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Abstract

Past progress on neural models has proven that

named entity recognition is no longer a prob-

lem if we have enough labeled data. How-

ever, collecting enough data and annotating

them are labor-intensive, time-consuming, and

expensive. In this paper, we decompose the

sentence into two parts: entity and context,

and rethink the relationship between them and

model performance from a causal perspective.

Based on this, we propose the Counterfactual

Generator, which generates counterfactual ex-

amples by the interventions on the existing

observational examples to enhance the origi-

nal dataset. Experiments across three datasets

show that our method improves the generaliza-

tion ability of models under limited observa-

tional examples. Besides, we provide a theo-

retical foundation by using a structural causal

model to explore the spurious correlations be-

tween input features and output labels. We in-

vestigate the causal effects of entity or context

on model performance under both conditions:

the non-augmented and the augmented. Inter-

estingly, we find that the non-spurious corre-

lations are more located in entity representa-

tion rather than context representation. As a

result, our method eliminates part of the spu-

rious correlations between context representa-

tion and output labels. The code is available at

https://github.com/xijiz/cfgen.

1 Introduction

The natural language processing community has

witnessed the paradigm shift from small data to

big data, such as transformer (Vaswani et al., 2017)

and its successors. It is not surprising that machine

learning methods can easily surpass human perfor-

mance if sufficient data is available (Wang et al.,

2018). However, data acquisition is a challeng-

ing task for some special domains. For example,
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Figure 1: Interventions on observational examples of

named entity recognition. More details can be found in

Figure 3

medical concept normalization, a basic subtask of

named entity recognition (NER) in the medical

area, has always been troubled by lack of enough

Electronic Health Records due to the privacy pro-

tection. Small data with selection biases (Torralba

and Efros, 2011) often induce the poor performance

of machine learning models on inputs whose dis-

tribution is different from that of training data,

which yet seems trivial to humans. The same

issues are also mentioned in terms like dataset

bias, model robustness, and real understanding.

In natural language inference, models trained on

hypotheses-only (vs hypotheses-premises) can out-

perform a majority-class baseline (Poliak et al.,

2018; Gururangan et al., 2018). In reading com-

prehension, models trained on question-only or

passage-only (vs question-passage) still achieve

high accuracy (Kaushik and Lipton, 2018), models

predicted on a broken question (vs original ques-

tion) still make the same correct prediction (Feng

et al., 2018a).

The key challenge behind this phenomenon is

caused by spurious correlations of statistical learn-

ing. Spurious correlations can be vividly explained

by an example in computer vision (Arjovsky et al.,

2019): If we consider an image dataset of cows

and camels in their natural habitat, a classifier
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trained on this dataset will establish spurious cor-

relations between the output labels (cows, camels)

and the landscape of the image (green pastures,

deserts). As a result, an image of cows taken on

sandy beaches makes the classifier make a wrong

prediction. In this background, we could not help

thinking that is there any way to eliminate spuri-

ous correlations except more data annotated by

humans? From a causal perspective, spurious cor-

relations are caused by confounding factors rather

than a direct or indirect causal path. If we directly

intervene on the precursor variable in spurious cor-

relations to create counterfactual data, we can elim-

inate the impact of spurious correlations in models

to a certain degree (Volodin et al., 2020).

In this paper, based on the above analysis, we

mainly focus on exploring the spurious correlations

in NER from a causal perspective. We decompose

the sentence into two different parts: entity and

context, and rethink the relationship between them

and the generalization ability of the NER model.

Considering the sentence “John lives in New York”,

we observe that the location entity “New York” and

the context “John lives in” are highly correlated

but are not causal to each other. In other words,

we can intervene on the location entity to set it to

another different location entity without destroying

the sentence correctness at the grammatical level.

Therefore, we propose the Counterfactual Gen-

erator, which generates new counterfactual exam-

ples by the interventions on the existing observa-

tional examples. Our method requires neither an

additional entity dictionary nor a similar domain

dataset. Figure 1 demonstrates the intervention pro-

cess for observational examples. We utilize new

counterfactual examples to enhance the existing

observational examples. Experiments show that

our method improves the generalization ability un-

der limited observational examples. Before the

enhancement, we find that the model performance

is mainly driven by entity representation. After the

enhancement, the importance of entity represen-

tation increases in most cases, and generalization

ability improves in all cases. We conclude that the

non-spurious correlations between input features

and output labels do locate in context representa-

tion (Lin et al., 2020), but the previous two phe-

nomena show that they are more located in entity

representation.

In summary, our work have the following contri-

butions:

• We provide a theoretical foundation from a

causal perspective to describe the mechanism

of the NER model inference and explore the

spurious correlations between input features

and output labels.

• Based on the interventions on the entity,

we propose a weakly-supervised method for

named entity recognition under limited obser-

vational examples. Experiments across three

NER datasets demonstrate that our method

boosts model performance.

2 Counterfactual Generator

In this section, we firstly define the NER prob-

lem. Then, we present our method by introducing a

structural causal model to describe the mechanism

of the NER model inference.

2.1 Task Definition

In this paper, we regard named entity recogni-

tion as a sequence labeling problem. In gen-

eral, we let x = (x1, x2, ..., xn) to denote a se-

quence of tokens. For each token xi, we have a

label yi where yi ∈ Y . For example, Y can be

{O,B-Diagnosis, I-Diagnosis} in the medical area.

The possible labels come from BIO tagging schema

for labeling tokens from the sentence. For each

sentence, we have an entity set E that contains all

entities in this sentence. Finally, we have a labeled

dataset D = {(x, y)}.

2.2 Causal Model

What determines a certain segment in a sentence to

be an entity mention? Why is this entity mention to

be a diagnosis entity? These are causal questions

because they require some information about the

generation process of the data rather than observa-

tional data alone (Pearl et al., 2009). Observational

data with selection biases often gives rise to the

problem of the spurious correlations that results in

low generalization ability of the NER model un-

der limited data. For this problem, causality can

provide an in-depth view of its essence.

To investigate the causal relationship between

the NER model and data clearly, we introduce a

Structural Causal Model (SCM) (Judea, 2000) to

describe the mechanism of the inference process

of the NER model. SCM is expressed visually

by using directed acyclic graphs (DAGs). In the

graph, vertices are random variables, and directed

edges represent direct causation from variable A
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Figure 2: Structural Causal Models (SCMs) that describes the mechanism of the NER model inference. (a) Com-

plete SCM without interventions. (b) Intervening on the variable C by the value c0, denoted as do(C = c0). (c)

Intervening on the variable E by the value e0, denoted as do(E = e0).

to variable B. Here, for simplifying the problem,

we decompose the sentence into the two variables:

entity E and context C. As shown in Figure 2(a),

we assume the following SCM:

g := fG(UG)

e := fE(g, UE)

c := fC(g, UC)

x := fX(e, c, UX)

y := fY (x, UX)

(1)

where G is a confounding variable that influ-

ences the generation of both entity E and context

C, X is the input example that is generated by E

and C, Y is the evaluation result (the F1 score) of

the NER model, and U∗ represents the unmeasured

variable.

Causal effects help us better understand the

causal relationship in a system. The basic method

of estimating causal effects is simulating interven-

tions in SCM. We use a mathematical operator

do(v0) to simulate physical interventions by fix-

ing the value of a variable v as v0. For example,

in order to simulate an intervention do(c0) in the

structural causal model M , we fix the variable C

to c0 as shown in Figure 2(b), denoted as:

c := c0 (2)

This intervention blocks the influence of the vari-

able G on the variable C. The post-intervention

distribution P (y|do(c0)) gives the proportion of in-

dividual that would attain response in level Y = y

under the hypothetical situation in which treat-

ment C = c0 is administered uniformly to the

population (Pearl et al., 2009). Here, we have

P (y|do(c0)) = 1. More proof information can

be found in the appendix.

A way to estimate the treatment effect or causal

effect is to measure the average difference of the

former distribution by using the expectation E,

called Average Causal Effect (ACE), denoted as:

ACEC = E(y|do(c0))−E(y|do(c)) (3)

where c0 and c are the intervened value and the

original value. Similarly, in order to estimate the

causal effects of the variable E on the variable Y ,

we can also intervene on the variable E, denoted

as do(e0) (See Figure 2(c)).

2.3 Method

Our method tries to automatically replace an entity

in an observational example with another differ-

ent entity for creating a new counterfactual exam-

ple. These counterfactual examples help our NER

model deal with spurious correlations on limited

observational examples and learn more invariant

and stable features. As shown in Figure 3, our

method mainly has the following three parts:

1) Set Preparation The core idea of our method

is finding a different entity for intervening on an en-

tity in the observational example. However, finding

a new entity set in a specific domain needs human

efforts to collect entities, which has no difference
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Observational example:
"Papillary adenocarcinoma" was admitted to the hospital. 
Since the onset of the disease, the patient has normal 
appetite, a clear mind, acceptable spirit, acceptable sleep, 
normal stool, normal urine, and no significant change in 
body weight.

Counterfactual example:
"Cataract" was admitted to the hospital. Since the onset of 
the disease, the patient has normal appetite, a clear mind, 
acceptable spirit, acceptable sleep, normal stool, normal 
urine, and no significant change in body weight.

cataract

pneumonia
liver cancer

Diagnosis Set

…

Original

Dataset Discriminator

If the discriminator can recognize the 
replaced entity (cataract) correctly, we 
regard this counterfactual example as a 
reasonable example and add it into the 
dataset.

1)

2)
3)

Augmented

Dataset

Figure 3: An example of the workflow of the Counterfactual Generator on the medical dataset. 1) We prepare the

entity sets by the entity type (diagnosis) from the original dataset. 2) We randomly choose an entity (papillary

adenocarcinoma) in the observational example and replace it with another different entity (cataract) from the

entity set to form a new counterfactual example. It is noteworthy that the replaced entity and the candidate entity

have the same entity type. 3) We send the counterfactual example to the discriminator for finding out the good one.

from annotating more data. Hence, as shown in

Figure 3(1), we adopt local entities as the entity

set, which is extracted from the original dataset.

For example, we iterate all observational examples

in the training dataset to collect all diagnoses to

form a diagnosis set Ed.

2) Entity Intervention We consider using the in-

tervention on the entity to create new counterfactual

examples. As shown in Figure 2(c) and Figure 3(2),

for each observational example, we randomly se-

lect an entity e ∈ E with the entity type diagnosis,

and replace it with another entity e
′

∈ Ed. Impor-

tantly, in order to preserve the linguistic correctness

of the new counterfactual example, we keep the re-

placed entity and the candidate entity have the same

entity type.

3) Example Discrimination A key conflict is

that not all counterfactual examples are correct

or useful. We need a mechanism to discriminate

which counterfactual example is good and make

sure it does not bring in the noise. An intuitive

solution is that we regard the NER model trained

on the original dataset as the discriminator that

provides well prior knowledge for inspecting our

counterfactual examples. More specifically, as

shown in Figure 3(3), the discriminator assists us

to check whether the replaced entity is successfully

predicted. If no, the counterfactual example will

be discarded, otherwise, it will be outputted.

After executing all procedures, we have an aug-

Dataset Train Dev Test Total

CNER 1322 164 164 1650

IDiag 9274 1157 1157 11588

CLUENER 9674 1208 1208 12090

Table 1: Statistics of datasets: CNER, IDiag, and

CLUENER. All datasets are divided into three parts of

train set (80%), dev set (10%), and test set (10%).

mented dataset that mixes observational examples

and counterfactual examples. Afterwards, we can

train the NER model on the augmented dataset.

3 Experiments

In this section, we mainly evaluate our method

across three NER datasets, including two medical

concept recognition datasets, and a conventional

NER dataset.

3.1 Dataset

CNER1 CNER is a Chinese clinical NER dataset

in the CCKS-2019 challenge, including anatomy,

disease, imaging examination, laboratory examina-

tion, drug, and operation. We extract 1650 avail-

able medical records from CNER, which contains

entities of the disease type only.

IDiag For guaranteeing the diversity of the ex-

perimental data, we use Label Studio2 to create

1http://www.ccks2019.cn/?page id=62
2https://labelstud.io/
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a new medical NER dataset. We collect 12127

health record images from the hospital, which are

converted into text paragraphs by optical character

recognition (OCR). We hire some people to anno-

tate diagnoses in these text paragraphs. To ensure

the high quality of the dataset, we removed 539

data examples in the final dataset. It is worth noting

that the distribution of IDiag, compared to CNER,

has a big difference due to error text recognition

from OCR.

CLUENER (Xu et al., 2020) In addition to the

medical NER datasets, we also use a conven-

tional NER dataset CLUENER released by CLUE

organization3, which is a well-defined and fine-

grained dataset for named entity recognition in Chi-

nese, including 10 categories like Person Name,

Organzation, Book, etc. We extract 12090 avail-

able instances from this dataset.

All datasets are separately divided into three por-

tions of 80% D1, 10% D2 and 10% D3. D1 is used

to train models. D2 is used to tune hyperparame-

ters. D3 is used to test the model performance (See

Table 1).

3.2 Models

We conduct our experiments by using the follow-

ing two classic models: LSTMTagger (Chiu and

Nichols, 2016) and BERTTagger (Devlin et al.,

2019). Our LSTMTagger consists of a bidirec-

tional LSTM for encoding the input example and a

dense layer (Tagger) for tagging all tokens. Each

token is embedded by the pretrained word embed-

ding (Song et al., 2018). Similarly, our BERTTag-

ger consists of a pretrained BERT for encoding

the input example and a dense layer (Tagger) for

tagging all tokens.

3.3 Setup

In our experiments, we evaluate our method in two

settings: NoAug and Aug. NoAug represents we

train our models on the original dataset. Aug repre-

sents we train our models on the augmented dataset.

We also set up five groups of experiments for each

dataset. In each group, we only select N (100, 200,

300, 400, and 500) data from the train set to train

models for evaluating performance under limited

observational examples. At the same time, we al-

ways keep the dev set and test set unchanged in all

experiments.

3https://www.cluebenchmarks.com/

Additionally, we also conduct another experi-

ment to calculate ACE of entity E or context C

on the model performance Y . We design a special

token [EMPTY] to replace tokens in entity E and

tokens in context C separately, which is viewed

as interventions. Once a token is replaced with

[EMPTY] in an input example, all dimensions of

token embedding will be zero. There are two inter-

vened schemes corresponding to Figure 2(b) and

Figure 2 (c) respectively, denoted as:

• do(e0) Replacing all tokens in entities with

[EMPTY] and keeping context unchanged.

• do(c0) Replacing all tokens in the input exam-

ple with [EMPTY] except tokens in entities.

3.4 Metrics

3.4.1 NER Evaluation

In this work, we mainly consider the performance

at the entity level, which means the ground truth

and the result have the same entity type and over-

lap boundaries are just taken into account. Hence,

we use the relaxed metrics (Chinchor and Sund-

heim, 1993): micro-average F1 score (F1), preci-

sion (P), and recall (R). Besides, we also use the

micro-average F1 score at the token level for the

later causal analysis, which evaluates predictions

only by tokens.

3.4.2 RI Index

We design an index to evaluate the Relative Im-

portance (RI) between entity E and context C,

denoted as:

RI = ACEC −ACEE (4)

This index indicates that the higher the RI is, the

more important the entity representation is during

the process of the model inference. Otherwise,

the representation of context is more important.

For example, they have the same importance when

RI = 0. We adopt two different ways (Entity

Level and Token Level) to calculate the variable Y

(the F1 score) for attaining both the coarse-grained

and the fine-grained results.

3.5 Main Results

As we can see, table 2 shows the comparisons be-

tween NoAug and Aug. We can see that our method

achieves a huge improvement in almost all settings.

For CNER, our method achieves the best results

and yields a boost of 8.68% on average. Even
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CNER (%)

N
LSTM (NoAug) LSTM (Aug) BERT (NoAug) BERT (Aug)

F1 P R F1 P R F1 P R F1 P R

100 43.8 40.1 48.3 55.6 (+11.8) 51.0 61.0 47.2 43.2 52.1 47.6 (+0.4) 41.1 56.6

200 49.3 46.5 52.4 64.1 (+14.8) 60.8 67.8 57.1 52.4 62.7 68.3 (+11.1) 61.1 77.3

300 50.9 49.3 52.6 66.3 (+15.4) 61.4 71.9 61.1 53.8 70.8 71.4 (+10.3) 65.8 78.1

400 58.9 57.6 60.3 67.7 (+8.8) 65.8 69.7 73.7 70.2 77.5 77.4 (+3.7) 74.3 80.7

500 64.0 59.6 69.1 70.5 (+6.5) 67.4 74.0 74.9 71.4 78.7 78.8 (+4.0) 75.8 82.1

IDiag (%)

N
LSTM (NoAug) LSTM (Aug) BERT (NoAug) BERT (Aug)

F1 P R F1 P R F1 P R F1 P R

100 55.3 52.6 58.4 62.1 (+6.8) 57.3 67.7 58.3 52.4 65.8 67.9 (+9.6) 61.9 75.2

200 64.0 61.1 67.2 68.0 (+4.0) 64.0 72.4 67.9 63.4 73.2 72.6 (+4.7) 68.6 77.0

300 66.6 64.2 69.2 72.6 (+6.0) 69.7 75.7 71.8 67.8 76.5 76.1 (+4.2) 72.2 80.4

400 68.8 66.3 71.6 73.9 (+5.1) 70.5 77.6 73.7 70.2 77.5 77.4 (+3.7) 74.3 80.7

500 70.9 68.5 73.6 74.8 (+3.9) 72.6 77.2 74.9 71.4 78.7 78.8 (+4.0) 75.8 82.1

CLUENER (%)

N
LSTM (NoAug) LSTM (Aug) BERT (NoAug) BERT (Aug)

F1 P R F1 P R F1 P R F1 P R

100 7.8 6.5 9.8 11.3 (+3.5) 9.9 13.2 30.2 25.9 36.3 34.8 (+4.6) 27.8 46.4

200 15.2 13.5 17.4 20.4 (+5.2) 17.8 23.8 43.8 36.5 54.7 48.5 (+4.7) 40.9 59.6

300 19.4 17.1 22.4 23.4 (+4.0) 20.3 27.6 47.0 39.3 58.5 53.0 (+6.0) 46.3 61.8

400 21.8 18.1 27.6 26.7 (+4.9) 24.8 28.9 51.5 44.8 60.6 55.2 (+3.7) 47.9 65.2

500 25.4 23.1 28.1 29.1 (+3.8) 26.4 32.6 53.3 46.8 61.8 57.1 (+3.9) 50.2 66.3

Table 2: Results on datasets: CNER, IDiag, and CLUENER. N represents the number of training examples. Aug

and NoAug represent whether we use our method for the augmentation or not.

Dataset

ACE at Entity Level ACE at Token Level

LSTMTagger BERTTagger LSTMTagger BERTTagger

ACEC ACEE RI ACEC ACEE RI ACEC ACEE RI ACEC ACEE RI

CNER -0.40 -0.49 0.08 -0.21 -0.71 0.50 -0.33 -0.66 0.33 -0.39 -0.85 0.46

IDiag -0.28 -0.56 0.28 -0.04 -0.76 0.72 -0.20 -0.53 0.33 -0.11 -0.91 0.81

CLUENER -0.20 -0.51 0.31 -0.14 -0.68 0.54 -0.16 -0.65 0.49 -0.23 -0.80 0.57

Table 3: Average Causal Effect (ACE) of entity E or context C on the model performance Y . Entity Level and

Token Level are two different evaluation methods for the NER model (See Section 3.4). ACEC denotes the

ACE when intervening on the variable C by c0. ACEE denotes the ACE when intervening on the variable E by

e0. The RI index denotes the difference between ACEC and ACEE , which indicates the relative importance

between entity representation and context representation. The higher the RI index, the more important the entity

representation is during the process of the model inference.

for IDiag that has much noise, our method still

achieves a huge gain of +5.2% improvement on

average. We notice that our method only achieves

a boost of 4.43% on average for CLUENER. Com-

pared to the former two datasets, the reason for a

lesser performance boost is that CLUENER con-

tains more entity types than CNER and IDiag (10

vs 1, 1).

Table 3 demonstrates the ACE results for dif-

ferent combinations between datasets, models, and

evaluation ways in test set without augmentation.

Interestingly, we check the RI index and observe

that the importance of entity representation is al-

ways far greater than the importance of representa-

tion of context.
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Figure 4: RI Index Changes between the non-augmented and the augmented. Different rows represent dif-

ferent models (LSTMTagger, BERTTagger); Different columns represent different datasets (CNER, IDiag, and

CLUENER); N denotes the number of examples taken out from the train set.

4 Discussion

In this section, we will firstly review our previ-

ous results, and then try to answer some potential

questions that others may ask for a deep under-

standing of our method. Secondly, we will provide

some real counterfactual examples to vividly illus-

trate our method. Finally, some limitations of our

method that we have found so far are presented to

guide future research. We hope these limitations

can help readers understand our method better.

4.1 Analysis

Our method achieves significant improvements

across three datasets, but there are always a few

mysteries that haunt us. Q1: Do counterfactual

examples change the causal effect between entity

E and context C on model performance Y ? Q2:

Why does this simple method perform well on small

training data? Q3: Are those counterfactual ex-

amples that were created out of air correct or rea-

sonable? A similar research also makes use of

entity replacement to enhance the pretrained lan-

guage model for improving zero-shot fact comple-

tion task. However, it considers the replaced entity

as a negative sample (Xiong et al., 2020). Q4: Why

can making use of a counterfactual example as a

positive sample here still improve performance?

4.1.1 Answer for Q1

Since the RI index is huge under the circumstance

that there is no data augmentation by using coun-

terfactual examples, a question arises in our mind:

how will the RI index change after using coun-

terfactual examples to train NER model? Hence,

we design another experiment to compare the RI

changes between the non-augmented and the aug-

mented. As shown in Figure 4, we observe that the

RI index boosts in most cases after using counter-

factual examples. Even for the RI index in those

experimental groups which does not increase, it

is almost always a positive number. Compared to

context representation, entity representation domi-

nates the performance of the NER model in most

cases, especially for models based on BERT. This

phenomenon suggests that the non-spurious cor-

relations are more located in entity representation

rather than context representation.

4.1.2 Answer for Q2

The essence of our method is forcing the disentan-

glement of entity E and context C in the input ex-

ample, and to recombine them for generating new

counterfactual examples. Before, we claim that

the rationality of this operation is that entity and

context are not a causal relationship. Our causal

results show that the NER model will pay more

attention to entities in the prediction process rather

than context. Agarwal et al. also find that entity

representation contributes more than context repre-

sentation to system performance. Hence, to a cer-

tain extent, context representation may have more

spurious correlations between the input features

and output labels. The recombination of entity

and context can increase the diversity of training
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雷尼尔森林公园有非常完备的公路和服务设施，让你看尽高深峡谷下的碧绿色溪水、漫山遍野的七彩野花。

Mt. Rainier National Park has very complete roads and service facilities, allowing you to see the turquoise waters under the deep cany

ons and the colorful wildflowers all over the mountains.
Observational Example

费沙岛有非常完备的公路和服务设施，让你看尽高深峡谷下的碧绿色溪
水、漫山遍野的七彩野花。

Fraser Island has very complete roads and service facilities, allowing

you to see the turquoise waters under the deep canyons and the color

ful wildflowers all over the mountains.

Counterfactual Example 1

清水寺有非常完备的公路和服务设施，让你看尽高深峡谷下的碧绿色溪
水、漫山遍野的七彩野花。

Counterfactual Example 2

Kiyomizu Temple has very complete roads and service facilities, allo

wing you to see the turquoise waters under the deep canyons and the

colorful wildflowers all over the mountains.

布鲁克林大桥、南街海港、总督岛和埃利斯岛等著名景点，全纽约最美的风景都将被你收入囊中！

Famous sights such as Brooklyn Bridge, South Street Seaport, Governors Island and Ellis Island, the most beautiful scenery in New 

York will be yours!
Test Example

2. Entity Recognition

Model without Augmentation Model with Augmentation

1. Counterfactual Generation

Reasonable Example Unreasonable Example

SCENE

O

SCENE SCENE SCENE

SCENE

O O O

O

Figure 5: Real examples of counterfactual example generation and entity recognition. The NER model augmented

with reasonable counterfactual examples outperforms the same one without augmentation.

samples and eliminate the spurious correlations be-

tween variant features in context representation and

output labels.

4.1.3 Answer for Q3&Q4

It would be interesting to ask a question: counter-

factual examples have factual errors, and are they

correct or reasonable? We have two answers from

different views. On one hand, these counterfactual

examples do have factual errors and are wrong. So

we can regard the counterfactual example as a neg-

ative sample for improving the model performance

at high-level tasks, such as semantic level or factual

level (Xiong et al., 2020). On the other hand, these

counterfactual examples are reasonable for named

entity recognition because the task only focuses

on better finding out entities and ignores the fac-

tual information. More importantly, our method

preserves the linguistic correctness of the counter-

factual example since the replaced entity and the

candidate entity have the same entity type. These

are the deep reason why the generalization ability

of the NER model gets better after we treat the

counterfactual example as a positive sample.

4.2 Case Study

As shown in Figure 5, we illustrate counterfactual

generation and entity recognition, using the model

LSTMTagger trained on the dataset CNER with

training sample size N = 200.

When the original SCENE entity Mt. Rainier

National Park is replaced by the other two SCENE

entity, Fraser Island and Kiyomizu Temple, the dis-

criminator judges the first counterfactual example

to be reasonable, while the second is unreasonable.

The second counterfactual example violates com-

mon sense because there are no canyons or colorful

flowers all over the mountains in the temple. The

real examples mean that our discriminator is able

to filter out some extreme unreasonable counter-

factual examples, and preserve some reasonable

counterfactual examples that may appear in the

real world.

Surprisingly, we can see the NER model aug-

mented with counterfactual examples outperforms

the NER model trained with only observational

examples. Due to the help of the counterfactual ex-

ample, ”Fraser Island has very complete roads and

service facilities, allowing you to see the turquoise

waters under the deep canyons and the colorful

wildflowers all over the mountains.”, the NER

model with counterfactual data augmentation can

recognize all island entities with type SCENE,

while the model without augmentation can not rec-

ognize these entities.

This illustration shows that our method can break

the entanglement of the spurious features and the

non-spurious features in the input example in the

setting of limited observational examples.
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4.3 Limitations

Although experimental results have shown the ef-

fectiveness of our method, our method can be fur-

ther improved in terms of obtaining the most rea-

sonable counterfactual examples. The capability

of current discriminator is limited and the number

of counterfactual examples regarded reasonable is

large, which is not allowed especially for the large

train set (N > 500). Although these examples

increase the diversity of the combination between

the entity and the context from the existing obser-

vational examples, there are lots of repeated text

fragments in these examples. As far as we know,

too many repeated text fragments would cause the

CRF layer not to converge.

5 Related Works

We introduce the related works from two aspects:

Data Modification and Causality Recently,

there is an increasing number of research works

about data modification for providing the inter-

pretability of neural models. For example, Feng

et al. and Gururangan et al. reveal that neural

models are overconfident in their predictions by

reducing words or sentences; Ebrahimi et al. also

find that adversarial examples generated by some

manipulations at a character-level or a word-level

can trick neural classifier. Additionally, consider-

able attention has been paid to utilize data modi-

fication for augmenting dataset or providing a su-

pervised signal in the training process. For exam-

ple, a rule-based data augmentation protocol has

been proposed to provide a compositional inductive

bias (Andreas, 2020); Kaushik et al. create new

counterfactual sentences by modifying the origi-

nal sentence for ameliorating the harm of spuri-

ous correlations; Xiong et al. introduce the type-

constrained entity replacements to provide extra

training signal for learning better factual knowl-

edge. Interestingly, the above two points about data

modification have high connections with causal in-

ference because we can regard data modification

as an intervention (Pearl et al., 2016) from a causal

perspective. For instance, Ilse et al. provide a

theoretical foundation from a causal perspective

for explaining current data augmentation in com-

puter vision. Kaushik et al. investigate the spurious

correlations in two tasks: sentiment analysis and

natural language inference.

Named Entity Recognition In this paragraph,

we mainly focus on named entity recognition with

limited supervision. One way to train the NER

model with low-resource is dictionary-based dis-

tantly supervision (Fries et al., 2017; Shang et al.,

2018; Yang et al., 2018; Liu et al., 2019) which

builds a dictionary of entities for creating training

data without too much effort. Few-shot learning

is another promising way for training the NER

model under limited supervision by transferring

prior knowledge of the source domain to a new

domain (Fritzler et al., 2019; Hou et al., 2019).

There are also some works that focus on redefin-

ing NER as a different problem for reducing the

need of hand-labeled training data. For example,

Linking Rules (Safranchik et al., 2020) based on

votes recognize entities through whether adjacent

elements in a sequence belong to the same class;

Lin et al. propose a new effective proxy of hu-

man explanation, “entity triggers”, for encouraging

label-efficient learning of NER models.

6 Conclusion

In this paper, we propose a weakly-supervised

method from a causal perspective and provide the

interpretability of our method with the structural

causal model. Our method improves generaliza-

tion ability under limited observational examples.

Our causal experiments suggest the spurious cor-

relations are more located in entity representation

rather than context representation. Importantly, our

method eliminates part of the spurious correlations

between input features and output labels.
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pher Ré. 2017. Swellshark: A generative model
for biomedical named entity recognition without la-
beled data. CoRR, abs/1704.06360.

Alexander Fritzler, Varvara Logacheva, and Maksim
Kretov. 2019. Few-shot classification in named en-
tity recognition task. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing,
SAC 2019, Limassol, Cyprus, April 8-12, 2019,
pages 993–1000.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.

Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112.

Yutai Hou, Zhihan Zhou, Yijia Liu, Ning Wang, Wanxi-
ang Che, Han Liu, and Ting Liu. 2019. Few-shot se-
quence labeling with label dependency transfer and
pair-wise embedding.

Maximilian Ilse, Jakub M. Tomczak, and Patrick Forré.
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A Appendix

A.1 Proof of the Post-intervention

Distribution

In this section, we give the proof of the post-

intervention distribution P (y|do(c0)) = 1.

Firstly, we review the definition of the structural

causal model (SCM) (See Figure 2(a)):

e := fE(g)

c := fC(g)

x := fX(e, c)

y := fY (x)

(5)

where G is a confounding variable that influ-

ences the generation of both entity E and context

C, X is the input example that is generated by

E and C, and Y is the evaluation result (the F1
score) of the NER model. For clarity, we omit the

unmeasured variables.

We use a mathematical operator do(c0) to simu-

lates physical interventions by fixing the value of

the variable c as c0 (See Figure 2(b)). The post-

intervention distribution P (y|do(c0)) gives the pro-

portion of individual that would attain response

in level Y = y under the hypothetical situation

in which treatment C = c0 is administered uni-

formly to the population. In order to calculate

P (y|do(c0)), based on Bayes’ rule, we have

P (y|do(c0)) =
∑

x

P (y|do(c0), x)P (x|do(c0))

=
∑

x

P (y|do(x0))P (x|do(c0))

(6)

For gauging the effect of context C on the in-

put example X , we need to calculate P (x|do(c0)).
However, there is a confounding variable G affects

both entity E and context C. Fortunately, the vari-

able E meets the backdoor criterion, and blocks

the backdoor path C ← G→ E → X . Using the

adjustment formula, we have

P (x|do(c0)) =
∑

e

P (x|c0, e)P (e) (7)

In such condition, we have P (e) = 1 be-

cause our entity E = e is unchanged and unique

for each input example. Besides, we also have

P (x|do(c0)) = 1 though our input example X =
x is changed but unique. Therefore, we have

P (y|do(c0)) = 1 due to the certainty of the NER

model for an input example. Similarly, as shown

in Figure 2(c), we can also intervene on the vari-

able E, denoted as do(e0) and have the same post-

intervention distribution P (y|do(e0)) = 1.


