from graphs, e.g.
dependency parser outputs (Vashishth et al., 2018).

To learn a weighted graph, we use the method
by Mazur et al. (2019). Prior approaches to learn-
ing graphs from data are eigher highly problem-
specific and not scalable Escolano and Hancock
(2011); Karasuyama and Mamitsuka (2017); Kang
et al. (2019) or solve a less general but important

https://yandex-research.github.io/graph-glove/

7325

case of learning directed acyclic graphs (Zheng
et al., 2018; Yu et al., 2019). The opposite to learn-
ing a graph from data is the task of embedding
nodes in a given graph to reflect graph distances
and/or other properties; see Hamilton et al. (2017)
for a thorough survey.

Analysis of word embeddings and the structure
of the learned feature space often reveals interest-
ing language properties and is an important re-
search direction (Köhn, 2015; Bolukbasi et al.,
2016; Mimno and Thompson, 2017; Nakashole and
Flauger, 2018; Naik et al., 2019; Ethayarajh et al.,
2019). We show that graph-based embeddings can
be a powerful tool for language analysis.

7 Conclusions

We introduce GraphGlove — graph word embed-
dings, where each word is a node in a weighted
graph and the distance between words is the short-
est path distance between the corresponding nodes.
The graph is learned end-to-end in an unsupervised
manner. We show that GraphGlove substantially
outperforms both Euclidean and Poincaré GloVe
on word similarity and word analogy tasks. Our
analysis reveals that the structure of the learned
graphs is hierarchical and similar to that of Word-
Net; the geometry is highly non-trivial and contains
subgraphs with different local topology.

Possible directions for future work include us-
ing GraphGlove for unsupervised hypernymy de-
tection, analyzing undesirable word associations,
comparing learned graph topologies for different
languages, and downstream applications such as
sequence classification. Also, given the recent suc-
cess of models such as ELMo and BERT, it would
be interesting to explore extensions of GraphGlove
to the class of contextualized embeddings.

Acknowledgments

We would like to thank Artem Babenko for inspir-
ing the authors to work on this paper. We also thank
the anonymous reviewers for valuable feedback.

References

Ben Athiwaratkun and Andrew Wilson. 2017. Mul-
timodal word distributions. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1645–1656, Vancouver, Canada. Association
for Computational Linguistics.

Ben Athiwaratkun and Andrew Gordon Wilson. 2018.
On modeling hierarchical data via probabilistic or-
der embeddings. In International Conference on
Learning Representations.

Chris Biemann. 2006. Chinese whispers: an efficient
graph clustering algorithm and its application to nat-
ural language processing problems. In Proceedings
of the first workshop on graph based methods for nat-
ural language processing, pages 73–80. Association
for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Danushka Bollegala, Mohammed Alsuhaibani,
Takanori Maehara, and Ken-ichi Kawarabayashi.
2016. Joint word representation learning using a
corpus and a semantic lexicon. In Thirtieth AAAI
Conference on Artificial Intelligence.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In Ad-
vances in neural information processing systems,
pages 4349–4357.

Phillip Bonacich. 1987. Power and centrality: A fam-
ily of measures. American journal of sociology,
92(5):1170–1182.

Arthur Bražinskas, Serhii Havrylov, and Ivan Titov.
2018. Embedding words as distributions with a
Bayesian skip-gram model. In Proceedings of the
27th International Conference on Computational
Linguistics, pages 1775–1789, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Ramon Ferrer I Cancho and Richard V Solé. 2001. The
small world of human language. Proceedings of the
Royal Society of London. Series B: Biological Sci-
ences, 268(1482):2261–2265.

David Demeter, Gregory Kimmel, and Doug Downey.
2020. Stolen probability: A structural weakness of
neural language models.

Bhuwan Dhingra, Christopher Shallue, Mohammad
Norouzi, Andrew Dai, and George Dahl. 2018. Em-
bedding text in hyperbolic spaces. In Proceedings
of the Twelfth Workshop on Graph-Based Methods
for Natural Language Processing (TextGraphs-12),
pages 59–69, New Orleans, Louisiana, USA. Asso-
ciation for Computational Linguistics.

Francisco Escolano and Edwin R Hancock. 2011.
From points to nodes: Inverse graph embedding
through a lagrangian formulation. In International
Conference on Computer Analysis of Images and
Patterns, pages 194–201. Springer.

https://doi.org/10.18653/v1/P17-1151
https://doi.org/10.18653/v1/P17-1151
https://openreview.net/forum?id=HJCXZQbAZ
https://openreview.net/forum?id=HJCXZQbAZ
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings.pdf
https://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings.pdf
https://www.aclweb.org/anthology/C18-1151
https://www.aclweb.org/anthology/C18-1151
http://arxiv.org/abs/2005.02433
http://arxiv.org/abs/2005.02433
https://doi.org/10.18653/v1/W18-1708
https://doi.org/10.18653/v1/W18-1708

7326

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst.
2019. Understanding undesirable word embedding
associations. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1696–1705, Florence, Italy. Associa-
tion for Computational Linguistics.

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat-
suoka. 2016. Analogy-based detection of morpho-
logical and semantic relations with word embed-
dings: What works and what doesn’t. In Proceed-
ings of the NAACL-HLT SRW, pages 47–54, San
Diego, California, June 12-17, 2016. ACL.

Peter W Glynn. 1990. Likelihood ratio gradient estima-
tion for stochastic systems. Communications of the
ACM.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher
Ré. 2018. Learning mixed-curvature representations
in product spaces. In International Conference on
Learning Representations.

William L Hamilton, Rex Ying, and Jure Leskovec.
2017. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584.

Zhao Kang, Haiqi Pan, Steven CH Hoi, and Zenglin Xu.
2019. Robust graph learning from noisy data. IEEE
transactions on cybernetics.

Masayuki Karasuyama and Hiroshi Mamitsuka. 2017.
Adaptive edge weighting for graph-based learning
algorithms. Machine Learning, 106(2):307–335.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Arne Köhn. 2015. What’s in an embedding? analyzing
word embeddings through multilingual evaluation.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2067–2073, Lisbon, Portugal. Association for Com-
putational Linguistics.

Matthias Leimeister and Benjamin J Wilson. 2018.
Skip-gram word embeddings in hyperbolic space.
arXiv preprint arXiv:1809.01498.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and
Yu Hu. 2015. Learning semantic word embeddings
based on ordinal knowledge constraints. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1501–1511,
Beijing, China. Association for Computational Lin-
guistics.

Adolfo Paolo Masucci and Geoff J Rodgers. 2006. Net-
work properties of written human language. Physi-
cal Review E, 74(2):026102.

Denis Mazur, Vage Egiazarian, Stanislav Morozov, and
Artem Babenko. 2019. Beyond vector spaces: Com-
pact data representation as differentiable weighted
graphs. In NeurIPS, Vancouver, Canada.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia. Association for Computational Linguistics.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

David Mimno and Laure Thompson. 2017. The strange
geometry of skip-gram with negative sampling. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
2873–2878, Copenhagen, Denmark. Association for
Computational Linguistics.

Adilson E Motter, Alessandro PS De Moura, Ying-
Cheng Lai, and Partha Dasgupta. 2002. Topology
of the conceptual network of language. Physical Re-
view E, 65(6):065102.

Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira
Leviant, Roi Reichart, Milica Gašić, Anna Korho-
nen, and Steve Young. 2017. Semantic specializa-
tion of distributional word vector spaces using mono-
lingual and cross-lingual constraints. Transactions
of the Association for Computational Linguistics,
5:309–324.

Boris Muzellec and Marco Cuturi. 2018. Generalizing
point embeddings using the wasserstein space of el-
liptical distributions. In Advances in Neural Infor-
mation Processing Systems, pages 10237–10248.

Aakanksha Naik, Abhilasha Ravichander, Carolyn
Rose, and Eduard Hovy. 2019. Exploring numeracy
in word embeddings. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3374–3380, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ndapa Nakashole and Raphael Flauger. 2018. Charac-
terizing departures from linearity in word translation.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 221–227, Melbourne, Aus-
tralia. Association for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1166
https://doi.org/10.18653/v1/P19-1166
https://doi.org/10.18653/v1/N16-2002
https://doi.org/10.18653/v1/N16-2002
https://doi.org/10.18653/v1/N16-2002
https://openreview.net/pdf?id=HJxeWnCcF7
https://openreview.net/pdf?id=HJxeWnCcF7
https://arxiv.org/abs/1709.05584
https://arxiv.org/abs/1709.05584
https://doi.org/10.18653/v1/D15-1246
https://doi.org/10.18653/v1/D15-1246
https://arxiv.org/abs/1809.01498
https://doi.org/10.3115/v1/P15-1145
https://doi.org/10.3115/v1/P15-1145
https://arxiv.org/abs/1910.03524
https://arxiv.org/abs/1910.03524
https://arxiv.org/abs/1910.03524
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.aclweb.org/anthology/N13-1090
https://www.aclweb.org/anthology/N13-1090
https://doi.org/10.18653/v1/D17-1308
https://doi.org/10.18653/v1/D17-1308
https://doi.org/10.1162/tacl_a_00063
https://doi.org/10.1162/tacl_a_00063
https://doi.org/10.1162/tacl_a_00063
https://papers.nips.cc/paper/8226-generalizing-point-embeddings-using-the-wasserstein-space-of-elliptical-distributions
https://papers.nips.cc/paper/8226-generalizing-point-embeddings-using-the-wasserstein-space-of-elliptical-distributions
https://papers.nips.cc/paper/8226-generalizing-point-embeddings-using-the-wasserstein-space-of-elliptical-distributions
https://doi.org/10.18653/v1/P19-1329
https://doi.org/10.18653/v1/P19-1329
https://doi.org/10.18653/v1/P18-2036
https://doi.org/10.18653/v1/P18-2036

7327

Kim Anh Nguyen, Maximilian Köper, Sabine
Schulte im Walde, and Ngoc Thang Vu. 2017.
Hierarchical embeddings for hypernymy detection
and directionality. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 233–243, Copenhagen, Denmark.
Association for Computational Linguistics.

Partha Niyogi. 2006. The computational nature of
language learning and evolution. MIT press Cam-
bridge, MA.

Masataka Ono, Makoto Miwa, and Yutaka Sasaki.
2015. Word embedding-based antonym detection
using thesauri and distributional information. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 984–989, Denver, Colorado. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Alexandru Tifrea, Gary Becigneul, and Octavian-
Eugen Ganea. 2019. Poincare glove: Hyperbolic
word embeddings. In International Conference on
Learning Representations.

Shikhar Vashishth, Manik Bhandari, Prateek Yadav,
Piyush Rai, Chiranjib Bhattacharyya, and Partha
Talukdar. 2018. Incorporating syntactic and seman-
tic information in word embeddings using graph con-
volutional networks.

Luke Vilnis and Andrew McCallum. 2015. Word repre-
sentations via gaussian embedding. In International
Conference on Learning Representations.

Ivan Vulić and Nikola Mrkšić. 2018. Specialising word
vectors for lexical entailment. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1134–1145, New Orleans, Louisiana.
Association for Computational Linguistics.

Yue Yu, Jie Chen, Tian Gao, and Mo Yu. 2019. Dag-
gnn: Dag structure learning with graph neural net-
works. arXiv preprint arXiv:1904.10098.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and
Eric P Xing. 2018. Dags with no tears: Continu-
ous optimization for structure learning. In Advances
in Neural Information Processing Systems, pages
9472–9483.

SCWS WS353 RW SL SV

Euclidean
58.0 62.0 38.3 28.9 12.4

Poincaré
d2 53.2 57.3 40.8 29.4 12.56
cosh2 d 59.5 65.9 45.8 31.6 13.7

Graph
d 59.3 65.5 46.0 33.6 12.6
〈·, ·〉 56.8 61.6 42.6 32.8 14.8

Table 7: Spearman rank correlation on word similarity
tasks. Models with 50k vocab., 100 parameters per to-
ken. Skip word pairs that contain OOV words.

A Appendix: Additional benchmarks

A.1 Variance study

As our method relies on random initialization of a
graph in PRODIGE, a natural question is whether
different choice of drawn edges significantly af-
fects the quality of representations in the end of
training. Figure 5 demonstrates that after running
the training procedure with distance-based loss for
5 different random seeds, the final metrics values
have a standard deviation of less than 1 point in
10/13 tasks and have a standard deviation of at most
1.34 percent for the RareWord dataset. Thus, we
can conclude that GraphGlove results are relatively
stable with respect to selection of random edges
before training.

A.2 Similarity

Below we report additional similarity benchmarks
for GraphGlove and its vectorial counterparts:

• 50K tokens, 100 parameters / token - Table 7;

• 200K tokens, 20 parameters / token - Table 8.

Some word pairs in each similarity benchmark
are out of vocabulary (OOV). In the main eval-
uation, we drop such pairs from the benchmark.
However, there’s also a different way to deal with
such words.

A popular workaround is to calculate the dis-
tance between wi and OOV as an average distance
from wi to other words. In the rare case when both
words are OOV, we can consider them infinitely
distant from each other. We report similarity bench-
marks including OOV tokens in Tables 9, 10 and
11.

https://doi.org/10.18653/v1/D17-1022
https://doi.org/10.18653/v1/D17-1022
https://doi.org/10.3115/v1/N15-1100
https://doi.org/10.3115/v1/N15-1100
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://openreview.net/forum?id=Ske5r3AqK7
https://openreview.net/forum?id=Ske5r3AqK7
http://arxiv.org/abs/1809.04283
http://arxiv.org/abs/1809.04283
http://arxiv.org/abs/1809.04283
https://arxiv.org/abs/1412.6623
https://arxiv.org/abs/1412.6623
https://doi.org/10.18653/v1/N18-1103
https://doi.org/10.18653/v1/N18-1103

7328

55.0

55.5

56.0

56.5

SCWS, std=0.28

54

56

58

WS353, std=1.01

34

36

38

40

RareWord, std=1.34

28

30

32

SimLex, std=0.94

9

10

11

12

13

SimVerb, std=0.85

26

28

30

32

Google-Sem, std=1.06

21.5

22.0

22.5

23.0

23.5

Google-Syn, std=0.40

24

25

26

27

Google-Full, std=0.60

16.0

16.5

17.0

17.5

18.0

MSR, std=0.38

19.5

20.0

20.5
BATS-Inf, std=0.23

2.0

2.5

3.0

3.5

BATS-Der, std=0.31

3

4

5

6

7

BATS-Lex, std=0.80

16

18

20

BATS-Enc, std=0.94

Figure 5: Results of evaluation for GraphGlove with 20 parameters per vertex on all benchmarks over 5 random
initializations. Here, d is used in the loss function.

SCWS WS353 RW SL SV

Euclidean
55.6 49.9 31.8 23.6 10.6

Poincaré
d2 46.2 45.0 28.5 23.5 12.0
cosh2 d 56.1 51.2 32.0 24.8 12.4

Graph
d 58.5 56.4 33.4 23.4 11.5
〈·, ·〉 53.2 52.9 30.9 23.4 13.8

Table 8: Spearman rank correlation on word similarity
tasks. Models with 200k vocab., 20 parameters per to-
ken. Ignore word pairs with OOV words.

A.3 Analogy
We also evaluate these scenarios for Analogy Pre-
diction:

• 50K tokens, 100 parameters / token - Table
12;

• 200K tokens, 20 parameters / token - Table
13;

B Supplementary material: graph
central nodes

Top 20 words by degree centrality

• Euclidean THR: [’cummings’, ’glover’,
’boyd’, ’hooper’, ’barrett’, ’hicks’, ’mckay’,
’dunn’, ’kemp’, ’moran’, ’payne’, ’ingram’,

SCWS WS353 RW SL SV

Euclidean
50.5 44.9 11.5 19.5 6.7

Poincaré
d2 42.8 38.8 8.4 21.8 7.8
cosh2 d 49.8 49.8 11.6 22.3 8.3

Graph
d 51.7 55.5 7.3 30.0 8.9
〈·, ·〉 48.6 57.9 11.8 28.8 10.7

Table 9: Spearman rank correlation on word similarity
tasks. Models with 50k vocab., 20 parameters per to-
ken. Infer distances to OOV words.

’harrington’, ’webb’, ’ellis’, ’jenkins’, ’good-
win’, ’benson’, ’corbett’, ’willis’]

• Euclidean KNN: [’bunn’, ’willey’, ’cottrell’,
’sandys’, ’alfaro’, ’forgets’, ’ellis’, ’minaj’,
’taylor’, ’lemaire’, ’lockwood’, ’amused’,
’emiliano’, ’mckay’, ’boyd’, ’hurtado’, ’won-
derfully’, ’russell’, ’this’, ’mundy’]

• Poincaré THR: [’mundy’, ’merriman’,
’hoskins’, ’cottrell’, ’oakes’, ’mayne’,
’griggs’, ’bunn’, ’hooper’, ’munn’, ’gillies’,
’glanville’, ’beal’, ’bartley’, ’halloran’,
’mcnab’, ’purdy’, ’bullard’, ’willett’, ’roper’]

• Poincaré KNN: [’imc’, ’cottrell’, ’wil-
lett’, ’foxy’, ’heim’, ’noa’, ’mundy’, ’new-
land’, ’bunn’, ’importantly’, ’krug’, ’grips’,

7329

SCWS WS353 RW SL SV

Euclidean
54.2 58.8 9.2 27.8 8.8

Poincaré
d2 50.3 54.5 10.3 27.7 9.9
cosh2 d 55.4 60.1 12.8 29.6 10.0

Graph
d 55.7 60.0 12.8 32.8 9.9
〈·, ·〉 54.0 58.5 10.7 31.0 11.2

Table 10: Spearman rank correlation on word similar-
ity tasks. Models with 50k vocab., 100 parameters per
token. Infer distances to OOV words.

SCWS WS353 RW SL SV

Euclidean
54.4 49.9 24.9 23.7 10.8

Poincaré
d2 46.0 45.0 23.8 23.9 11.8
cosh2 d 56.0 51.2 27.5 24.9 12.3

Graph
d 58.1 56.4 28.6 23.6 11.3
〈·, ·〉 53.0 52.9 26.2 23.9 13.5

Table 11: Spearman rank correlation on word similar-
ity tasks. Models with 200k vocab., 20 parameters per
token. Infer distances to missing words.

’hooper’, ’haney’, ’mcnab’, ’misplaced’,
’doty’, ’taki’, ’rushton’, ’likewise’]

• Graph: [’bennett’, ’even’, ’same’, ’allen’,
’james’, ’this’, ’although’, ’howard’, ’how-
ever’, ’particular’, ’example’, ’wilson’, ’robin-
son’, ’rather’, ’well’, ’only’, ’furthermore’,
’fact’, ’beginning’, ’smith’]

Top 20 words by eigenvector centrality

• Euclidean THR: [’dunn’, ’hooper’, ’boyd’,
’barrett’, ’jenkins’, ’ellis’, ’hicks’, ’webb’,
’payne’, ’cummings’, ’benson’, ’kemp’,
’willis’, ’glover’, ’mckay’, ’moran’, ’phillips’,
’steele’, ’chapman’, ’roberts’]

• Euclidean KNN: [’taylor’, ’ellis’, ’russell’,
’benson’, ’phillips’, ’thompson’, ’robinson’,
’moore’, ’roberts’, ’stevens’, ’allen’, ’curtis’,
’webb’, ’willis’, ’harvey’, ’chapman’, ’steele’,
’jones’, ’smith’, ’boyd’]

Sem. Syn. Full MSR

Euclidean
61.6 50.0 55.1 48.0

Poincaré
d2 49.4 38.3 43.2 26.1

cosh2 d 63.2 56.8 59.6 47.8

Graph
d 59.9 58.3 59.0 46.0

〈·, ·〉 61.8 59.8 60.7 49.7

Table 12: Analogy prediction accuracy. Models with
50K tokens, 100 parameters per token.

Sem. Syn. Full MSR

Euclidean
31.7 19.7 25.2 11.6

Poincaré
d2 32.9 20.9 26.4 14.4

cosh2 d 31.2 19.9 25.0 14.0

Graph
d 32.6 19.7 25.6 13.5

〈·, ·〉 34.3 24.7 29.1 19.7

Table 13: Analogy prediction accuracy. Models with
200K tokens, 20 parameters per token.

• Poincaré THR: [’hoskins’, ’oakes’, ’hooper’,
’gillies’, ’roper’, ’whitmore’, ’corrigan’,
’waddell’, ’metcalfe’, ’goodwin’, ’bowles’,
’mundy’, ’sanderson’, ’kemp’, ’tobin’, ’merri-
man’, ’harrington’, ’mccallum’, ’cartwright’,
’halloran’]

• Poincaré KNN: [’willett’, ’cottrell’, ’bunn’,
’rushton’, ’doty’, ’mundy’, ’munn’, ’brower’,
’rowell’, ’glanville’, ’macklin’, ’purnell’, ’mc-
nab’, ’clapp’, ’tasker’, ’treadwell’, ’nichol’,
’newland’, ’willey’, ’prichard’]

• Graph: [’even’, ’same’, ’however’, ’this’,
’only’, ’although’, ’well’, ’another’, ’both’,
’in’, ’while’, ’rather’, ’fact’, ’that’, ’once’,
’though’, ’furthermore’, ’taken’, ’but’, ’par-
ticular’]

Main k-cores

7330

Graph

Poincaré KNN

Poincaré THR

Euclidean KNN

Euclidean THR

0.44

0.43

0.44

0.31

0.32

0.29

0.32

0.64

0.26 0.14

0.12

0.15

0.12

0.21 0.16 0.13

0.869

0.500

0.513

0.500

0.984

Average freq.

percentile

NN

NNP

ADV

ADJ

VERB

IN

Other

Figure 6: POS distribution for main k-core

• Euclidean THR: [’nathan’, ’harold’, ’dick’,
’sullivan’, ’donaldson’, ’yates’, ’kerr’, ’terry’,
’byron’, ’duncan’, ’horton’, ’kelley’, ’parker’,
’oliver’, ’duffy’, ’mclean’, ’jeremy’, ’bartlett’,
’osborne’, ’howell’, ’webb’, ’hughes’,
’gould’, ’pearce’, ’bradley’, ’walker’, ’barry’,
’davidson’, ’graham’, ’jesse’, ’blair’, ’collins’,
’bailey’, ’burnett’, ’harrington’, ’cole’,
’wilson’, ’jonathan’, ’gary’, ’tim’, ’leslie’,
’cunningham’, ’elliot’, ’jones’, ’gorman’,
’holt’, ’lynch’, ’holloway’, ’wheeler’,
’reid’, ’cox’, ’evan’, ’freeman’, ’burgess’,
’barker’, ’skinner’, ’baxter’, ’hayes’, ’amos’,
’colin’, ’ritchie’, ’harry’, ’campbell’, ’nolan’,
’howard’, ’simpson’, ’mckenzie’, ’ralph’,
’gibson’, ’rowland’, ’lynn’, ’jarvis’, ’chan-
dler’, ’dawson’, ’trevor’, ’carter’, ’stevens’,
’nichols’, ’hurley’, ’hines’, ’steele’, ’payne’,
’shaw’, ’phillip’, ’henderson’, ’richardson’,
’andrews’, ’anthony’, ’briggs’, ’roberts’,
’fletcher’, ’mccall’, ’gallagher’, ’robertson’,
’fowler’, ’lowe’, ’harris’, ’johnson’, ’willis’,
’carr’, ’goodwin’, ’spencer’, ’neil’, ’noel’,
’tucker’, ’atkins’, ’dixon’, ’miller’, ’bates’,
’sweeney’, ’barlow’, ’andrew’, ’wright’,
’reeves’, ’glover’, ’irwin’, ’phillips’, ’hanson’,
’dillon’, ’mitchell’, ’armstrong’, ’farrell’,
’stevenson’, ’nicholson’, ’stewart’, ’baker’,
’norris’, ’coleman’, ’hicks’, ’foley’, ’jack’,
’wilkinson’, ’powell’, ’nelson’, ’dalton’,
’lewis’, ’murray’, ’boyd’, ’watson’, ’elliott’,
’hobbs’, ’turner’, ’horne’, ’derek’, ’walters’,
’daly’, ’fleming’, ’curtis’, ’scott’, ’wal-
lace’, ’alan’, ’bennett’, ’stephens’, ’laurie’,
’leonard’, ’barnett’, ’murphy’, ’stuart’,
’crawford’, ’dunn’, ’kemp’, ’lester’, ’ingram’,
’connor’, ’donald’, ’mckay’, ’bruce’, ’hale’,
’kirk’, ’williamson’, ’robinson’, ’russell’,
’barr’, ’jim’, ’abbott’, ’donovan’, ’morris’,
’dickson’, ’burke’, ’chapman’, ’keith’, ’morri-
son’, ’hartley’, ’cameron’, ’dennis’, ’allen’,
’bradshaw’, ’thornton’, ’gardner’, ’townsend’,

’evans’, ’richards’, ’steve’, ’griffin’, ’frank’,
’atkinson’, ’wills’, ’donnell’, ’doyle’, ’moran’,
’palmer’, ’reynolds’, ’bowen’, ’bryan’,
’slater’, ’edwards’, ’fisher’, ’clarke’, ’ramsey’,
’brooks’, ’cooper’, ’gordon’, ’harvey’,
’morgan’, ’ferguson’, ’ross’, ’chris’, ’fred’,
’smith’, ’tom’, ’david’, ’cooke’, ’benson’,
’haynes’, ’butler’, ’cummings’, ’matthews’,
’perkins’, ’hooper’, ’taylor’, ’brian’, ’jenkins’,
’buckley’, ’hawkins’, ’randall’, ’michael’,
’rogers’, ’mcintyre’, ’ted’, ’phil’, ’johnston’,
’cullen’, ’kelly’, ’corbett’, ’eric’, ’clark’,
’owen’, ’rowe’, ’connolly’, ’moore’, ’garrett’,
’thompson’, ’patrick’, ’stephen’, ’wade’,
’brien’, ’barrett’, ’hart’, ’saunders’, ’james’,
’nash’, ’watkins’, ’ellis’, ’walsh’, ’mason’,
’todd’, ’barnes’, ’jennings’, ’patterson’,
’connell’, ’lawson’, ’craig’, ’rodney’, ’blake’,
’adams’]

• Poincaré THR: [’nichols’, ’mcintyre’, ’ran-
dall’, ’mckay’, ’perkins’, ’noel’, ’elliott’,
’reynolds’, ’richards’, ’glenn’, ’lester’,
’foley’, ’walsh’, ’murray’, ’fitzgerald’, ’dono-
van’, ’riley’, ’thornton’, ’kemp’, ’rodney’,
’bartlett’, ’kirk’, ’bradley’, ’curtis’, ’jenk-
ins’, ’roberts’, ’hayden’, ’byron’, ’skinner’,
’smith’, ’horton’, ’carr’, ’yates’, ’chapman’,
’benson’, ’wilkinson’, ’marshall’, ’connor’,
’bruce’, ’barnett’, ’quinn’, ’fleming’, ’barry’,
’payne’, ’carter’, ’richardson’, ’tanner’,
’watson’, ’freeman’, ’buckley’, ’simpson’,
’watkins’, ’owen’, ’todd’, ’miller’, ’shaw’,
’gibson’, ’baker’, ’ritchie’, ’hooper’, ’ma-
son’, ’osborne’, ’lawson’, ’harrington’,
’jeremy’, ’kerr’, ’patterson’, ’simmons’,
’warren’, ’wallace’, ’jarvis’, ’gardner’,
’reilly’, ’harvey’, ’henderson’, ’coleman’,
’barrett’, ’leonard’, ’saunders’, ’glover’,
’hughes’, ’farrell’, ’anthony’, ’fisher’, ’cox’,
’goodwin’, ’bowman’, ’mitchell’, ’daniels’,
’sullivan’, ’griffin’, ’abbott’, ’morris’, ’pe-
terson’, ’reeves’, ’ralph’, ’ross’, ’elliot’,
’brien’, ’howard’, ’donaldson’, ’walters’,
’russell’, ’andrew’, ’burke’, ’edwards’,
’dunn’, ’phillips’, ’hurley’, ’lynch’, ’rogers’,
’barnes’, ’doyle’, ’harris’, ’evans’, ’stewart’,
’stevenson’, ’sheldon’, ’burnett’, ’connolly’,
’burgess’, ’cummings’, ’williamson’, ’wil-
son’, ’steele’, ’irwin’, ’hicks’, ’cooke’,
’hanson’, ’matthews’, ’hawkins’, ’gorman’,
’willis’, ’palmer’, ’cameron’, ’hayes’, ’daly’,

7331

’morrison’, ’moran’, ’haynes’, ’taylor’,
’gordon’, ’cunningham’, ’stevens’, ’dawson’,
’clarke’, ’morgan’, ’robertson’, ’mclean’,
’thompson’, ’spencer’, ’murphy’, ’davidson’,
’duncan’, ’evan’, ’johnston’, ’hart’, ’terry’,
’fletcher’, ’spence’, ’connell’, ’griffith’,
’parsons’, ’allen’, ’ellis’, ’reid’, ’adams’,
’jones’, ’nathan’, ’norris’, ’pearce’, ’ingram’,
’brooks’, ’dillon’, ’cooper’, ’keith’, ’craw-
ford’, ’hale’, ’parker’, ’webb’, ’baxter’,
’blake’, ’turner’, ’craig’, ’fuller’, ’nicholson’,
’barker’, ’campbell’, ’fred’, ’bailey’, ’grady’,
’nolan’, ’welch’, ’powell’, ’armstrong’,
’dalton’, ’gavin’, ’sanders’, ’trevor’, ’duffy’,
’brent’, ’dale’, ’hoffman’, ’garrett’, ’boyd’,
’robinson’, ’dennis’, ’jennings’, ’clark’,
’graham’, ’kelley’, ’newman’, ’rowe’, ’scott’,
’phillip’, ’porter’, ’wright’, ’ferguson’, ’clay-
ton’, ’dixon’, ’briggs’, ’howell’, ’mckenzie’,
’chandler’, ’collins’, ’lewis’, ’gallagher’,
’mcbride’, ’fowler’, ’harding’, ’flynn’, ’lowe’,
’moore’, ’walker’, ’bennett’]

• Graph: [’more’, ’being’, ’took’, ’while’,
’seen’, ’under’, ’never’, ’are’, ’by’, ’fur-
thermore’, ’though’, ’at’, ’presumably’, ’fi-
nally’, ’then’, ’ones’, ’was’, ’initially’, ’these’,
’their’, ’among’, ’together’, ’or’, ’also’, ’in-
cluded’, ’few’, ’up’, ’earlier’, ’even’, ’ex-
isted’, ’longer’, ’first’, ’be’, ’beginning’,
’hence’, ’notably’, ’the’, ’well’, ’will’, ’simi-
larly’, ’actually’, ’different’, ’around’, ’them’,
’unlike’, ’several’, ’now’, ’once’, ’such’,
’prior’, ’fact’, ’other’, ’both’, ’for’, ’only’,
’next’, ’therefore’, ’two’, ’had’, ’along’,
’part’, ’times’, ’because’, ’likewise’, ’latter’,
’since’, ’additionally’, ’to’, ’where’, ’still’,
’than’, ’but’, ’end’, ’taken’, ’instance’, ’ad-
dition’, ’having’, ’after’, ’same’, ’despite’,
’of’, ’similar’, ’over’, ’during’, ’one’, ’appear’,
’outside’, ’much’, ’nevertheless’, ’came’,
’make’, ’have’, ’some’, ’those’, ’usually’, ’it’,
’this’, ’number’, ’when’, ’separate’, ’more-
over’, ’following’, ’saw’, ’with’, ’time’, ’be-
fore’, ’full’, ’within’, ’perhaps’, ’any’, ’rest’,
’might’, ’others’, ’exception’, ’as’, ’using’,
’instances’, ’is’, ’making’, ’found’, ’made’,
’use’, ’come’, ’without’, ’until’, ’should’, ’ex-
ample’, ’through’, ’so’, ’itself’, ’although’,
’its’, ’that’, ’throughout’, ’besides’, ’they’,
’consequently’, ’ever’, ’given’, ’and’, ’just’,
’not’, ’afterwards’, ’there’, ’added’, ’years’,

’on’, ’later’, ’however’, ’could’, ’ended’, ’in-
deed’, ’all’, ’went’, ’believed’, ’take’, ’rather’,
’in’, ’already’, ’every’, ’set’, ’either’, ’en-
tered’, ’possible’, ’an’, ’themselves’, ’often’,
’would’, ’which’, ’instead’, ’second’, ’last’,
’each’, ’thus’, ’again’, ’certain’, ’most’, ’old’,
’from’, ’were’, ’yet’, ’likely’, ’elsewhere’,
’been’, ’way’, ’new’, ’what’, ’own’, ’has’,
’out’, ’if’, ’another’, ’many’, ’particular’, ’tak-
ing’, ’can’, ’today’]

