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Abstract

We present WHERE ARE YOU? (WAY), a
dataset of ∼6k dialogs in which two humans
– an Observer and a Locator – complete a co-
operative localization task. The Observer is
spawned at random in a 3D environment and
can navigate from first-person views while an-
swering questions from the Locator. The Lo-
cator must localize the Observer in a detailed
top-down map by asking questions and giving
instructions. Based on this dataset, we define
three challenging tasks: Localization from Em-
bodied Dialog or LED (localizing the Observer
from dialog history), Embodied Visual Dialog
(modeling the Observer), and Cooperative Lo-
calization (modeling both agents). In this pa-
per, we focus on the LED task – providing a
strong baseline model with detailed ablations
characterizing both dataset biases and the im-
portance of various modeling choices. Our
best model achieves 32.7% success at identi-
fying the Observer’s location within 3m in un-
seen buildings, vs. 70.4% for human Locators.

1 Introduction

Imagine getting lost in a new building while trying
to visit a friend who lives or works there. Unsure
of exactly where you are, you call your friend and
start describing your surroundings (‘I’m standing
near a big blue couch in what looks like a lounge.
There are a set of wooden double doors opposite
the entrance.’) and navigating in response to their
questions (‘If you go through those doors, are you
in a hallway with a workout room to the right?’).
After a few rounds of dialog, your friend who is
familiar with the building will hopefully know your
location. Success at this cooperative task requires
goal-driven questioning based on your friend’s un-
derstanding of the environment, unambiguous an-
swers communicating observations via language,

∗Now at Google.

Locator Observer

I am in a kitchen with 
a wood dining table 
with orange placemats. 

Can you describe the 
area you are in?

No I am on side opposite 
the kitchen.

Are you standing on 
the side table near 
the kitchen?

I am next to a brown 
circular table with 
gray chairs. 

Are you in the 
kitchen or the 
living room?

Can you describe 
where you are?

I’m at the edge of the 
kitchen near the white 
counter

Locator Observer
Locator Observer

Figure 1: LED Task: The Locator has a top-down map
of the building and is trying to localize the Observer
by asking questions and giving instructions. The Ob-
server has a first person view and may navigate while
responding to the Locator. The turn-taking dialog ends
when the Locator predicts the Observer’s position.

and active perception and navigation to investigate
the environment and seek out discriminative obser-
vations.

In this work we present WHERE ARE YOU?
(WAY), a new dataset based on this scenario. As
shown in Fig. 1, during data collection we pair
two annotators: an Observer who is spawned at
random in a novel environment, and a Locator who
must precisely localize the Observer in a provided
top-down map. The map can be seen as a proxy for
familiarity with the environment – it is highly de-
tailed, often including multiple floors, but does not
show the Observer’s current or initial location. In
contrast to the “remote” Locator, the Observer nav-
igates within the environment from a first-person
view but without access to the map. To resolve
this information asymmetry and complete the task,
the Observer and the Locator communicate in a
live two-person chat. The task concludes when the
Locator makes a prediction about the current loca-
tion of the Observer. For the environments we use
the Matterport3D dataset (Chang et al., 2017) of
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90 reconstructed indoor environments. In total, we
collect∼6K English dialogs of humans completing
this task from over 2K unique starting locations.

The combination of localization, navigation, and
dialog in WAY provides for a variety of modeling
possibilities. We identify three compelling tasks
encapsulating significant research challenges:

– Localization from Embodied Dialog. LED,
which is the main focus of this paper, is the state es-
timation problem of localizing the Observer given
a map and a partial or complete dialog between
the Locator and the Observer. Although localiza-
tion from dialog has not been widely studied, we
note that indoor localization plays a critical role
during calls to emergency services (Falcon and
Schulzrinne, 2018). As 3D models and detailed
maps of indoor spaces become increasingly avail-
able through indoor scanners (Chang et al., 2017),
LED models could have the potential to help emer-
gency responders localize emergency callers more
quickly by identifying locations in a building that
match the caller’s description.

– Embodied Visual Dialog. EVD is the naviga-
tion and language generation task of fulfilling the
Observer role. This involves using actions and lan-
guage to respond to questions such as ‘If you walk
out of the bedroom is there a kitchen on your left?’
In future work we hope to encourage the transfer
of existing image-based conversational agents (Das
et al., 2017a) to more complex 3D environments
additionally requiring navigation and active vision,
in a step closer to physical robotics. The WAY
dataset provides a testbed for this.

– Cooperative Localization. In the CL task, both
the Observer and the Locator are modeled agents.
Recent position papers (Baldridge et al., 2018; Mc-
Clelland et al., 2019; Bisk et al., 2020) have called
for a closer connection between language models
and the physical world. However, most reinforce-
ment learning for dialog systems is still text-based
(Li et al., 2016) or restricted to static images (Das
et al., 2017b; De Vries et al., 2017). Here, we
provide a dataset to warm-start and evaluate goal-
driven dialog in a realistic embodied setting.

Our main modeling contribution is a strong base-
line model for the LED task based on LingUnet
(Misra et al., 2018). In previously unseen test en-
vironments, our model successfully predicts the
Locator’s location within 3 meters 32.7% of the
time, vs. 70.4% for the human Locators using the
same map input, with random chance accuracy at

6.6%. We include detailed studies highlighting the
importance of data augmentation and residual con-
nections. Additionally, we characterize the biases
of the dataset via unimodal (dialog-only, map-only)
baselines and experiments with shuffled and ab-
lated dialog inputs, finding limited potential for
models to exploit unimodal priors.
Contributions: To summarize:

1. We present WAY, a dataset of ∼6k dialogs in
which two humans with asymmetric informa-
tion complete a cooperative localization task
in reconstructed 3D buildings.

2. We define three challenging tasks: Localiza-
tion from Embodied Dialog (LED), Embodied
Visual Dialog, and Cooperative Localization.

3. Focusing on LED, we present a strong base-
line model with detailed ablations characteriz-
ing both modeling choices and dataset biases.

2 Related Work

Image-based Dialog Several datasets grounding
goal-oriented dialog in natural images have been
proposed. The most similar settings to ours are
Cooperative Visual Dialog (Das et al., 2017a,b), in
which a question agent (Q-bot) attempts to guess
which image from a provided set the answer agent
(A-bot) is looking at, and GuessWhat?! (De Vries
et al., 2017), in which the state estimation prob-
lem is to locate an unknown object in the image.
Our dataset extends these settings to a situated 3D
environment allowing for active perception and
navigation on behalf of the A-bot (Observer), and
offering a whole-building state space for the Q-bot
(Locator) to reason about.

Embodied Language Tasks. A number of ‘Em-
bodied AI’ tasks combining language, visual per-
ception, and navigation in realistic 3D environ-
ments have recently gained prominence, includ-
ing Interactive and Embodied Question Answering
(Das et al., 2018; Gordon et al., 2018), Vision-and-
Language Navigation or VLN (Anderson et al.,
2018; Chen et al., 2019; Mehta et al., 2020; Qi
et al., 2020), and challenges based on household
tasks (Puig et al., 2018; Shridhar et al., 2020).
While these tasks utilize only a single question
or instruction input, several papers have extended
the VLN task – in which an agent must follow
natural language instructions to traverse a path in
the environment – to dialog settings. Nguyen and
Daumé III (2019) consider a scenario in which the
agent can query an oracle for help while complet-
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ing the navigation task. However, the closest work
to ours is Cooperative Vision-and-Dialog Naviga-
tion (CVDN) (Thomason et al., 2019). CVDN is
a dataset of dialogs in which a human assistant
with access to visual observations from an oracle
planner helps another human complete a naviga-
tion task. CVDN dialogs are set in the same Mat-
terport3D buildings (Chang et al., 2017) and like
ours they are goal-oriented and easily evaluated.
The main difference is that we focus on localiza-
tion rather than navigation. Qualitatively, this en-
courages more descriptive utterances from the first-
person agent (rather than eliciting short questions).
Our work is also related to Talk the Walk (de Vries
et al., 2018) which presented a dataset for a similar
task in an outdoor setting using a restricted, highly-
abstracted map which encouraged language that is
grounded in the semantics of building types rather
than visual descriptions of the environment.

Table 1 compares the language in WAY against
existing embodied perception datasets. Specifically,
size, length and the density of different parts of
speech (POS) are shown. Vocab size was deter-
mined by the total number of unique words. We
used the (Loper and Bird, 2002) POS tagger to
calculate the POS densities over the text in each
dataset. We find that WAY has a higher density
of adjectives, nouns, and prepositions than related
datasets suggesting the dialog is more descriptive
than the text in existing datasets.

Localization from Language. While localization
from dialog has not been intensively studied, lo-
calization from language has been studied as a
sub-component of instruction-following navigation
agents (Blukis et al., 2018; Anderson et al., 2019;
Blukis et al., 2019). The LingUnet model – a
generic language-conditioned image-to-image net-
work we use as the basis of our LED model in
Section 4 – was first proposed in the context of pre-
dicting visual goals in images (Misra et al., 2018).
This also illustrates the somewhat close connection
between grounding language to a map and ground-
ing referring expressions to an image (Kazemzadeh
et al., 2014; Mao et al., 2016).

It is important to note that localization is often a
precursor to navigation – one which has not been
addressed in existing work in language-based navi-
gation. In both VLN and CVDN, the instructions
are conditioned on specific start locations – assum-
ing the speaker knows the navigator’s location prior
to giving directions. The localization tasks of the

WAY dataset fill this gap by introducing a dialog-
based means to localize the navigator. This requires
capabilities such as describing a scene, answering
questions, and reasoning about how discriminative
potential statements will be to the other agent.

3 WHERE ARE YOU? Dataset

We present the WHERE ARE YOU? (WAY) dataset
consisting of 6,154 human embodied localization
dialogs across 87 unique indoor environments.

Environments. We build WAY on Matterport3D
(Chang et al., 2017), which contains 90 buildings
captured in 10,800 panoramic images. Each build-
ing is also provided as a reconstructed 3D textured
mesh. This dataset provides high-fidelity visual
environments in diverse settings including offices,
homes, and museums – offering numerous objects
to reference in localization dialogs. We use the
Matterport3D simulator (Anderson et al., 2018) to
enable first-person navigation between panoramas.

Task. A WAY episode is defined by a starting lo-
cation (i.e. a panorama p) in an environment e. The
Observer is spawned at p0 in e and the Locator is
provided a top-down map of e (see Fig. 1). Starting
with the Locator, the two engage in a turn-based dia-
log (L0, O0, . . . LT−1, OT−1) where each can pass
one message per turn. The Observer may move
around in the environment during their turn, result-
ing in a trajectory (p0, p1, . . . , pT ) over the dialog.
The Locator is not embodied and does not move
but can look at the different floors of the house
at multiple angles. The dialog continues until the
Locator uses their turn to make a prediction (p̂T ) of
the Observer’s current location (pT ). The episode
is successful if the prediction is within k meters of
the true final position – i.e. ||pT − p̂T ||2 < k m.
This does not depend on the initial position, encour-
aging movement to easily-discriminable locations.

Map Representation. The Locator is shown top-
down views of Matterport textured meshes as en-
vironment maps. In order to increase the visibility
of walls in the map (which may be mentioned by
the Observer), we render views using perspective
rather than orthographic projections (see left in
Fig. 1). We set the camera near and far clipping
planes to render single floors such that multi-story
buildings contain an image for each floor.

3.1 Collecting Human Localization Dialogs
To provide a human-performance baseline and
gather training data for agents, we collect human
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Table 1: Comparison of the language between the WAY dataset and related embodied perception datasets.

Method Dataset Size Vocab Size Avg Text Length Noun Density Adj Density Preposition Density Dialog

CVDN 2050 2165 52 0.20 0.06 0.09 Yes
TtW 10K 7846 110 0.20 0.07 0.11 Yes
VLN 21K 3459 29 0.27 0.03 0.17 No

WAY 6154 5193 61 0.30 0.12 0.18 Yes

Figure 2: Left: Distribution of human localization error in WAY (20+ includes wrong floor predictions). Right:
Human success rates (error <3m) by environment. Bar color indicates environment size (number of nodes) and
pattern the number of floors.

localization dialogs in these environments.

Episodes. We generate 2020 episodes across 87
environments by rejection sampling to avoid spatial
redundancy. For each environment, we iteratively
sample start locations, rejecting ones that are within
5m of already-sampled positions. Three environ-
ments were excluded due to their size (too large or
small) or poor reconstruction quality.

Data Collection. We collect dialogs on Amazon
Mechanical Turk (AMT) – randomly pairing work-
ers into Observer or Locator roles for each episode.
The Observer interface includes a first-person view
of the environment and workers can pan/tilt the
camera in the current position or click to navigate to
adjacent panoramas. The Locator interface shows
the top-down map of the building, which can be
zoomed and tilted to better display the walls. Views
for each floor can be selected for multi-story envi-
ronments. Both interfaces include a chat window
where workers can send their message and end their
dialog turn. The Locator interface also includes
the option to make their prediction by clicking a
spot on the top-down map – terminating the dialog.
Note this option is only available after two rounds
of dialog. Refer to the appendix for further details
on the AMT interfaces.

Before starting, workers were given written in-
structions and a walk-through video on how to per-
form their role. We restricted access to US workers
with at least a 98% success rate over 5,000 previous

tasks. Further, we restrict workers from repeating
tasks on the same building floor. In order to fil-
ter bad-actors, we monitored worker performance
based on a running-average of localization error in
meters and the number of times they disconnected
from dialogs – removing workers who exceeded a
10m threshold and discarding their data.

Dataset Splits. We follow the standard splits for
the Matterport3D dataset (Chang et al., 2017) –
dividing along environments. We construct four
splits: train, val-seen, val-unseen, and test compris-
ing 3,967/299/561/1,165 dialogs from 58/55/11/18
environments respectively. Val-seen contains new
start locations for environments seen in train. Both
val-unseen and test contain new environments. This
allows us to assess generalization to new dialogs
and to new environments separately in validation.
Following best practices, the final locations of the
observer for the test set will not be released but we
will provide an evaluation server where predicted
localizations can be uploaded for scoring.

WAY includes dialogs in which the human Lo-
cator failed to accurately localize the Observer. In
reviewing failed dialogs, we found human failures
are often due to visual aliasing (e.g., across multi-
ple floors), or are relatively close to the 3m thresh-
old. We therefore expect that these dialogs still
contain valid descriptions, especially when paired
with the Observer’s true location during training.
In experiments when removing failed dialogs from
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the train set, accuracy did not significantly change.

3.2 Dataset Analysis

Data Collection and Human Performance. In
total, 174 unique workers participated in our tasks.
On average each episode took 4 minutes and the
average localization error is 3.17 meters. Over-
all, 72.5% of episodes where considered success-
ful localizations at an error threshold of 3 meters.
Each starting location has 3 annotations by sepa-
rate randomly-paired Observer-Locator teams. In
40.9% of start locations, all 3 teams succeeded, in
36.3% 2, 18.5% 1, and 4.3% 0 teams succeeded.
Fig. 2 left shows a histogram of localization errors.

Why is it Difficult? Localization through dialog
is a challenging task, even for humans. The teams
success depends on the uniqueness of starting posi-
tion, if and where the Observer chooses to navigate,
and how discriminative the Locator’s questions are.
Additionally, people vary greatly in their ability to
interpret maps, particularly when performing men-
tal rotations and shifting perspective (Kozhevnikov
et al., 2006), which are both skills required to solve
this task. We also observe that individual envi-
ronments play a significant role in human error –
as illustrated in Fig. 2 right, larger buildings and
buildings with multiple floors tend to have larger
localization errors, as do buildings with multiple
similar looking rooms (e.g., multiple bedrooms
with similar decorations or office spaces with mul-
tiple conference rooms). The buildings with the
highest and lowest error are shown in Fig. 3.

Characterizing WAY Dialogs. Fig. 4 shows two
example dialogs from WAY. These demonstrate a
common trend – the Observer provides descriptions
of their surroundings and then the Locator asks
clarifying questions to refine the position. More
difficult episodes require multiple rounds to narrow
down the correct location and the Locator may ask
the Observer to move or look for landmarks. On
average, dialogs contain 5 messages and 61 words.

The Observer writes longer messages on average
(19 words) compared to the Locator (9 words). This
asymmetry follows from their respective roles. The
Observer has first-person access to high-fidelity vi-
sual inputs and must describe their surroundings,

‘In a kitchen with a long semicircular black counter-
top along one wall. There is a black kind of rectan-
gular table and greenish tiled floor.’. Meanwhile,
the Locator sees a top-down view and uses mes-
sages to probe for discriminative details, ‘Is it a

round or rectangle table between the chairs?’, or
to prompt movement towards easier to discriminate
spaces, ‘Can you go to another main space?’.

As the Locator has no information at the start
of the episode, their first message is often a short
prompt for the Observer to describe their surround-
ings, further lowering the average word count. Con-
versely, the Observer’s reply is longer on average
at 24 words. Both agent’s have similar word counts
for further messages as they refine the location. See
the appendix for details on common utterances for
both roles in the first two rounds of dialog.

Role of Navigation. Often the localization task
can be made easier by having the Observer move to
reduce uncertainty (see bottom example of Fig. 4).
This includes moving away from nondescript areas
like hallways and moving to unambiguous loca-
tions. We observe at least one navigation step in
62.6% of episodes and an average of 2.12 steps.
Episodes containing navigation have a significantly
lower average localization error (2.70m) compared
to those that did not (3.98m). We also observe the
intuitive trend that larger environments elicit more
navigation. The distributions for start and end loca-
tions for the most and least navigated environments
in the appendix.

3.3 WHERE ARE YOU? Tasks
We now formalize the LED, EVD and CL tasks to
provide a clear orientation for future work.

Localization from Embodied Dialog. The
LED task is the following – given an episode
comprised of a environment and human dialog
– (e, L0, O0, . . . LT−1, OT−1) – predict the Ob-
server’s final location pT . This is a grounded nat-
ural language understanding task with pragmatic
evaluations – localization error and accuracy at a
variable threshold which in this paper is set to 3
meters. This task does not require navigation or
text generation; instead, it mirrors AI-augmented
localization applications. An example would be a
system that listens to emergency services calls and
provides a real time estimate of the caller’s indoor
location to aid the operator.

Embodied Visual Dialog. This task is to replace
the Observer by an AI agent. Given a embodied
first-person view of a 3D environment (see Ob-
server view in Fig. 1), and a partial history of
dialog consisting of k Locator and k − 1 Observer
message pairs (L0: ‘describe your location.’, O0:

‘I’m in a kitchen with black counters.’, L1 . . . ): pre-
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a) Longest navigation distance b) Shortest navigation distance c) Highest localization error d) Lowest localization error

Figure 3: Environments with the largest/smallest mean navigation distance (a, b) and mean localization error (c, d).
Observers tend to navigate more in featureless areas, such as the long corridor in (a). Localization error is highest
in buildings with many repeated indistinguishable features, such as the cathedral with rows of pews in (c).

Figure 4: Examples from the dataset illustrating the Observer’s location on the top-down map vs. the Locator’s
estimate (left) and the associated dialog (right). In the bottom example the Locator navigates to find a more
discriminative location, which is a common feature of the dataset. The Observer navigates in 63% of episodes and
the average navigation distance for these episodes is 3.4 steps (7.45 meters).

dict the Observer agent’s next navigational action
and natural language message to the Locator. To
evaluate the agent’s navigation path, the error in the
final location can be used along with path metrics
such as nDTW (Ilharco et al., 2019). Generated
text can be evaluated against human responses us-
ing existing text similarity metrics.

Cooperative Localization. In this task, both the
Observer and the Locator are modeled agents. Mod-
eling the Locator agent requires goal-oriented dia-
log generation and confidence estimation to deter-
mine when to end the task by predicting the loca-
tion of the Observer. Observer and Locator agents
can be trained and evaluated independently using
strategies similar to the EVD task, or evaluated as
a team using localization accuracy as in LED.

4 Modeling Localization From
Embodied Dialog

While the WAY dataset supports multiple tasks, we
focus on Localization from Embodied Dialog as a
first step. In LED, the goal is to predict the location
of the Observer given a dialog exchange.

4.1 LED Model from Top-down Views

We model localization as a language-conditioned
pixel-to-pixel prediction task – producing a proba-
bility distribution over positions in a top-down view
of the environment. This choice mirrors the envi-
ronment observations human Locators had during
data collection, allowing straightforward compari-
son. However, future work need not be restricted
to this choice and may leverage the panoramas or
3D reconstructions that Matterport3D provides.

Dialog Representation. Locator and Observer
messages are tokenized using a standard toolkit
(Loper and Bird, 2002). The dialog is represented
as a single sequence with identical ‘start’ and ‘stop’
tokens surrounding each message, and then en-
coded using a single-layer bidirectional LSTM with
a 300 dimension hidden state. Word embeddings
are initialized using GloVe (Pennington et al., 2014)
and finetuned end-to-end.

Environment Representation. The visual input
to our model is the environment map which we
scale to 780×455 pixels. We encode this map using
a ResNet18 CNN (He et al., 2016) pretrained on
ImageNet (Russakovsky et al., 2015), discarding
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Figure 5: The 3-layer LingUNet-Skip architecture used to model the Localization from Embodied Dialog task.

Table 2: Comparison of our model with baselines and human performance on the LED task. We report average
localization error (LE) and accuracy at 3 and 5 meters (all ± standard error). * denotes oracle access to Matterport3D
node locations.

val-seen val-unseen test

Method LE ↓ Acc@3m ↑ Acc@5m ↑ LE ↓ Acc@3m ↑ Acc@5m ↑ LE ↓ Acc@3m ↑ Acc@5m ↑

Human Locator 3.26±0.71 72.3±3.0 78.8±3.0 1.91±0.32 79.7±3.0 85.2±1.7 3.16±0.35 70.4±1.4 77.2±1.3

Random 12.39±0.31 5.4±0.9 15.0±1.3 10.18±0.16 7.0±0.7 21.3±1.1 13.10±0.17 6.6±0.5 15.2±0.7

Random Node* 8.27±0.44 18.1±2.2 37.8±2.7 10.44±0.31 15.8±1.1 29.0±1.4 13.19±0.32 12.8±0.7 24.9±0.9
Center 6.13±0.25 23.1±2.4 46.5±2.9 4.90±0.12 29.8±1.9 61.0±2.1 6.71±0.14 22.6±1.2 42.3±1.4
Heuristic 11.6±0.49 12.5±1.8 23.6±2.4 10.10±0.28 10.5±1.2 25.7±1.8 13.45±0.32 9.1±0.8 18.4±1.1
No Language 7.17±0.42 26.1±2.5 44.8±2.9 5.72±0.20 32.1±2.0 58.1±2.1 7.67±0.18 22.3±1.2 42.4±1.4
No Vision 11.36±0.46 9.4±1.7 18.4±2.2 8.58±0.20 7.8±1.1 22.1±1.8 11.62±0.23 7.7±0.8 18.3±1.1

LingUNet 4.73±0.32 53.5±2.9 67.2±2.7 5.01±0.19 45.6±2.1 63.6±2.0 7.32±0.22 32.7±1.4 49.5±1.5

the 3 final conv layers and final fully-connected
layer in order to output a 98×57 spatial map with
feature dimension 128. Although the environment
map is a top-down view which does not closely
resemble ImageNet images, in initial experiments
we found that using a pretrained and fixed CNN
improved over training from scratch.

Language-Conditioned Pixel-to-Pixel Model.
We adapt a language-conditioned pixel-to-pixel
LingUNet (Misra et al., 2018) to fuse the dialog
and environment representations. We refer to the
adapted architecture as LingUNet-Skip. As il-
lustrated in Fig. 5, LingUNet is a convolutional
encoder-decoder architecture. Additionally we in-
troduce language-modulated skip-connections be-
tween corresponding convolution and deconvolu-
tion layers. Formally, the convolutional encoder
produces feature maps Fl = Conv(Fl−1) begin-
ning with the initial input F0. Each feature map Fl

is transformed by a 1×1 convolution with weights
Kl predicted from the dialog encoding, i.e. Gl =
ConvKl

(Fl). The language kernels Kl are linear
transforms from components of the dialog represen-
tation split along the feature dimension. Finally, the
deconvolution layers combine these transformed
skip-connections and the output of the previous
layer, such that Hl = Deconv([Hl+1; (Gl + Fl)]).
There are three layers and the output of the final de-

convolutional is processed by a MLP and a softmax
to output a distribution over pixels.

Loss Function. We train the model to minimize
the KL-divergence between the predicted location
distribution and the ground-truth location, which
we smooth by applying a Gaussian with standard
deviation of 3m (matching the success criteria).
During inference, the pixel with highest probabil-
ity is selected as the final predicted location. For
multi-story environments, we process each floor
independently and the location with the highest
predicted probability over all floors is selected.

4.2 Experimental Setup

Metrics. We evaluate performance using localiza-
tion error (LE) defined as the Euclidean distance
in meters between the predicted Observer location
p̂T and the Observer’s actual terminal location pT :
LE = ||pT − p̂T ||2. We also report a binary success
metric that places a threshold k on the localization
error – 1(LE ≤ k) – for 3m and 5m. The 3m
threshold allows for about one viewpoint of error
since viewpoints are on average 2.25m apart. We
use euclidean distance for LE because localization
predictions are not constrained to the navigation
graph. Matterport building meshes contain holes
and other errors around windows, mirrors and glass
walls, which can be problematic when computing



813

geodesic distances for points off the navigation
graph.

Training and Implementation Details. Our
LingUNet-Skip model is implemented in PyTorch
(Paszke et al., 2019). Training the model in-
volves optimizing around 16M parameters for 15–
30 epochs, requiring ∼8 hours on a single GPU.
We use the Adam optimizer (Kingma and Ba, 2014)
with a batch size of 10 and an initial learning rate of
0.001 and apply Dropout (Srivastava et al., 2014)
in non-convolutional layers with p = 0.5. We
tune hyperparameters based on val-unseen perfor-
mance and report the checkpoint with the highest
val-unseen Acc@3m. To reduce overfitting we ap-
ply color jitter, 180° rotation, and random cropping
by 5% to the map during training.

Baselines. We consider a number of baselines and
human performance to contextualize our results
and analyze WAY:
– Human Locator. The average performance of

AMT Locator workers as described in Sec. 3.
– Random. Uniform random pixel selection.
– Center. Always selects the center coordinate.
– Random Node. Uniformly samples from Mat-

terport3D node locations. This uses oracle
knowledge about the test environments. While
not a fair comparison, we include this to show
the structural prior of the navigation graph
which reduces the space of candidate locations.

– Heuristic Driven. For each dialog Dt in the val-
idation splits we find the most similar dialog Dg

in the training dataset based on BLEU score (Pa-
pineni et al., 2002). From the top-down map
associated with Dg, a 3m x 3m patch is taken
around the ground truth Observer location. We
predict the location for Dt by convolving this
patch with the top-down maps associated with
Dt and selecting the most similar patch (accord-
ing to Structural Similarity). The results (below)
are only slightly better than random.

4.3 Results
Tab. 2 shows the performance of our LingUNet-
Skip model and relevant baselines on the val-seen,
val-unseen, and test splits of the WAY dataset.

Human and No-learning Baselines. Humans suc-
ceed 70.4% of the time in test environments. No-
tably, val-unseen environments are easier for hu-
mans (79.7%), see appendix for details. The Ran-
dom Node baseline outperforms the pixel-wise
Random setting (Acc@3m and Acc@5m for all

Table 3: Modality, modeling, and dialog ablations for
our LingUNet-Skip model on the validation splits of
WAY.

val-seen val-unseen

LE ↓ Acc@3m ↑ LE ↓ Acc@3m ↑

Full LingUNet-Skip Model 4.73±0.32 53.5±2.9 5.01±0.19 45.6±2.1
w/o Data Aug. 5.98±0.35 41.1±2.0 5.44±0.18 35.7±2.1
w/o Residual 5.26±0.33 47.5±2.9 4.74±0.17 43.1±2.1

No Dialog 7.17±0.42 26.1±2.5 5.72±0.20 32.1±2.0
First-half Dialog 5.06±0.33 50.5±2.8 4.71±0.18 46.2±2.1
Second-half Dialog 5.29±0.28 41.8±2.8 5.06±0.17 38.7±2.1
Observer-only 5.73±0.36 45.2±2.9 4.77±0.17 44.9±2.1
Locator-only 6.39±0.37 30.4±2.7 5.63±0.19 33.3±2.0
Shuffled Rounds 5.32±0.32 42.8±2.8 4.67±0.18 44.9±2.1

splits) and this gap quantifies the bias in nav-graph
positions. We find the Center baseline to be rather
strong in terms of localization error, but not accu-
racy – wherein it lags behind our learned model
significantly (Acc@3m and Acc@5m for all splits).

LingUNet-Skip outperforms baselines. Our
LingUNet-Skip significantly outperforms the hand-
crafted baselines in terms of accuracy at 3m – im-
proving the best baseline, Center, by an absolute
10% (test) to 30% (val-seen and val-unseen) across
splits (a 45-130% relative improvement). Despite
this, it achieves higher localization error than the
Center model for val-unseen and test. This is a
consequence of our model occasionally being quite
wrong despite its overall stronger localization per-
formance. There remains a significant gap between
our model and human performance – especially on
novel environments (70.4% vs 32.7% on test).

4.4 Ablations and Analysis
Tab. 3 reports detailed ablations of our LingUNet-
Skip model. Following standard practice, we report
performance on val-seen and val-unseen.

Navigation Nodes Prior We do not observe signif-
icant differences between val-seen (train environ-
ments) and val-unseen (new environments), which
suggests the model is not memorizing the node
locations. Even if the model did, learning this
distribution would likely amount to free-space pre-
diction which is a useful prior in localization.

Input Modality Ablations. No Vision explores
the extent that linguistic priors can be exploited by
LingUNet-Skip, while No Dialog does the same for
visual priors. No Dialog beats the Center baseline
(32.1% vs. 29.8% val-unseen Acc@3m) indicating
that it has learned a visual centrality prior that is
stronger than the center coordinate. This makes
sense because some visual regions like nondescript
hallways are less likely to contain terminal Ob-
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Figure 6: Examples of the predicted distribution versus the true location over top down maps of environment floors
for dialogs in val-unseen. The red circle on the left represents the three meter threshold around the predicted
localization. The green dot on the middle image represents the true location. The localization error in meters of
the predicted location is shown in red.

server locations. Both No Vision and No Dialog
perform much worse than our full model (7.8% and
32.1% val-unseen Acc@3m vs. 45.6%), suggesting
that the task is strongly multimodal.

Dialog Halves. First-half Dialog uses only the
first half of dialog pairs, while Second-half Dialog
uses just the second half. Together, these examine
whether the start or the end of a dialog is more
salient to our model. We find that First-half Dialog
performs marginally better than using the full dia-
log (46.2% vs 45.6% val-unseen Acc@3m) which
we suspect is due to our model’s failure to gener-
alize second half dialog to unseen environments
and problems handling long sequences. Further
intuition for these results is that the first-half of
the dialog contains coarser grained descriptions
and discriminative statements (“I am in a kitchen”).
The second-half of the dialog contains more fine
grained descriptions (relative to individual refer-
ents in a room). Without the initial coarse local-
ization, the second-half dialog is ungrounded and
references to initial statements are not understood,
therefore leading to poor performance.

Observer dialog is more influential. Observer-
only ablates Locator dialog and Locator-only ab-
lates Observer dialog. We find that Observer-only
significantly outperforms Locator-only (44.9% vs.
33.3% val-unseen Acc@3m). This is an intuitive
result as Locators in the WAY dataset commonly
query the Observer for new information. We note
that Observers were guided by the Locators in the
collection process (e.g. ‘What room are you in?’),

and that ablating the Locator dialog does not re-
move this causal influence.

Shuffling Dialog Rounds. Shuffle Rounds consid-
ers the importance of the order of Locator-Observer
dialog pairs by shuffling the rounds. Shuffling the
rounds causes our LingUNet-Skip to drop just an
absolute 0.7% val-unseen Acc@3m (2% relative).

Model Ablations. Finally, we ablate two model-
related choices. Without data augmentation (w/o
Data Aug.), our model drops 9.9% val-unseen
Acc@3m (22% relative). Without the additional
residual connection (w/o Residual), our model
drops 2.5% val-unseen Acc@3m (5% relative).

5 Conclusion and Future Work

In summary, we propose a new set of embodied
localization tasks: Localization from Embodied Di-
alog - LED (localizing the Observer from dialog
history), Embodied Visual Dialog - EVD (model-
ing the Observer), and Cooperative Localization -
CL (modeling both agents). To support these tasks
we introduce WHERE ARE YOU? a dataset contain-
ing ∼6k human dialogs from a cooperative local-
ization scenario in a 3D environment. WAY is the
first dataset to present extensive human dialog for
an embodied localization task. On the LED task
we show that a LingUNet-Skip model improves
over simple baselines and model ablations but with-
out taking full advantage of the second half of the
dialog. Since WAY encapsulates multiple embod-
ied localization tasks, there remains much to be
explored.



815

Acknowledgments
Partial funding for this work was provided by NIH
award R01MH114999.

References
Peter Anderson, Ayush Shrivastava, Devi Parikh,

Dhruv Batra, and Stefan Lee. 2019. Chasing ghosts:
Instruction following as bayesian state tracking. In
NeurIPS.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton van den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In CVPR.

Jason Baldridge, Tania Bedrax-Weiss, Daphne Luong,
Srini Narayanan, Bo Pang, Fernando Pereira, Radu
Soricut, Michael Tseng, and Yuan Zhang. 2018.
Points, paths, and playscapes: Large-scale spatial
language understanding tasks set in the real world.
In International Workshop on Spatial Language Un-
derstanding.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Ja-
cob Andreas, Yoshua Bengio, Joyce Chai, Mirella
Lapata, Angeliki Lazaridou, Jonathan May, Alek-
sandr Nisnevich, Nicolas Pinto, and Joseph Turian.
2020. Experience grounds language. arXiv preprint
arXiv:2004.10151.

Valts Blukis, Dipendra Misra, Ross A Knepper, and
Yoav Artzi. 2018. Mapping navigation instruc-
tions to continuous control actions with position-
visitation prediction. In CoRL.

Valts Blukis, Yannick Terme, Eyvind Niklasson,
Ross A. Knepper, and Yoav Artzi. 2019. Learning to
map natural language instructions to physical quad-
copter control using simulated flight. In CoRL.

Angel Chang, Angela Dai, Thomas Funkhouser, Ma-
ciej Halber, Matthias Niessner, Manolis Savva, Shu-
ran Song, Andy Zeng, and Yinda Zhang. 2017.
Matterport3d: Learning from rgb-d data in indoor
environments. 3DV. MatterPort3D dataset li-
cense available at: http://kaldir.vc.in.tum.
de/matterport/MP$_$TOS.pdf.

Howard Chen, Alane Suhr, Dipendra Misra, Noah
Snavely, and Yoav Artzi. 2019. Touchdown: Natural
language navigation and spatial reasoning in visual
street environments. In CVPR.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Ste-
fan Lee, Devi Parikh, and Dhruv Batra. 2018. Em-
bodied question answering. In CVPR.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José MF Moura, Devi Parikh,
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6 Appendix

Val-Unseen has higher accuracy than other
splits. Human’s localization Acc@3m is 79.4%
for val-unseen which is higher than all other splits
such as test which as a Acc@3m of 70.4%. Follow-
ing standard practice, the splits followed (Chang
et al., 2017). The val-unseen split is notably smaller
than the rest of the splits and through qualitative
analysis, we found that the environments in the
val-unseen split (Chang et al., 2017) are generally
smaller and have discriminative features which we
attribute to the split having a high localization per-
formance. Our LingUNet-Skip model has lower
performance on test than on val-unseen which we
reason is be to the nature of the environments in
the splits. Additionally the LingUNet-Skip model
has lower performance on test than on val-seen
which is expected because test environments are
unseen environments and val-seen environments
are contained in the training set.

Navigation differs between enviroments. As pre-
viously discussed, different environments in the
WAY dataset have varying levels of navigation.
This is likely attributed to a few factors such as
size of the building and discriminative features of
the building such as decorations. Additionally we
see features like long hallways frequently lead to
long navigational paths. The variances in naviga-
tion between environments is further illustrated in
Fig. 7. While the distribution between the starting
and final positions barely changes for the environ-
ment on the left, we see significant change in the
environment on the right. Most noticeably we see
that there are no final positions in the long corri-
dor of the right environment despite it containing
several start locations.

Data Collection Interface. Fig. 8 shows the data
collection interface for the Observer and Locator
human annotators. The annotator team was able to
chat with each other via a message box that also
displayed the chat history. The Locator had a top
down map of the environment and had buttons to
switch between floors. The Observer was given
a first person view of the environment and could
navigate the environment by clicking on the blue
cylinders shown in Fig. 8

Closer Look at Dialog. Fig. 9 further breaks this
down by looking at the average length of specific
messages of the two agents. The Locator’s first
message is short in comparison to the average num-

ber of words per message of the agent. This is
expected as this message is always some variation
of getting the Observer to describe their location
and it follows that the message has a low number
of unique words. The Observer’s first message is
by far their longest, at 23.9 words, which is logical
since in this message the Observer is trying to give
the most unique description possible with no con-
straint on length. The distributions become more
uniform in the 2nd messages from both the Loca-
tor and Observer. While the first message of the
observer has a large number of unique words the
distribution is not uniform over the words leading
to the conclusion that the message has an common
structure to it but that the underlying content is still
discriminative for modeling the location. The word
distribution of messages further down in the dia-
logue sequence are largely conditioned on the pre-
vious message from the other agent, which means
that accurately encoding the dialogue history is
important for accurate location estimation.

Distribution of Localization Error. In order to
better understand the distribution of the LingUNet-
Skip model’s predictions we visualize the distribu-
tions in Fig. 10.

Success and Failure Examples. To qualitatively
evaluate our model we visualize the predicted dis-
tributions, the true location over the top down map
and the dialog in Fig. 11. We also show two fail-
ure cases in which the model predicts the wrong
location.



818

Least Navigation Most Navigation

Final Positions Heat Map Final Positions Heat Map

Start Positions Heat MapStart Positions Heat Map

Figure 7: Shows the distribution of the starting and ending locations of the Observer for two environments in the
WAY dataset. On the left is the environment that had annotations which the least amount of navigation. On the
right is the environment that had annotations with the most amount of navigation.
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AMT Observer View

AMT Locator View

Figure 8: The dataset collection interface for WAY. These are the interfaces that the Observer and Locator workers
used on Amazon Mechanical Turk.
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Locator Messages

Locator 1st Message
Avg. Number of Words: 7.0
Number Unique Words: 695

Observer 
Messages

Observer 1st Message

Observer 2nd Message

Avg. Number of Words: 23.9
Number Unique Words: 3104

Avg. Number of Words: 16.39
Number Unique Words: 2677

Avg. Number of Words: 9.83
Number Unique Words: 1663

Locator 2nd Message

Figure 9: Distributions of the first four words for each of the first four messages of the dialogs in the WAY dataset
separated by message number and role type. The ordering of the words starts in the center and radiates outwards.
The arc length is proportional to the number of messages containing the word. The white areas are words that had
too low of a count to illustrate.
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CDF of Localization Error

PDF of Localization Error

Figure 10: The top row is the cdf of localization errors on the val and test splits using the LingUNet-Skip model.
These graphs can also be interpreted as the accuracy vs threshold of error which defines success. The bottom row
is the probability distribution of localization errors from the LingUNet-Skip model across the val and test splits.

Locator: 
Observer: 

Locator: 
Observer: 

Map 1: V2XKFyX4ASd floor 2

Map 2: q9vSo1VnCiC floor 0

Locator: 
Observer: 

Locator: 
Observer:  
Locator:  
Observer:  

Locator:  

Locator:
Observer:
Locator:
Observer:

Error 0.93m

Error 9.23m

Error 8.8m

Failure Cases

Locator:
Observer:

Locator:
Observer: 

Error 1.61m

True location 3m around Predicted location 

Figure 11: Examples of the predicted distribution versus the true location over top down map of a floor of an
environment for a given dialog in val-unseen. On the left the red circle represents the three meter threshold around
the predicted localization. On the middle image the green dot represents the true location. The localization error
in meters of the predicted location shown in red in the dialog box.
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Locator: Hi! What kind of room are you in?
Lost Friend: I am at the very top of the white marble spiral 
staircase. There is wood floor at the top and a balcony with 
black railing.
Locator: Are you between the two sets of stairs on the 
landing?
Lost Friend: I am at the top of the stairs.

Locator: What kind of room are you in?
Lost Friend: I am in a bedroom with one blue wall.
Locator: With the striped bed sheets and two tan 
nightstands??
Lost Friend: Yes! I am at the foot of the bed.

Locator: Hello, what type of room are you in?
Lost Friend: I am outside on the second step from the top of a 
windy staircase, overlooking the swimming pool.
Locator: Are you indoors or outdoors?
Lost Friend:  am outside.
Locator: What material are you standing on?
Lost Friend: I am on the second step from the top of the 
staircase.
Locator: The only staircase I see is inside. Unless the rocks 
near the pool are the stairs you are talking about.
Lost Friend: I am outside, the staircase is spiral and it is black. 
There is a larger pool and smaller and I am on the side of the 
smaller one.

Locator: Where are you located at?
Lost Friend: I'm in a kitchen that has a long curved wall. I'm near 
the entrance which is near some stairs.
Locator: Are the stairs going up or down?
Lost Friend: Down, it looks like I'm on the top floor.
Locator: What else do you see?
Lost Friend: There is a black table in the kitchen. One side is 
curved to match the curved of the kitchen wall.

Locator: Hi, what kind of a room are you in?
Lost Friend: I'm in the kitchen standing in front of the stove.
Locator: How close to the stove are you?
Lost Friend: I could fry eggs if I wanted to without moving.

Locator: Hey. Where are you?
Lost Friend: I am in a study with a foosball table! There is a cream 
rug on the floor surrounded by white tile. A brown desk is in the 
corner between two brown bookcases on either side.
Locator: This is a very, very big house. Any colors that stand out 
will help. I would say there has got to be 30 rooms in this house. I 
am looking now.
Lost Friend: I am on the same floor as the swimming pool. There 
is a double door across from the study that looks out onto a patio 
and the pool is in the distance.
Locator: Found it. Where are you standing?
Lost Friend: Standing between the foosball table and the corner 
desk.

Figure 12: Examples of dialog in the WAY dataset.


