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Abstract

There has recently been increasing interest
in learning representations of temporal knowl-
edge graphs (KGs), which record the dynamic
relationships between entities over time. Tem-
poral KGs often exhibit multiple simultane-
ous non-Euclidean structures, such as hierar-
chical and cyclic structures. However, exist-
ing embedding approaches for temporal KGs
typically learn entity representations and their
dynamic evolution in the Euclidean space,
which might not capture such intrinsic struc-
tures very well. To this end, we propose Dy-
ERNIE, a non-Euclidean embedding approach
that learns evolving entity representations in a
product of Riemannian manifolds, where the
composed spaces are estimated from the sec-
tional curvatures of underlying data. Product
manifolds enable our approach to better re-
flect a wide variety of geometric structures on
temporal KGs. Besides, to capture the evo-
lutionary dynamics of temporal KGs, we let
the entity representations evolve according to
a velocity vector defined in the tangent space
at each timestamp. We analyze in detail the
contribution of geometric spaces to represen-
tation learning of temporal KGs and evaluate
our model on temporal knowledge graph com-
pletion tasks. Extensive experiments on three
real-world datasets demonstrate significantly
improved performance, indicating that the dy-
namics of multi-relational graph data can be
more properly modeled by the evolution of em-
beddings on Riemannian manifolds.

1 Introduction

Learning from relational data has long been con-
sidered as a key challenge in artificial intelligence.
In recent years, several sizable knowledge graphs
(KGs), e.g. Freebase (Bollacker et al., 2008) and
Wikidata (Vrandeci¢ and Krotzsch, 2014), have
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been developed that provide widespread availabil-
ity of such data and enabled improvements to a
plethora of downstream applications such as rec-
ommender systems (Hildebrandt et al., 2019) and
question answering (Zhang et al., 2018). KGs are
multi-relational, directed graphs with labeled edges,
where each edge corresponds to a fact and can be
represented as a triple, such as (John, lives in, Van-
couver). Common knowledge graphs are static and
store facts at their current state. In reality, however,
multi-relational data are often time-dependent. For
example, the political relationship between two
countries might intensify because of trade fights.
Thus, temporal knowledge graphs were introduced,
such as ICEWS (Boschee et al., 2015) and GDELT
(Leetaru and Schrodt, 2013), that capture temporal
aspects of facts in addition to their multi-relational
nature. In these datasets, temporal facts are repre-
sented as a quadruple by extending the static triplet
with a timestamp describing when these facts oc-
curred, i.e. (Barack Obama, inaugurated, as presi-
dent of the US, 2009). Since real-world temporal
KGs are usually incomplete, the task of link predic-
tion on temporal KGs has gained growing interest.
The task is to infer missing facts at specific time-
stamps based on the existing ones by answering
queries such as (US, president, ?, 2015).

Many facts in temporal knowledge graphs in-
duce geometric structures over time. For instance,
increasing trade exchanges and economic coopera-
tion between two major economies might promote
the trade exports and economic growths of a series
of countries in the downstream supply chain, which
exhibits a tree-like structure over time. Moreover,
an establishment of diplomatic relations between
two countries might lead to regular official visits
between these two countries, which produces a
cyclic structure over time. Embedding methods in
Euclidean space have limitations and suffer from
large distortion when representing large-scale hier-
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archical data. Recently, hyperbolic geometry has
been exploited in several works (Nickel and Kiela,
2017; Ganea et al., 2018) as an effective method
for learning representations of hierarchical data,
where the exponential growth of distance on the
boundary of the hyperbolic space naturally allows
representing hierarchical structures in a compact
form. While most graph-structured data has a wide
variety of inherent geometric structures, e.g. par-
tially tree-like and partially cyclical, the above stud-
ies model the latent structures in a single geometry
with a constant curvature, limiting the flexibility
of the model to match the hypothetical intrinsic
manifold. Thus, using a product of different con-
stant curvature spaces (Gu et al., 2018) might be
helpful to match the underlying geometries of tem-
poral knowledge graphs and provide high-quality
representations.

Existing non-Euclidean approaches for knowl-
edge graph embeddings (Balazevic et al., 2019;
Kolyvakis et al., 2019) lack the ability to cap-
ture temporal dynamics available in underlying
data represented by temporal KGs. The difficulty
with representing the evolution of temporal KGs
in non-Euclidean spaces lies in finding a way to
integrate temporal information to the geometric rep-
resentations of entities. In this work, we propose
the dynamic evolution of Riemannian manifold
gmbgldings (DyERNIE), a theoretically founded
approach to embed multi-relational data with dy-
namic relationships on a product of Riemannian
manifolds with different curvatures. To capture
both the stationary and dynamic characteristics of
temporal KGs, we characterize the time-dependent
representation of an entity as movements on man-
ifolds. For each entity, we define an initial em-
bedding (at ty) on each manifold and a velocity
vector residing in the tangent space of the initial
embedding to generate a temporal representation
at each timestamp. In particular, the initial embed-
dings represent the stationary structural dependen-
cies across facts, while the velocity vectors capture
the time-varying properties of entities.

Our contributions are the following: (i) We intro-
duce Riemannian manifolds as embedding spaces
to capture geometric features of temporal KGs. (ii)
We characterize the dynamics of temporal KGs as
movements of entity embeddings on Riemannian
manifolds guided by velocity vectors defined in the
tangent space. (iii) We show how the product space
can be approximately identified from sectional cur-

vatures of temporal KGs and how to choose the di-
mensionality of component spaces as well as their
curvatures accordingly. (iv) Our approach signifi-
cantly outperforms current benchmarks on a link
prediction task on temporal KGs in low- and high-
dimensional settings. (v) We analyze our model’s
properties, i.e. the influence of embedding dimen-
sionality and the correlation between node degrees
and the norm of velocity vectors.

2 Preliminaries

2.1 Riemannian Manifold

An n-dimensional Riemannian manifold M" is a
real and smooth manifold with locally Euclidean
structure. For each point x € M?", the metric
tensor g(x) defines a positive-definite inner product
9(x) = ()t TM™ X TeM™ — R, where
TxM™ is the tangent space of M" at x. From
the tangent space 7xM", there exists a mapping
function expy(v) : TxM"™ — M" that maps a
tangent vector v at x to the manifold, also known as
the exponential map. The inverse of an exponential
map is referred to as the logarithm map log,(-).

2.2 Constant Curvature Spaces

The sectional curvature K (7x) is a fine-grained no-
tion defined over a two-dimensional subspace 7 in
the tangent space at the point x (Berger, 2012). If
all the sectional curvatures in a manifold M" are
equal, the manifold then defined as a space with a
constant curvature K. Three different types of con-
stant curvature spaces can be defined depending on
the sign of the curvature: a positively curved space,
a flat space, and a negatively curved space. There
are different models for each constant curvature
space. To unify different models, in this work, we
choose the stereographically projected hypersphere
S’ for positive curvatures (/X > 0), while for neg-
ative curvatures (X < 0) we choose the Poincaré
ball P, which is the stereographic projection of
the hyperboloid model:

% ={xeR": {(x,x), > -1/K}
E" = R”, if K = 0
% ={xeR": (x,x), < —1/K}

M =

Both of the above spaces Sk and Px are equipped
with the Riemannian metric: ¢5%x = g¢bx =
(AE)24E, which is conformal to the Euclidean met-
ric g¥ with the conformal factor A\ = 2/(1 +
K||x||3) (Ganea et al., 2018). As explained in
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(Skopek et al., 2019), Sk and Px have a suitable
property, namely the distance and the metric ten-
sors of these spaces converge to their Euclidean
counterpart as the curvature goes to 0, which makes
both spaces suitable for learning sign-agnostic cur-
vatures.

2.3 Gyrovector Spaces

An important analogy to vector spaces (vector ad-
dition and scalar multiplication) in non-Euclidean
geometry is the notion of gyrovector spaces (Un-
gar, 2008). Both the projected hypersphere and
the Poincaré ball share the following definition of
Mébius addition:

XPry =
(1-2K{x,y), — Kllyll3)x + (1 + K|[x]|3)y
1 — 2K (x,y), + K2||x[3]|y]]3

where we denote the Euclidean norm and inner
product by || - || and (-, -),, respectively. Skopek
et al. (2019) show that the distance between two
points in Sg or Px is equivalent to their variants
in gyrovector spaces, which is defined as

2

dMK(X7Y) = mtanl_(l(\/ \KH|—X®KY\|2)7

where tang = tan if X > 0 and tang = tanh
if K < 0. The same gyrovector spaces can be
used to define the exponential and logarithmic
maps in the Poincaré ball and the projected hy-
persphere. We list these mapping functions in Ta-
ble 8 in the appendix. As Ganea et al. (2018) use
the exponential and logarithmic maps to obtain the
Mobius matrix-vector multiplication: M ®x x =
expll (M log® (x)), we reuse them in hyperbolic
space. This operation is defined similarly in pro-
jected hyperspherical space.

2.4 Product Manifold

We further generalize the embedding space of la-
tent representations from a single manifold to a
product of Riemannian manifolds with constant
curvatures. Consider a sequence of Riemannian
manifolds with constant curvatures, the product
manifold is defined as the Cartesian product of &
component manifolds M"™ = X le/\/l?gi, where
n; 1s the dimensionality of the ¢—th component,
and K; indicates its curvature, with choices M% €
{P%,,E", S} We call {(n;, k;) k| the signa-
ture of a product manifold. Note that the nota-
tion E™ is redundant in Euclidean spaces since

the Cartesian product of Euclidean spaces with dif-
ferent dimensions can be combined into a single
space, i.e. E" = X f;l E™i. However, this equality
does not hold in the projected hypersphere and the
Poincaré ball. For each point x € M™ on a product
manifold, we decompose its coordinates into the
corresponding coordinates in component manifolds
x = (xM, ..., x®), where x() € M . The dis-
tance function decomposes based on its definition
A (x,y) = Sk di/t’}g', (x@ y®). Similarly,
we decompose the metric f[ensor, exponential and
logarithmic maps on a product manifold into the
component manifolds. In particular, we split the
embedding vectors into parts x(%), apply the desired
operation on that part f! (x(?)), and concatenate
the resulting parts back (Skopek et al., 2019).

2.5 Temporal Knowledge Graph Completion

Temporal knowledge graphs (KGs) are multi-
relational, directed graphs with labeled times-
tamped edges between entities. Let £, P, and T
represent a finite set of entities, predicates, and
timestamps, respectively. Each fact can be denoted
by a quadruple ¢ = (e, p, €,,t), where p € P rep-
resents a timestamped and labeled edge between a
subject entity e; € £ and an object entity e, € £
at a timestamp t € 7. Let F represents the set
of all quadruples that are facts, i.e. real events in
the world, the temporal knowledge graph comple-
tion (tKGC) is the problem of inferring F based
on a set of observed facts O, which is a subset of
F. To evaluate the proposed algorithms, the task
of tKGC is to predict either a missing subject en-
tity (7, p, e,,t) given the other three components
or a missing object entity (es, p, 7, t). Taking the
object prediction as an example, we consider all
entities in the set £, and learn a score function
p:ExPxExT — R. Since the score function
assigns a score to each quadruple, the proper object
can be inferred by ranking the scores of all quadru-
ples {(es, p, €o,,1), €0, € £} that are accompanied
with candidate entities.

3 Related work

3.1 Knowledge Graph Embedding

Static KG Embedding Embedding approaches
for static KGs can generally be categorized into
bilinear models and translational models. The bi-
linear approaches are equipped with a bilinear score
function that represents predicates as linear trans-
formations acting on entity embeddings (Nickel
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et al., 2011; Trouillon et al., 2016; Yang et al.,
2014; Ma et al., 2018a). Translational approaches
measure the plausibility of a triple as the distance
between the translated subject and object entity em-
beddings, including TransE (Bordes et al., 2013)
and its variations (Sun et al., 2019; Kazemi and
Poole, 2018). Additionally, several models are
based on deep learning approaches (Dettmers et al.,
2018; Schlichtkrull et al., 2018; Hildebrandt et al.,
2020) that apply (graph) convolutional layers on
top of embeddings and design a score function as
the last layer of the neural network.

Temporal KG Embedding Recently, there have
been some attempts of incorporating time informa-
tion in temporal KGs to improve the performance
of link prediction. Ma et al. (2018b) developed
extensions of static knowledge graph models by
adding a timestamp embedding to the score func-
tions. Also, Leblay and Chekol (2018) proposed
TTransE by incorporating time representations into
the score function of TransE in different ways.
HyTE (Dasgupta et al., 2018) embeds time infor-
mation in the entity-relation space by arranging a
temporal hyperplane to each timestamp. The num-
ber of parameters of these models scales with the
number of timestamps, leading to overfitting when
the number of timestamps is extremely large.

3.2 Graph Embedding Approaches in
non-Euclidean Geometries

There has been a growing interest in embedding
graph data in non-Euclidean spaces. Nickel and
Kiela (2017) first applied hyperbolic embedding
for link prediction to the lexical database WordNet.
Since then, hyperbolic analogs of several other ap-
proaches have been developed (De Sa et al., 2018;
Tifrea et al., 2018). In particular, Balazevic et al.
(2019) proposed a translational model for embed-
ding multi-relational graph data in the hyperbolic
space and demonstrated advancements over state-
over-the-art. More recently, Gu et al. (2018) gen-
eralized manifolds of constant curvature to a prod-
uct manifold combining hyperbolic, spherical, and
Euclidean components. However, these methods
consider graph data as static models and lack the
ability to capture temporally evolving dynamics.

4 Temporal Knowledge Graph
Completion in Riemannian Manifold

Entities in a temporal KG might form different ge-
ometric structures under different relations, and

these structures could evolve with time. To cap-
ture heterogeneous and time-dependent structures,
we propose the DyERNIE model to embed enti-
ties of temporal knowledge graphs on a product of
Riemannian manifolds and model time-dependent
behavior of entities with dynamic entity represen-
tations.

4.1 Entity Representation

In temporal knowledge graphs, entities might have
some features that change over time and some
features that remain fixed. Thus, we represent
the embedding of an entity e; € & at instance
t with a combination of low-dimensional vectors
ej(t) = (e (t),.... el (1)) with &/ () € M,
where M7 e {Py ", S} } is the i-th compo-
nent manifold, K; and n; denote the curvature and
the dimension of this manifold, respectively. Each
component embedding eg;) (t) is derived from an
initial embedding and a velocity vector to encode
both the stationary properties of the entities and
their time-varying behavior, namely

eﬁi) (t) = expg’ <log§i (égi)) + Ve(_i)t> (D
J

where égi) € M%L represents the initial embedding

that does not change over time. V.o € ’76/\/1%

represents an entity-specific Velocitijector that is
defined in the tangent space at origin 0 and cap-
tures evolutionary dynamics of the entity e; in its
vector space representations over time. As shown
in Figure 1 (a), we project the initial embedding
to the tangent space 76/\/17;;'7_ using the logarithmic

map logffi and then use a velocity vector to obtain
the embedding of the next timestamp. Finally, we
project it back to the manifold with the exponen-
tial map exp{fi. Note that in the case of Euclidean
space, the exponential map and the logarithmic
map are equal to the identity function. By learn-
ing both the initial embedding and velocity vector,
our model characterizes evolutionary dynamics of
entities as movements on manifolds and thus pre-
dict unseen entity interactions based on both the
stationary and time-varying entity properties.

4.2 Score Function

Bilinear models have been proved to be an effective
approach for KG completion (Nickel et al., 2011;
Lacroix et al., 2018), where the score function is a
bilinear product between subject entity, predicate,
and object entity embeddings. However, there is
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Figure 1: (a) Evolution of an entity embedding on the ¢-
th component manifold (left). For convenience in draw-
ing, the tangent space 7. "K’ is defined at égz). (b)
Geodesics in the Poincaré disk (right), where red dots
represent nodes on the disk.

no clear correspondence of the Euclidean inner-
product in non-Euclidean spaces. We follow the
method suggested in Poincaré Glove (Tifrea et al.,
2018) to reformulate the inner product as a func-
tion of distance, i.e. (x,y) = $(d(x,y)*+|[z|]* +
|ly]|?) and replace squared norms with biases by
and by,. In addition, to capture different hierarchical
structures under different relations simultaneously,
Balazevic et al. (2019) applied relation-specific
transformations to entities, i.e. a stretch by a diago-
nal predicate matrix P € R™*" to subject entities
and a translation by a vector offset p € P™ to object
entities.

Inspired by these two ideas, we define the score
function of DyERNIE as

k
¢(687p7 €o, t) = Z _d/\/(?(l (P(Z) ®K1 egZ) (t)a
i=1 ‘
. A\ 2 . .
e (t)@x, pV) + b0 + 1)

where egi)(t) and eg)(t) € Myj are embed-
dings of the subject and object entities e; and
e, in the 7-th component manifold, respectively.
p® e M?gz is a translation vector of predicate p,

and P(V) e R™*"i represents a diagonal predicate
matrix defined in the tangent space at the origin.
Since multi-relational data often has different struc-
tures under different predicate, we use predicate-
specific transformations P and p to determine the
predicate-adjusted embeddings of entities in differ-
ent predicate-dependent structures, e.g. multiple
hierarchies. The distance between the predicate-
adjusted embeddings of e; and e, measures the
relatedness between them in terms of a predicate p.

4.3 Learning

The genuine quadruples in a temporal KG G are
split into train, validation, and test sets. We add
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Figure 2: Histogram of sectional curvatures at each
timestamps on ICEWSI14 (left), and ICEWSO05-15
(right).

reciprocal relations for every quadruple, which is a
standard data augmentation technique commonly
used in literature (Balazevic et al., 2019; Goel
etal., 2019), i.e. we add (e,,p~ !, es, ) for every
(es, D, €0, t). Besides, for each fact (es, p, o, ) in
the training set, we generate n negative samples by
corrupting either the object (e, p, €/, t) or the sub-
ject (e, p~ 1, €., t) with a randomly selected entity
from £. We use the binary cross-entropy as the loss
function, which is defined as

L=
—1

W (ym IOg(pm) + (1 - ym) IOg(l - pm)) )

1

sz

where N is the number of training samples, ¥,
represents the binary label indicating whether a
quadruple g, is genuine or not, p,, denotes the
predicted probability o(¢(g,)), and o(-) repre-
sents the sigmoid function. Model parameters are
learned using Riemannian stochastic gradient de-
scent (RSGD) (Bonnabel, 2013), where the Rie-
mannian gradient Ay~ L is obtained by multiply-
ing the Euclidean gradient Ay with the inverse of
the Riemannian metric tensor.

4.4 Signature Estimation

To better capture a broad range of structures in
temporal KGs, we need to choose an appropriate
signature of a product manifold M", including the
number of component spaces, their dimensions,
and curvatures. Although we can simultaneously
learn embeddings and the curvature of each com-
ponent during training using gradient-based opti-
mization, we have empirically found that treating
curvature as a trainable parameter interferes with
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the training of other model parameters. Thus, we
treat the curvature of each component and the di-
mension as hyperparameters selected a priori. In
particular, we use the parallelogram law’ deviation
(Gu et al., 2018) to estimate both the graph cur-
vature of a given temporal KG and the number of
components. Details about this algorithm can be
found in Appendix A. Figure 2 shows the curva-
ture histograms on the ICEWS14 and ICEWSO05-15
datasets introduced in Section 5.1. It can be noticed
that curvatures are mostly non-Euclidean, offering
a good motivation to learn embeddings on a product
manifold. Taking the ICEWSO05-15 dataset as an
example, we see that most curvatures are negative.
In this case, we can initialize the product manifold
consisting of three hyperbolic components with dif-
ferent dimensions. Then we conduct a Bayesian op-
timization around the initial value of the dimension
and the curvature of each component to fine-tune
them. Finally, we select the best-performing signa-
ture according to performance on the validation set
as the final choice.

5 Experiments

5.1 Experimental Set-up

Datasets Global Database of Events, Language,
and Tone (GDELT) (Leetaru and Schrodt, 2013)
dataset and Integrated Crisis Early Warning System
(ICEWS) (Boschee et al., 2015) dataset have estab-
lished themselves in the research community as rep-
resentative samples of temporal KGs. The GDELT
dataset is derived from an initiative database of
all the events across the globe connecting people,
organizations, and news sources. We use a sub-
set extracted by Jin et al. (2019), which contains
events occurring from 2018-01-01 to 2018-01-31.
The ICEWS dataset contains information about po-
litical events with specific time annotations, e.g.
(Barack Obama, visit, India, 2010-11-06). We ap-
ply our model on two subsets of the ICEWS dataset
generated by Garcia-Durdn et al. (2018): ICEWS14
contains events in 2014, and ICEWS05-15 corre-
sponds to the facts between 2005 to 2015. We
compare our approach and baseline methods by
performing the link prediction task on the GDELT,
ICEWS14 and ICEWSO05-15 datasets. The statis-
tics of the datasets are provided in Appendix C.

Baselines Our baselines include both static and
temporal KG embedding models. From the static
KG embedding models, we use TransE (Bordes

etal., 2013), DistMult (Yang et al., 2014), and Com-
plEx (Trouillon et al., 2016) where we compress
temporal knowledge graphs into a static, cumula-
tive graph by ignoring the time information. From
the temporal KG embedding models, we compare
the performance of our model with several state-
of-the-art methods, including TTransE (Leblay and
Chekol, 2018), TDistMult/TComplEx (Ma et al.,
2018b), and HyTE (Dasgupta et al., 2018).

Evaluation protocol For each quadruple ¢ =
(es, P, €0,t) in the test set Gisr, We create two
queries: (es,p,?,t) and (eo,p~!,?,t). For each
query, the model ranks all possible entities £ ac-
cording to their scores. Following the commonly
filtered setting in the literature (Bordes et al., 2013),
we remove all entity candidates that correspond to
true triples! from the candidate list apart from the
current test entity. Let ¢, and 1., represent the
rank for e; and e, of the two queries respectively,
we evaluate our models using standard metrics
across the link prediction literature: mean recipro-
cal rank (MRR): m qugtest(@t + wljo) and
HitsQk(k € {1,3,10}): the percentage of times
that the true entity candidate appears in the top k
of ranked candidates.

Implementations We implemented our model
and all baselines in PyTorch (Paszke et al., 2019).
For fairness of comparison, we use Table 2 in sup-
plementary materials to compute the embedding
dimension for each (baseline, dataset) pair that
matches the number of parameters of our model
with an embedding dimension of 100. Taking
HyTE as an example, its embedding dimension is
193 and 151 on the ICEWS14 and GDELT dataset,
respectively. Also, we use the datasets augmented
with reciprocal relations to train all baseline mod-
els. We tune hyperparameters of our models using
the quasi-random search followed by Bayesian op-
timization (Ruffinelli et al., 2020) and report the
best configuration in Appendix E. We implement
TTransE, TComplEx, and TDistMult based on the
implementation of TransE, Distmult, and ComplEx
respectively. We use the binary cross-entropy loss
and RSGD to train these baselines and optimize hy-
perparameters by early stopping according to MRR
on the validation set. Additionally, we use the im-
plementation of HyTE?. We provide the detailed

'The triplets that appear either in the train, validation, or
test set.
*https://github.com/malllabiisc/Hy TE
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Table 1: Link prediction results: MRR (%) and Hits@1/3/10 (%). The best results among all models are in bold.
Additionally, we underline the best results among models with the same embedding dimension.

Datasets | ICEWS14 - filtered |

ICEWS05-15 - filtered ‘ GDELT - filtered

Rank (n) | Model

‘Manifold MRR Hits@] Hits@3 Hits@lO‘Manifold MRR Hits@] Hits@3 Hits@lO‘Manifold MRR Hits@] Hits@3 Hits@10

TransE 30.0 14.8 427 60.1 30.4 13.3 424 61.1 17.7 79 229 36.8
100 DistMult E 57.5 46.9 64.2 7179 E 47.1 33.6 55.1 72.5 E 22.6 13.9 26.1 39.2
ComplEx 49.3 36.6 56.2 74.2 39.0 229 49.2 68.4 18.8 10.5 222 34.9
TTransE 34.4 257 38.3 513 35.6 15.4 51.1 67.6 18.2 0.0 30.7 46.2
TDistMult 33.1 25.4 36.2 47.8 49.8 41.1 54.3 66.4 28.3 16.2 30.7 47.1
100 TComplEx E 31.8 12.9 45.7 63.0 E 45.1 36.3 49.2 62.0 E 30.6 21.0 34.7 48.1
HyTE 33.1 6.8 54.5 73.6 38.1 7.6 65.0 80.4 224 0.0 39.5 542
DyERNIE-Prod BS 462 360 5Ll 663 PS589 505 632 5.1 S 363 294 383 495
10 DyERNIE-Sgl P 433 333 47.6 629 P 58.0 49.2 62.8 74.5 S 357 28.7 37.7 489
DyERNIE-Euclid E 39.8 30.6 43.6 582 E 51.9 434 56.1 67.9 E 30.2 238 31.8 42.5
DyERNIE-Prod P 539 442 589 127 P 642 565 682 190 §2 400 332 420 531
20 DyERNIE-Sgl P 51.3 414 56.1 70.3 P 63.8 55.9 67.9 78.7 S 39.2 32.6 41.1 52.1
DyERNIE-Euclid E 47.7 38.3 52.0 66.2 E 57.3 494 61.1 72.4 E 329 26.2 34.7 45.7
DyERNIE-Prod P® 388 498 638 761 P 689 6L8 128 825 §2 430 363 451 560
40 DyERNIE-Sgl P 56.6 47.3 61.3 74.6 P 67.3 60.2 71.1 81.1 S 42.5 358 44.6 55.6
DyERNIE-Euclid E 53.7 442 58.6 71.9 E 60.3 52.7 64.1 74.7 E 38.4 31.8 40.4 51.1
DyERNIE-Prod P3 66.9 59.9 714 79.7 P3 73.9 67.9 713 85.5 s? 45.7 39.0 479 58.9
100 DyERNIE-Sgl P 65.7 58.2 70.2 79.4 P 71.2 64.8 74.6 83.4 S 454 38.6 47.6 58.4
DyERNIE-Euclid E 63.3 54.9 67.9 79.2 E 66.2 59.0 69.9 79.8 E 42.6 36.1 44.5 55.1

settings of hyperparameters of each baseline model
in Appendix B.

5.2 Comparative Study

Table 2: Filtered MRR for different choices of the dis-
tance function with K = —1 and n = 40 on ICEWS14.

Distance function MRR
d(P ®e4(t),e,(t) ®p) 55.87
cosh(d(P ®es(t),e,(t) ®p)) 54.00

d(P ®ey(t),P ®e,(t)) 5223

dP®es(t),P®e,(t) ®p) 54.55
d(P ® e4(t),e,(t)) 47.24
d(es(t), eo(t) ®p) 51.36

Model variants To compare the performance of
non-Euclidean embeddings with their Euclidean
counterparts, we implement the Euclidean version
of Equation 4.2 with dy(x,y) = dgr(x,y). We
refer to it as DyERNIE-Euclid. Besides, we train
our model with a single non-Euclidean component
to compare embeddings in a product space and in
a manifold with a constant curvature. We refer
to them as DyERNIE-Prod and DyERNIE-Sgl, re-
spectively. For DyERNIE-Prod, we generate model
configurations with different manifold combina-
tions, i.e. P x S x E,P3. Details about the search
space are relegated to Appendix E.

Link prediction results We compare the base-
lines with three variants of our model: DyERNIE-
Prod, DyERNIE-Sgl, and DyERNIE-Euclid. We re-
port the best results on the test set among all model

configurations in Table 1. Note that the number
of parameters of all baselines matches our model’s
with an embedding dimension of 100. Thus, we see
that both DyERNIE-Prod and DyERNIE-Sgl sig-
nificantly outperform the baselines and DyERNIE-
Euclid on all three datasets with the same number
of parameters. Even at a low embedding dimension
(n = 10), our models still have competitive perfor-
mance, demonstrating the merits of time-dependent
non-Euclidean embeddings. Besides, DyERNIE-
Prod generally performs better than DyERNIE-
Sgl on all three datasets. On the ICEWS14 and
ICEWSO05-15 datasets, we can observe that the
best performing configuration of DyERNIE-Prod
at each dimensionality only contains hyperbolic
component manifolds. This observation confirms
the curvature estimation shown in Figure 2, where
most sectional curvatures on the ICEWS14 and
ICEWSO05-15 datasets are negative.

Table 3: Filtered MRR for different choices of en-
tity representations with K = —1 and n = 40 on
ICEWS14, where A; and w; represent the amplitude
vector and the frequency vector, respectively. ¢; de-
notes the phase shift.

Entity Representations MRR
exp(log(&;) + v;t) 55.87
exp(log(&;) + A sin(w;t + ¢;)) 52.50
exp(log(&;) + vit + A;sin(w;t + ¢;)) 53.52

Ablation study We show an ablation study of
the distance function and the entity representations
in Table 2 and 3, respectively. For the distance
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Figure 4: Scatter plot of velocity norms v.s. node de-
grees on [CEWSO05-15. Each point denotes an entity.

function, we use p and P to get predicate-adjusted
subject and object embeddings and compute the
distance between them. We found that any change
to distance function causes performance degrada-
tion. Especially, removing the translation vector p
most strongly decrease the performance. For the en-
tity representation function, we measure the impor-
tance of a linear trend component and a non-linear
periodic component. We attempt adding trigono-
metric functions into entity representations since a
combination of trigonometric functions can capture
more complicated non-linear dynamics (Rahimi
and Recht, 2008). However, experimental results
in Table 3 show that using only a linear transfor-
mation works the best, which indicates that finding
the correct manifold of embedding space is more
important than designing complicated non-linear
evolution functions of entity embeddings. Addi-
tionally, we found the performance degrades signif-
icantly if removing the dynamic part of the entity
embeddings. For example, on the ICEWS0515
dataset, the Hits@ 1 metric in the static case is only
about half of that in the dynamic case, clearly show-
ing the gain from the dynamism. Details of this
ablation study are provided in Appendix G.

Intrinsic hierarchical structures of temporal
KGs To illustrate geometric, especially the hi-
erarchical, structures of temporal KGs, we focus

other " other
Barack Obama Barack Obama
Dmitry Anatolyevich Medvedev Dmitry Anatolyevich Medvedev

Figure 5: Learned two-dimensional hyperbolic entity
embeddings of ICEWS05-15 on the first timestamp
2005-01-01 (left) and the last timestamp 2015-12-31
(right).

on the Poincaré ball model with a dimension of 20
and plot the geodesic distance d (-, 0) of learned
entity embeddings to the origin of the Poincaré
ball versus the degree of each entity in Figure 3.
Note that the distance is averaged over all times-
tamps since entity embeddings are time-dependent.
We observe that entities with high degrees, which
means they got involved in lots of facts, are gener-
ally located close to the origin. This makes sense
because these entities often lie in the top hierarchi-
cal levels. And thus, they should stand close to the
root. Under the same settings, we plot the veloc-
ity norm of each entity versus the entity degree in
Figure 4. Similarly, we see that entities with high
degrees have a small velocity norm to stay near the
origin of the manifold.

Relative movements between a node pair Fig-
ure 5 shows two-dimensional hyperbolic entity em-
beddings of the ICEWS05-15 dataset on two times-
tamps, 2005-01-01 and 2015-12-31. Specifically,
we highlight a former US president (in orange) and
a former prime minister of Russia (in purple). We
found that the interaction between these two enti-
ties decreased between 2005 and 2015, as shown
in Figure 9 in the appendix. Accordingly, we ob-
serve that the embeddings of these two entities were
moving away from each other. More examples of
learned embeddings are relegated to Appendix F.

6 Conclusion

In this paper, we propose an embedding approach
for temporal knowledge graphs on a product of Rie-
mannian manifolds with heterogeneous curvatures.
To capture the temporal evolution of temporal KGs,
we use velocity vectors defined in tangent spaces
to learn time-dependent entity representations. We
show that our model significantly outperforms its
Euclidean counterpart and other state-of-the-art ap-
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proaches on three benchmark datasets of temporal
KGs, which demonstrates the significance of geo-
metrical spaces for the temporal knowledge graph
completion task.
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Appendices

A Graph Curvature Estimation
Algorithm

We use Algorithm 1 to estimate the sectional cur-
vatures of a dataset developed by Bachmann et al.
(2019).

B Implementation Details of Baselines

Note that the embedding dimension for each (base-
line, dataset) pair matches the number of parame-
ters of our models with an embedding dimension
of 100. We use Table 4 and 12 to compute the rank
for each (baselines, dataset) pair. Besides, for fair-
ness of results, we use the datasets augmented with
reciprocal relations to train all baseline models.

Static knowledge graph embedding models
We use TransE (Bordes et al., 2013), DistMult
(Yang et al., 2014), and ComplEx (Trouillon et al.,
2016) as static baselines, where we compress tem-
poral knowledge graphs into a static, cumulative
graph by ignoring the time information. We use
the cross-entropy loss and Adam optimizer with a
batch size of 128 to train the static baselines. Be-
sides, we use uniform sampling to initialize the
embeddings of entities and predicates. Other hy-
perparameters of the above baselines are shown in
Table 5.

Temporal knowledge graph embedding models
We compare our model’s performance with sev-
eral state-of-the-art temporal knowledge graph em-
bedding methods, including TTransE (Leblay and
Chekol, 2018), TDistMult/TComplEx (Ma et al.,
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Table 4: Number of parameters for each model consid-
ered when using reciprocal relations: d represent the
dimension of embeddings.

Model # Parameters
ComplEx 2lE| +4|P|) - d

TransE (I€] +2|P]|) - d
DistMult (IE| +2|P)) - d
TComplEx (2|E| +4|P|+2|T]) -d
TTransE (|1E] + 2P|+ |T]) - d
TDistMult || +2[P| +|T]) - d

(
HyTE  (|€]+2[P|+|T]) - d
DyERNIE  2(|€] + 2|P|) - d + 2|€|

2018b), and HyTE (Dasgupta et al., 2018). We
use the ADAM optimizer (Kingma and Ba, 2014)
and the cross-entropy loss to train the temporal KG
models. We set learning rate = 0.001, negative sam-
ples pro fact = 500, number of epochs = 500 , batch
size = 256, and validate them every 50 epochs to
select the model giving the best validation MRR.
For the GDELT dataset, we use a similar setting but
with negative samples pro fact = 50 due to the large
size of the dataset. The embedding dimensions of
the above dynamic baselines on each dataset are
shown in Table 6.

Table 5: Hyperparameter settings of static baselines.

Model ‘ TransE DistMult ComplEx
Embedding dimension
ICEWS14 202 202 101
ICEWS05-15 202 202 101
GDELT 202 202 101
Negative Sampling 253 657 1529
Learning rate 3e-4 0.16 0.18

C Datasets

Dataset statistics are described in Table 12. Since
the timestamps in the ICEWS dataset are dates
rather than numbers, we sort them chronologically
and encode them into consecutive numbers.

Table 6: Embedding dimensions of dynamic baselines.

Model ‘ TTransE TDistMult TComplEx HyTE
Embedding dimension
ICEWS14 193 193 96 193
ICEWSO05-15 148 148 74 148
GDELT 151 151 76 151

D Evaluation metrics

Let 1, and )., represent the rank for e; and
e, of the two queries, respectively. We eval-
uate our models using standard metrics across
the link prediction literature: mean reciprocal
rank (MRR): 55— Y cg,.., (g + po) and
HitsQk(k € {1,3,10}): the percentage of times
that the true entity candidate appears in the top k
of ranked candidates.

E Implementation Details of DyERNIE

Signature search On the ICEWS subsets, we
try all manifold combinations with the number
of components of {1,2,3}. Due to the large size
of data samples on the GDELT dataset, we only
try manifold combinations with the number of
components of {1,2}. Specifically, the candi-
dates are {P", S", E™} for single manifolds, {P™ x
St PR x P SMox S™ PR ox B S™ x BN}
for a product of two component manifolds, and
{Pri x P x P Pox S™ox E™S™ o x S™ox
Sri P xP™ox S™i, P7ox ST ox S P x P x
Emi, S™ x S™ x E"} for a product of three com-
ponent manifold. For each combination, we use
the Ax-framework? to optimize the assignment of
dimensions to each component manifold and the
curvatures. The assignment of the best-performing
models are shown in Table 9, 10, and 11. We report
the best results on each dataset in Table 1 in the
main body.

Hyperparameter configurations for best-
performing models We select the loss function
from binary cross-entropy (BCE), margin ranking
loss, and cross-entropy (CE). BCE and CE give a
similar performance and outperform the margin
ranking loss. However, when using the BCE
loss, we could use a large learning rate (Ir > 10)
to speed up the training procedure. In contrast,
models with the CE loss incline overfitting by
large learning rates. Given the BCE loss, we
found the learning rate of 50 works the best for
all model configurations. Furthermore, increasing
negative samples can improve the performance
to some extent, while this impact is weakening
gradually as the number of negative samples
become larger. However, the number of negative
samples largely affect the runtime of the training
procedure. We empirically found that the negative
sample number of 50 is a good compromise

3https://ax.dev
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between the model performance and the training
speed. Besides, there is no statistically significant
difference in the model performance when using
different optimizers, such as Riemannian Adam
(RADAM) and Riemannian stochastic gradient
descent (RSGD). Thus, for the model’s simplicity,
we decide to use RSGD.

Average runtime for each approach & Number
of parameters in each model Table 13 shows
the number of parameters and the average runtime
for each model.

F Visualization

We plot the geodesic distance d4(e;, 0) of learned
entity embeddings with a dimension of 20 to the
manifold’s origin versus the degree of each entity
in Figure 6, where d4(e;, 0) is averaged over all
timestamps since e; is time-dependent. Also, the
degree of each entity is accumulated over all times-
tamps. Each point in the upper plot represents an
entity where the x-coordinate gives their degree,
and the y-coordinate gives their average distance
to the origin. The plot clearly shows the tendency
that entities with high degrees are more likely to
lie close to the origin. The bottom plot shows the
same content but with a sampling of 20% points.
The gray bar around each point shows the variance
of the distance between the entity embedding and
the origin over time.

Figure 7 shows two-dimensional hyperbolic en-
tity embeddings of the ICEWS05-15 dataset on
four timestamps. We highlight some entities to
show the relative movements between them. The
number of interactions between the selected entities
are depicted in Figure 8 and 9, which evolves over
time. Specifically, we highlight Nigerian citizens,
the Nigerian government, head of the Nigerian gov-
ernment, other authorities in Nigeria, and Nigerian
minister in the first row of subplots. Furthermore,
we show the relative movements between the en-
tity embeddings of Barack Obama, Xi Jinping, and
Dmitry Anatolyevich Medvedev in the second row
of subplots. We can see that two entities are get-
ting closer in the Poincare disc if the number of
interactions between them increases.

G Additional Ablation Study

To assess the contribution of the dynamic part of
entity embeddings, we remove the dynamic part
and run the model variant on static knowledge

graphs. Specifically, we compress ICEWS05-15
into a static, cumulative graph by ignoring the
time information. As shown in Table 7, the per-
formance degrades significantly if the entity em-
beddings only have the static part. For example,
on the ICEWS0515 dataset, the Hits@ 1 metric of
DyERNIE-Sgl in the static case is less than half of
that in the dynamic case, clearly showing the gain
from the dynamism.

Table 7: Filtered MRR for dynamic/static entity repre-
sentations with dim = 20 on ICEWSO05-15. Note that
we run the static model variant on static ICEWS05-15.

Entity Representations MRR Hits@1 Hits@3 Hits@10
With dynamic part 63.8 55.9 67.9 8.7
Without dynamic part ~ 38.6 28.3 42.8 59.2
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Figure 6: Each point in the upper plot represents an entity whose x-coordinate gives their degree accumulated over
all timestamps and y-coordinate gives their distance to the origin averaged over all timestamps. The plot clearly
shows the tendency that entities with high degrees are more likely to lie close to the origin. The bottom plot shows
the same content but with a sampling of 20% points. The gray bar around each point shows the variance of the
distance over all timestamps.

(a) The first timestamp (b) the 1000*" timestamp (c) the 2000*" timestamp (d) the 3000*" timestamp
(2005-01-01) (2007-09-28) (2010-06-24) (2013-03-20)

Figure 7: Evolution of entity embeddings over time. We highlight Nigerian citizens, the Nigerian government,
the head of Nigerian government, other authorities in Nigeria, and Nigerian minister in the first row; and Barack
Obama, Xi Jinping, and Dmitry Anatolyevich Medvedeyv in the second row.
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Algorithm 1: Curvature Estimation

Input :Number of iterations 7., number of timestamps 74, Graph Slices {Gi}?j{”e ofa
temporal knowledge graph, Neighbor dictionary .
Output : { K;}"'me

for i = 1 to ngjme do
for m € G; do
for j = 1 to n;er do
b,c ~UN(m)) and a ~ U(G;\{m})
i(m,b,c,a) = m (2dg, (a,m) + dg, (b, ¢)/4 — d& (a,b)/2 + dZ, (a,c)/2)

end
wi (m) = Z;letir ¢j (m7 b, c, a)
end
Ki =2 neq, Yi(m)
end
Table 8: Exponential and logarithmic maps in Poincaré ball and projected hypersphere.
trigonometric functions tang () = tan(-) if K > 0; tanh(-) if K <0
. VIKIMNE
Exponential map expX(v) = (tan ( | 5 HVHQ)f"’lUH )
2
Logarithmic map logy (v) = JIRDE tan' (v/|K||| — x @k Vv||2 ) IX69KVH2
Table 9: Hyperparameter configurations for best-performing models on the ICEWS14 dataset.
Model DyERNIE-Sgl | DyERNIE-Prod | DyERNIE-Euclid
Embedding size 10 20 40 100 ‘ 10 20 40 100 ‘ 10 20 40 100
Curvature
Component A -0.172 -0.171 -0.171 -0.170 | -0.044 -0.114 -0.177 -0346 |0 0 0 O
Component B - - - - -0.128 -0.286 -0.281 -0.137 |- - - -
Component C - - - - -0.371 -0.422 -0.470 -0.855 | - - - -
Dimension scale
Component A 10 20 40 100 3 14 20 20 10 20 40 100
Component B - - - - 1 4 8 21 - - - -
Component C - - - - 6 2 12 59 - - - -
Table 10: Hyperparameter configurations for best-performing models on the ICEWS05-15 dataset.
Model DyERNIE-Sgl ‘ DyERNIE-Prod ‘ DyERNIE-Euclid
Embedding size 10 20 40 100 ‘ 10 20 40 100 ‘ 10 20 40 100
Curvature
Component A -0.180 -0.181 -0.179 -0.178 | -0.102 -0.122 -0.298 -0453 |0 O 0 O
Component B - - - - -0.135 -0.163 -1.243 -0216 |- - - -
Component C - - - - -0.214 -0.191 -1.819 -0.938 | - - - -
Dimension scale
Component A 10 20 40 100 7 10 31 32 10 20 40 100
Component B - - - - 2 8 5 52 - - - -
Component C - - - - 1 2 4 16 - - - -




Table 11: Hyperparameter configurations for best-performing models on the GDELT dataset.

Model DyERNIE-Sgl | DyERNIE-Prod | DyERNIE-Euclid
Embedding size 10 20 40 100 ‘10 20 40 100 ‘10 20 40 100
Curvature
Component A 0.279 0.336 0.259 0.197 | 0.213 0.241 0202 03420 O 0 O
Component B - - - - 0.291 0.336 0.291 0.336 | - - - -
Dimension scale
Component A 10 20 40 100 | 8 10 68 10 20 40 100
Component B - - - - 2 12 30 32 - - - -
Table 12: Datasets Statistics
Dataset Name  [€| [Pl |T] G| ltrainl  lvalidationl  ltestl
ICEWS14 7,128 230 365 90,730 72,826 8,941 8,963
ICEWS05-15 10,488 251 4,017 479,329 386,962 46,275 46,092
GDELT 7,691 240 2975 2,278,405 1,734,399 238,765 305,241

Table 13: Average runtime and parameter number for each approach: runtime is in seconds.

Datasets | ICEWS14 | ICEWS05-15 | GDELT
Rank (d) ‘ Model ‘ Manifold Runtime Parameters ‘ Manifold Runtime Parameters ‘ Manifold  Runtime  Parameters
TransE 3,800 1,531,856 15,200 2,218,976 85,600 1,649,582
100 DistMult E 9,900 1,531,856 E 31,500 2,218,976 E 132,700 1,649,582
ComplEx 4,300 1,531,856 14.100 2,218,976 76,000 1,649,582
TTransE 55,000 1,531,856 430,000 2,218,976 1,500,000 1,649,582
TDistMult 85,000 1,531,856 680,000 2,218,976 2,040,000 1,649,582
100 TComplEx E 65,000 1,531,856 E 520,000 2,218,976 E 1,500,000 1,649,582
HyTE 45,000 1,531,856 360,000 2,218,976 1,100,000 1,649,582
DyERNIE-Prod P3 44,500 1,531,856 P3 343,800 2,218,900 S? 1,259,400 1,649,582
100 DyERNIE-Sgl P 42,000 1,531,856 P 341,900 2,218,976 S 1,208,300 1,649,582
DyERNIE-Euclid E 19,000 1,531,856 E 38,000 2,218,976 E 388,800 1,649,582
DyERNIE-Prod P3 35500 621,296 P3 229,500 900,176 s? 800,000 669,062
40 DyERNIE-Sgl P 32,000 621,296 P 225,000 900,176 S 740,000 669,062
DyERNIE-Euclid E 11,000 621,296 E 25,000 900,176 E 262,000 669,062
DyERNIE-Prod P3 32,500 317,776 P 225,000 460,576 s? 700,000 342,222
20 DyERNIE-Sgl P 31,500 317,776 P 220,000 460,576 S 676,000 342,222
DyERNIE-Euclid E 9,500 317,776 E 22,000 460,576 E 240,000 342,222
DyERNIE-Prod P3 20,500 166,016 p3 165,000 240,776 S? 420,000 178,802
10 DyERNIE-Sgl P 20,500 166,016 P 150,000 240,776 S 400,000 178,802
DyERNIE-Euclid E 6,500 166,016 E 15,000 240,776 E 180,000 178,802
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