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Abstract

The success of large pretrained language mod-
els (LMs) such as BERT and RoBERTa has
sparked interest in probing their representa-
tions, in order to unveil what types of knowl-
edge they implicitly capture. While prior re-
search focused on morphosyntactic, semantic,
and world knowledge, it remains unclear to
which extent LMs also derive lexical type-level
knowledge from words in context. In this
work, we present a systematic empirical anal-
ysis across six typologically diverse languages
and five different lexical tasks, addressing the
following questions: 1) How do different lexi-
cal knowledge extraction strategies (monolin-
gual versus multilingual source LM, out-of-
context versus in-context encoding, inclusion
of special tokens, and layer-wise averaging)
impact performance? How consistent are the
observed effects across tasks and languages?
2) Is lexical knowledge stored in few parame-
ters, or is it scattered throughout the network?
3) How do these representations fare against
traditional static word vectors in lexical tasks?
4) Does the lexical information emerging from
independently trained monolingual LMs dis-
play latent similarities? Our main results in-
dicate patterns and best practices that hold uni-
versally, but also point to prominent variations
across languages and tasks. Moreover, we val-
idate the claim that lower Transformer layers
carry more type-level lexical knowledge, but
also show that this knowledge is distributed
across multiple layers.

1 Introduction and Motivation

Language models (LMs) based on deep Trans-
former networks (Vaswani et al., 2017), pretrained
on unprecedentedly large amounts of text, offer un-
matched performance in virtually every NLP task
(Qiu et al., 2020). Models such as BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019c), and T5
(Raffel et al., 2019) replaced task-specific neural

architectures that relied on static word embeddings
(WEs; Mikolov et al., 2013b; Pennington et al.,
2014; Bojanowski et al., 2017), where each word
is assigned a single (type-level) vector.

While there is a clear consensus on the effec-
tiveness of pretrained LMs, a body of recent re-
search has aspired to understand why they work
(Rogers et al., 2020). State-of-the-art models are
“probed” to shed light on whether they capture
task-agnostic linguistic knowledge and structures
(Liu et al., 2019a; Belinkov and Glass, 2019; Ten-
ney et al., 2019); e.g., they have been extensively
probed for syntactic knowledge (Hewitt and Man-
ning, 2019; Jawahar et al., 2019; Kulmizev et al.,
2020; Chi et al., 2020, inter alia) and morphology
(Edmiston, 2020; Hofmann et al., 2020).

In this work, we put focus on uncovering and un-
derstanding how and where lexical semantic knowl-
edge is coded in state-of-the-art LMs. While pre-
liminary findings from Ethayarajh (2019) and Vulić
et al. (2020) suggest that there is a wealth of lexi-
cal knowledge available within the parameters of
BERT and other LMs, a systematic empirical study
across different languages is currently lacking.

We present such a study, spanning six typologi-
cally diverse languages for which comparable pre-
trained BERT models and evaluation data are read-
ily available. We dissect the pipeline for extracting
lexical representations, and divide it into crucial
components, including: the underlying source LM,
the selection of subword tokens, external corpora,
and which Transformer layers to average over. Dif-
ferent choices give rise to different extraction con-
figurations (see Table 1) which, as we empirically
verify, lead to large variations in task performance.

We run experiments and analyses on five diverse
lexical tasks using standard evaluation benchmarks:
lexical semantic similarity (LSIM), word analogy
resolution (WA), bilingual lexicon induction (BLI),
cross-lingual information retrieval (CLIR), and lex-
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ical relation prediction (RELP). The main idea is to
aggregate lexical information into static type-level
“BERT-based” word embeddings and plug them
into “the classical NLP pipeline” (Tenney et al.,
2019), similar to traditional static word vectors.
The chosen tasks can be seen as “lexico-semantic
probes” providing an opportunity to simultaneously
1) evaluate the richness of lexical information ex-
tracted from different parameters of the underly-
ing pretrained LM on intrinsic (e.g., LSIM, WA)
and extrinsic lexical tasks (e.g., RELP); 2) com-
pare different type-level representation extraction
strategies; and 3) benchmark “BERT-based” static
vectors against traditional static word embeddings
such as fastText (Bojanowski et al., 2017).

Our study aims at providing answers to the fol-
lowing key questions: Q1) Do lexical extraction
strategies generalise across different languages and
tasks, or do they rather require language- and task-
specific adjustments?; Q2) Is lexical information
concentrated in a small number of parameters and
layers, or scattered throughout the encoder?; Q3)
Are “BERT-based” static word embeddings com-
petitive with traditional word embeddings such as
fastText?; Q4) Do monolingual LMs independently
trained in multiple languages learn structurally sim-
ilar representations for words denoting similar con-
cepts (i.e., translation pairs)?

We observe that different languages and tasks
indeed require distinct configurations to reach peak
performance, which calls for a careful tuning of
configuration components according to the specific
task–language combination at hand (Q1). However,
several universal patterns emerge across languages
and tasks. For instance, lexical information is pre-
dominantly concentrated in lower Transformer lay-
ers, hence excluding higher layers from the extrac-
tion achieves superior scores (Q1 and Q2). Further,
representations extracted from single layers do not
match in accuracy those extracted by averaging
over several layers (Q2). While static word rep-
resentations obtained from monolingual LMs are
competitive or even outperform static fastText em-
beddings in tasks such as LSIM, WA, and RELP,
lexical representations from massively multilingual
models such as multilingual BERT (mBERT) are
substantially worse (Q1 and Q3). We also demon-
strate that translation pairs indeed obtain similar
representations (Q4), but the similarity depends
on the extraction configuration, as well as on the
typological distance between the two languages.

2 Lexical Representations from
Pretrained Language Models

Classical static word embeddings (Bengio et al.,
2003; Mikolov et al., 2013b; Pennington et al.,
2014) are grounded in distributional semantics, as
they infer the meaning of each word type from its
co-occurrence patterns. However, LM-pretrained
Transformer encoders have introduced at least two
levels of misalignment with the classical approach
(Peters et al., 2018; Devlin et al., 2019). First, rep-
resentations are assigned to word tokens and are
affected by the current context and position within a
sentence (Mickus et al., 2020). Second, tokens may
correspond to subword strings rather than complete
word forms. This begs the question: do pretrained
encoders still retain a notion of lexical concepts,
abstracted from their instances in texts?

Analyses of lexical semantic information in large
pretrained LMs have been limited so far, focus-
ing only on the English language and on the task
of word sense disambiguation. Reif et al. (2019)
showed that senses are encoded with finer-grained
precision in higher layers, to the extent that their
representation of the same token tends not to be
self-similar across different contexts (Ethayarajh,
2019; Mickus et al., 2020). As a consequence, we
hypothesise that abstract, type-level information
could be codified in lower layers instead. However,
given the absence of a direct equivalent to a static
word type embedding, we still need to establish
how to extract such type-level information.

In prior work, contextualised representations
(and attention weights) have been interpreted in
the light of linguistic knowledge mostly through
probes. These consist in learned classifier pre-
dicting annotations like POS tags (Pimentel et al.,
2020) and word senses (Peters et al., 2018; Reif
et al., 2019; Chang and Chen, 2019), or linear trans-
formations to a space where distances mirror depen-
dency tree structures (Hewitt and Manning, 2019).1

In this work, we explore several unsuper-
vised word-level representation extraction strate-
gies and configurations for lexico-semantic tasks
(i.e., probes), stemming from different combina-
tions of the components detailed in Table 1 and
illustrated in Figure 1. In particular, we assess the
impact of: 1) encoding tokens with monolingual
LM-pretrained Transformers vs. with their mas-

1The interplay between the complexity of a probe and its
accuracy, as well as its effect on the overall procedure, remain
controversial (Pimentel et al., 2020; Voita and Titov, 2020).
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Component Label Short Description

Source LM MONO Language-specific (i.e., monolingually pretrained) BERT
MULTI Multilingual BERT, pretrained on 104 languages (with shared subword vocabulary)

Context ISO Each vocabulary word w is encoded in isolation, without any external context
AOC-M Average-over-context: average over word’s encodings from M different contexts/sentences

Subword Tokens
NOSPEC Special tokens [CLS] and [SEP] are excluded from subword embedding averaging
ALL Both special tokens [CLS] and [SEP] are included into subword embedding averaging
WITHCLS [CLS] is included into subword embedding averaging; [SEP] is excluded

Layerwise Avg AVG(L≤n) Average representations over all Transformer layers up to the n-th layer Ln (included)
L=n Only the representation from the layer Ln is used

Table 1: Configuration components of word-level embedding extraction, resulting in 24 possible configurations.
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Figure 1: Illustration of the components denoting
adopted extraction strategies, including source LM (top
right), presence of context (bottom right), special to-
kens (top left), and layer-wise averaging (bottom left).

sively multilingual counterparts; 2) providing con-
text around the target word in input; 3) including
special tokens like [CLS] and [SEP]; 4) averaging
across several layers as opposed to a single layer.2

3 Experimental Setup

Pretrained LMs and Languages. Our selection
of test languages is guided by the following con-
straints: a) availability of comparable pretrained
(language-specific) monolingual LMs; b) availabil-
ity of evaluation data; and c) typological diver-
sity of the sample, along the lines of recent initia-
tives in multilingual NLP (Gerz et al., 2018; Hu
et al., 2020; Ponti et al., 2020, inter alia). We
work with English (EN), German (DE), Russian
(RU), Finnish (FI), Chinese (ZH), and Turkish (TR).
We use monolingual uncased BERT Base models
for all languages, retrieved from the HuggingFace
repository (Wolf et al., 2019).3 All BERT models
comprise 12 768-dimensional Transformer layers
{L1 (bottom layer), . . . , L12 (top)} plus the input

2For clarity of presentation, later in §4 we show results
only for a representative selection of configurations that are
consistently better than the others

3https://huggingface.co/models; the links to
the actual BERT models are in the appendix.

embedding layer (L0), and 12 attention heads. We
also experiment with multilingual BERT (mBERT)
(Devlin et al., 2019) as the underlying LM, aim-
ing to measure the performance difference between
language-specific and massively multilingual LMs
in our lexical probing tasks.

Word Vocabularies and External Corpora. We
extract type-level representations in each language
for the top 100K most frequent words represented
in the respective fastText (FT) vectors, which were
trained on lowercased monolingual Wikipedias by
Bojanowski et al. (2017). The equivalent vocabu-
lary coverage allows a direct comparison to fast-
Text vectors, which we use as a baseline static WE
method in all evaluation tasks. To retain the same
vocabulary across all configurations, in AOC vari-
ants we back off to the related ISO variant for words
that have zero occurrences in external corpora.

For all AOC vector variants, we leverage 1M sen-
tences of maximum sequence length 512, which we
randomly sample from external corpora: Europarl
(Koehn, 2005) for EN, DE, FI, available via OPUS
(Tiedemann, 2009); the United Nations Parallel
Corpus for RU and ZH (Ziemski et al., 2016), and
monolingual TR WMT17 data (Bojar et al., 2017).

Evaluation Tasks. We carry out the evaluation on
five standard and diverse lexical semantic tasks:

Task 1: Lexical semantic similarity (LSIM) is
the most widespread intrinsic task for evaluation
of traditional word embeddings (Hill et al., 2015).
The evaluation metric is the Spearman’s rank cor-
relation between the average of human-elicited se-
mantic similarity scores for word pairs and the
cosine similarity between the respective type-level
word vectors. We rely on the recent comprehen-
sive multilingual LSIM benchmark Multi-SimLex
(Vulić et al., 2020), which covers 1,888 pairs in
13 languages. We focus on EN, FI, ZH, RU, the

https://huggingface.co/models
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languages represented in Multi-SimLex.

Task 2: Word Analogy (WA) is another com-
mon intrinsic task. We evaluate our models on
the Bigger Analogy Test Set (BATS) (Drozd et al.,
2016) with 99,200 analogy questions. We re-
sort to the standard vector offset analogy resolu-
tion method, searching for the vocabulary word
wd ∈ V such that its vector d is obtained by
argmaxd(cos(d, c − a + b)), where a, b, and c
are word vectors of words wa, wb, and wc from
the analogy wa : wb = wc : x. The search space
comprises vectors of all words from the vocabulary
V , excluding a, b, and c. This task is limited to EN,
and we report Precision@1 scores.

Task 3: Bilingual Lexicon Induction (BLI) is
a standard task to evaluate the “semantic quality”
of static cross-lingual word embeddings (CLWEs)
(Gouws et al., 2015; Ruder et al., 2019). We learn
“BERT-based” CLWEs using a standard mapping-
based approach (Mikolov et al., 2013a; Smith et al.,
2017) with VECMAP (Artetxe et al., 2018). BLI
evaluation allows us to investigate the “alignability”
of monolingual type-level representations extracted
for different languages. We adopt the standard BLI
evaluation setup from Glavaš et al. (2019): 5K
training word pairs are used to learn the mapping,
and another 2K pairs as test data. We report stan-
dard Mean Reciprocal Rank (MRR) scores for 10
language pairs spanning EN, DE, RU, FI, TR.

Task 4: Cross-Lingual Information Retrieval
(CLIR). We follow the setup of Litschko et al.
(2018, 2019) and evaluate mapping-based CLWEs
(the same ones as on BLI) in a document-level re-
trieval task on the CLEF 2003 benchmark.4 We use
a simple CLIR model which showed competitive
performance in the comparative studies of Litschko
et al. (2019) and Glavaš et al. (2019). It embeds
queries and documents as IDF-weighted sums of
their corresponding WEs from the CLWE space,
and uses cosine similarity as the ranking function.
We report Mean Average Precision (MAP) scores
for 6 language pairs covering EN, DE, RU, FI.

Task 5: Lexical Relation Prediction (RELP).
We probe if we can recover standard lexical re-
lations (i.e., synonymy, antonymy, hypernymy,
meronymy, plus no relation) from input type-level
vectors. We rely on a state-of-the-art neural model

4All test collections comprise 60 queries. The average
document collection size per language is 131K (ranging from
17K documents for RU to 295K for DE).

for RELP operating on type-level embeddings
(Glavaš and Vulić, 2018): the Specialization Tensor
Model (STM) predicts lexical relations for pairs
of input word vectors based on multi-view projec-
tions of those vectors.5 We use the WordNet-based
(Fellbaum, 1998) evaluation data of Glavaš and
Vulić (2018): they contain 10K annotated word
pairs balanced by class. Micro-averaged F1 scores,
averaged across 5 runs for each input vector space
(default STM setting), are reported for EN and DE.

4 Results and Discussion

A summary of the results is shown in Figure 2
for LSIM, in Figure 3a for BLI, in Figure 3b for
CLIR, in Figure 4a and Figure 4b for RELP, and in
Figure 4c for WA. These results offer multiple axes
of comparison, and the ensuing discussion focuses
on the central questions Q1-Q3 posed in §1.6

Monolingual versus Multilingual LMs. Results
across all tasks validate the intuition that language-
specific monolingual LMs contain much more lexi-
cal information for a particular target language than
massively multilingual models such as mBERT or
XLM-R (Artetxe et al., 2020). We see large drops
between MONO.* and MULTI.* configurations even
for very high-resource languages (EN and DE), and
they are even more prominent for FI and TR.

Encompassing 100+ training languages with lim-
ited model capacity, multilingual models suffer
from the “curse of multilinguality” (Conneau et al.,
2020): they must trade off monolingual lexical in-
formation coverage (and consequently monolingual
performance) for a wider language coverage.7

How Important is Context? Another observation
that holds across all configurations concerns the
usefulness of providing contexts drawn from exter-
nal corpora, and corroborates findings from prior
work (Liu et al., 2019b): ISO configurations cannot
match configurations that average subword embed-
dings from multiple contexts (AOC-10 and AOC-
100). However, it is worth noting that 1) perfor-

5Note that RELP is structurally different from the other
four tasks: instead of direct computations with word embed-
dings, called metric learning or similarity-based evaluation
(Ruder et al., 2019), it uses them as features in a neural archi-
tecture.

6Full results are available in the appendix.
7For a particular target language, monolingual perfor-

mance can be partially recovered by additional in-language
monolingual training via masked language modeling (Eisen-
schlos et al., 2019; Pfeiffer et al., 2020). In a side experiment,
we have also verified that the same holds for lexical informa-
tion coverage.
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(b) Finnish
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(c) Mandarin Chinese
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(d) Russian

Figure 2: Spearman’s ρ correlation scores for the lexical semantic similarity task (LSIM) in four languages. For the
representation extraction configurations in the legend, see Table 1. Thick solid horizontal lines denote performance
of standard monolingual fastText vectors trained on Wikipedia dumps of the respective languages.
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(a) Summary BLI results
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Figure 3: Summary results for the two cross-lingual evaluation tasks: (a) BLI (MRR scores) and (b) CLIR (MAP
scores). We report average scores over all language pairs; individual results for each language pair are available
in the appendix. Thick solid horizontal lines denote performance of standard fastText vectors in exactly the same
cross-lingual mapping setup.
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(b) RELP: German
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(c) WA: English

Figure 4: Micro-averaged F1 scores in the RELP task for (a) EN and (b) DE. The scores with 768-dim vectors
randomly initalized via Xavier init (Glorot and Bengio, 2010) are 0.473 (EN) and 0.512 (DE); (c) EN WA results.
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mance gains with AOC-100 over AOC-10, although
consistent, are quite marginal across all tasks: this
suggests that several word occurrences in vivo are
already sufficient to accurately capture its type-
level representation. 2) In some tasks, ISO configu-
rations are only marginally outscored by their AOC

counterparts: e.g., for MONO.*.NOSPEC.AVG(L≤8)
on EN–FI BLI or DE–TR BLI, the respective scores
are 0.486 and 0.315 with ISO, and 0.503 and 0.334
with AOC-10. Similar observations hold for FI and
ZH LSIM, and also in the RELP task.

In RELP, it is notable that ‘BERT-based’ embed-
dings can recover more lexical relation knowledge
than standard FT vectors. These findings reveal that
pretrained LMs indeed implicitly capture plenty of
lexical type-level knowledge (which needs to be
‘recovered’ from the models); this also suggests
why pretrained LMs have been successful in tasks
where this knowledge is directly useful, such as
NER and POS tagging (Tenney et al., 2019; Tsai
et al., 2019). Finally, we also note that gains with
AOC over ISO are much more pronounced for the
under-performing MULTI.* configurations: this in-
dicates that MONO models store more lexical infor-
mation even in absence of context.

How Important are Special Tokens? The results
reveal that the inclusion of special tokens [CLS]
and [SEP] into type-level embedding extraction de-
teriorates the final lexical information contained in
the embeddings. This finding holds for different
languages, underlying LMs, and averaging across
various layers. The NOSPEC configurations consis-
tently outperform their ALL and WITHCLS counter-
parts, both in ISO and AOC-{10, 100} settings.8

Our finding at the lexical level aligns well with
prior observations on using BERT directly as a sen-
tence encoder (Qiao et al., 2019; Singh et al., 2019;
Casanueva et al., 2020): while [CLS] is useful for
sentence-pair classification tasks, using [CLS] as a
sentence representation produces inferior represen-
tations than averaging over sentence’s subwords.
In this work, we show that [CLS] and [SEP] should
also be fully excluded from subword averaging for
type-level word representations.

How Important is Layer-wise Averaging? Av-
eraging across layers bottom-to-top (i.e., from L0

to L12) is beneficial across the board, but we no-
tice that scores typically saturate or even decrease
in some tasks and languages when we include

8For this reason, we report the results of AOC configura-
tions only in the NOSPEC setting.

higher layers into averaging: see the scores with
*.AVG(L≤10) and *.AVG(L≤12) configurations,
e.g., for FI LSIM; EN/DE RELP, and summary BLI
and CLIR scores. This hints to the fact that two
strategies typically used in prior work, either to
take the vectors only from the embedding layer L0

(Wu et al., 2020; Wang et al., 2019) or to average
across all layers (Liu et al., 2019b), extract sub-
optimal word representations for a wide range of
setups and languages.

The sweet spot for n in *.AVG(L≤n) configura-
tions seems largely task- and language-dependent,
as peak scores are obtained with different n-s.
Whereas averaging across all layers generally
hurts performance, the results strongly suggest
that averaging across layer subsets (rather than
selecting a single layer) is widely useful, espe-
cially across bottom-most layers: e.g., L ≤ 6
with MONO.ISO.NOSPEC yields an average score of
0.561 in LSIM, 0.076 in CLIR, and 0.432 in BLI;
the respective scores when averaging over the 6
top layers are: 0.218, 0.008, and 0.230. This evi-
dence implies that, although scattered across multi-
ple layers, type-level lexical information seems to
be concentrated in lower Transformer layers. We
investigate these conjectures further in §4.1.

Comparison to Static Word Embeddings. The
results also offer a comparison to static FT vectors
across languages. The best-performing extraction
configurations (e.g., MONO.AOC-100.NOSPEC) out-
perform FT in monolingual evaluations on LSIM
(for EN, FI, ZH), WA, and they also display much
stronger performance in the RELP task for both
evaluation languages. While the comparison is
not strictly apples-to-apples, as FT and LMs were
trained on different (Wikipedia) corpora, these find-
ings leave open a provocative question for future
work: Given that static type-level word representa-
tions can be recovered from large pretrained LMs,
does this make standard static WEs obsolete, or
are there applications where they are still useful?

The trend is opposite in the two cross-lingual
tasks: BLI and CLIR. While there are language
pairs for which ‘BERT-based’ WEs outperform FT
(i.e., EN–FI in BLI, EN–RU and FI–RU in CLIR) or
are very competitive to FT’s performance (e.g., EN–
TR, TR–BLI, DE–RU CLIR), FT provides higher
scores overall in both tasks. The discrepancy be-
tween results in monolingual versus cross-lingual
tasks warrants further investigation in future work.
For instance, is using linear maps, as in stan-
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Figure 5: CKA similarity scores of type-level word representations extracted from each layer (using different
extraction configurations, see Table 1) for a set of 7K translation pairs in EN–DE, EN–FI, and EN–TR from the BLI
dictionaries of Glavaš et al. (2019). Additional heatmaps (where random words from two languages are paired) are
available in the appendix.

(a) EN–RU: Word translation pairs (b) EN–RU: Random word pairs

Figure 6: CKA similarity scores of type-level word representations extracted from each layer for a set of (a) 7K
EN–RU translation pairs from the BLI dictionaries of Glavaš et al. (2019); (b) 7K random EN–RU pairs.

Figure 7: Self-similarity heatmaps: linear CKA similarity of representations for the same word extracted from
different Transformer layers, averaged across 7K words for English and Finnish. MONO.AOC-100.NOSPEC.

dard mapping approaches to CLWE induction, sub-
optimal for ‘BERT-based’ word vectors?

Differences across Languages and Tasks. Fi-
nally, while we observe a conspicuous amount of

universal patterns with configuration components
(e.g., MONO > MULTI; AOC > ISO; NOSPEC >
ALL, WITHCLS), best-performing configurations do
show some variation across different languages and
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L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

LSIM EN .503 .513 .505 .510 .505 .484 .459 .435 .402 .361 .362 .372 .390
FI .445 .466 .445 .436 .430 .434 .421 .404 .374 .346 .333 .324 .286

WA EN .220 .272 .293 .285 .293 .261 .240 .217 .199 .171 .189 .221 .229

BLI
EN–DE .310 .354 .379 .400 .394 .393 .373 .358 .311 .272 .273 .264 .287
EN–FI .309 .339 .360 .367 .369 .345 .329 .303 .279 .252 .231 .194 .192
DE–FI .211 .245 .268 .283 .289 .303 .291 .292 .288 .282 .262 .219 .236

CLIR
EN–DE .059 .060 .059 .060 .043 .036 .036 .036 .027 .024 .027 .035 .038
EN–FI .038 .040 .022 .018 .011 .008 .006 .006 .005 .002 .003 .002 .007
DE–FI .054 .057 .028 .015 .016 .022 .017 .021 .020 .023 .015 .008 .030

Table 2: Task performance of word representations extracted from different Transformer layers for a selection of
tasks, languages, and language pairs. Configuration: MONO.AOC-100.NOSPEC. Highest scores per row are in bold.

tasks. For instance, while EN LSIM performance
declines modestly but steadily when averaging over
higher-level layers (AVG(L≤ n), where n > 4), per-
formance on EN WA consistently increases for the
same configurations. The BLI and CLIR scores
in Figures 3a and 3b also show slightly different
patterns across layers. Overall, this suggests that
1) extracted lexical information must be guided by
task requirements, and 2) config components must
be carefully tuned to maximise performance for a
particular task–language combination.

4.1 Lexical Information in Individual Layers
Evaluation Setup. To better understand which lay-
ers contribute the most to the final performance in
our lexical tasks, we also probe type-level represen-
tations emerging from each individual layer of pre-
trained LMs. For brevity, we focus on the best per-
forming configurations from previous experiments:
{MONO, MBERT}.{ISO, AOC-100}.NOSPEC.

In addition, tackling Q4 from §1, we analyse the
similarity of representations extracted from mono-
lingual and multilingual BERT models using the
centered kernel alignment (CKA) as proposed by
(Kornblith et al., 2019). The linear CKA computes
similarity that is invariant to isotropic scaling and
orthogonal transformation. It is defined as

CKA(X,Y ) =

∥∥Y >X∥∥2
F

(‖X>X‖F ‖Y >Y ‖F)
. (1)

X,Y ∈ Rs×d are input matrices spanning s `2-
normalized and mean-centered examples of dimen-
sionality d = 768. We use CKA in two different
experiments: 1) measuring self-similarity where
we compute CKA similarity of representations ex-
tracted from different layers for the same word;
and 2) measuring bilingual layer correspondence
where we compute CKA similarity of representa-

tions extracted from the same layer for two words
constituting a translation pair. To this end, we again
use BLI dictionaries of Glavaš et al. (2019) (see §3)
covering 7K pairs (training + test pairs).

Discussion. Per-layer CKA similarities are pro-
vided in Figure 7 (self-similarity) and Figure 5
(bilingual), and we show results of representations
extracted from individual layers for selected evalu-
ation setups and languages in Table 2. We also plot
bilingual layer correspondence of true word trans-
lations versus randomly paired words for EN–RU

in Figure 6. Figure 7 reveals very similar patterns
for both EN and FI, and we also observe that self-
similarity scores decrease for more distant layers
(cf., similarity of L1 and L2 versus L1 and L12).
However, despite structural similarities identified
by linear CKA, the scores from Table 2 demon-
strate that structurally similar layers might encode
different amounts of lexical information: e.g., com-
pare performance drops between L5 and L8 in all
evaluation tasks.

The results in Table 2 further suggest that more
type-level lexical information is available in lower
layers, as all peak scores in the table are achieved
with representations extracted from layers L1−L5.
Much lower scores in type-level semantic tasks
for higher layers also empirically validate a re-
cent hypothesis of Ethayarajh (2019) “that con-
textualised word representations are more context-
specific in higher layers.” We also note that none
of the results with L=n configurations from Table 1
can match best performing AVG(L≤n) configura-
tions with layer-wise averaging. This confirms our
hypothesis that type-level lexical knowledge, al-
though predominantly captured by lower layers, is
disseminated across multiple layers, and layer-wise
averaging is crucial to uncover that knowledge.

Further, Figure 5 and Figure 6 reveal that even
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LMs trained on monolingual data learn similar
representations in corresponding layers for word
translations (see the MONO.AOC columns). Intu-
itively, this similarity is much more pronounced
with AOC configurations with mBERT. The com-
parison of scores in Figure 6 also reveals much
higher correspondence scores for true translation
pairs than for randomly paired words (i.e., the cor-
respondence scores for random pairings are, as ex-
pected, random). Moreover, MULTI CKA similarity
scores turn out to be higher for more similar lan-
guage pairs (cf. EN–DE versus EN–TR MULTI.AOC

columns). This suggests that, similar to static
WEs, type-level ‘BERT-based’ WEs of different
languages also display topological similarity, often
termed approximate isomorphism (Søgaard et al.,
2018), but its degree depends on language prox-
imity. This also clarifies why representations ex-
tracted from two independently trained monolin-
gual LMs can be linearly aligned, as validated by
BLI and CLIR evaluation (Table 2 and Figure 3).9

We also calculated the Spearman’s correlation
between CKA similarity scores for configurations
MONO.AOC-100.NOSPEC.AVG(L≤n), for all n =
0, . . . , 12, and their corresponding BLI scores on
EN–FI, EN–DE, and DE–FI. The correlations are
very high: ρ = 1.0, 0.83, 0.99, respectively. This
further confirms the approximate isomorphism hy-
pothesis: it seems that higher structural similarities
of representations extracted from monolingual pre-
trained LMs facilitate their cross-lingual alignment.

5 Further Discussion and Conclusion

What about Larger LMs and Corpora? Aspects
of LM pretraining, such as the number of model pa-
rameters or the size of pretraining data, also impact
lexical knowledge stored in the LM’s parameters.
Our preliminary experiments have verified that EN

BERT-Large yields slight gains over the EN BERT-
Base architecture used in our work (e.g., peak EN

LSIM scores rise from 0.518 to 0.531). In a simi-
lar vein, we have run additional experiments with
two available Italian (IT) BERT-Base models with
identical parameter setups, where one was trained

9Previous work has empirically validated that sentence
representations for semantically similar inputs from different
languages are less similar in higher Transformer layers (Singh
et al., 2019; Wu and Dredze, 2019). In Figure 5, we demon-
strate that this is also the case for type-level lexical informa-
tion; however, unlike sentence representations where highest
similarity is reported in lowest layers, Figure 5 suggests that
highest CKA similarities are achieved in intermediate layers
L5-L8.

on 13GB of IT text, and the other on 81GB. In
EN (BERT-Base)–IT BLI and CLIR evaluations we
measure improvements from 0.548 to 0.572 (BLI),
and from 0.148 to 0.160 (CLIR) with the 81GB IT

model. In-depth analyses of these factors are out
of the scope of this work, but they warrant further
investigations.

Opening Future Research Avenues. Our study
has empirically validated that (monolingually) pre-
trained LMs store a wealth of type-level lexical
knowledge, but effectively uncovering and extract-
ing such knowledge from the LMs’ parameters de-
pends on several crucial components (see §2). In
particular, some universal choices of configuration
can be recommended: i) choosing monolingual
LMs; ii) encoding words with multiple contexts;
iii) excluding special tokens; iv) averaging over
lower layers. Moreover, we found that type-level
WEs extracted from pretrained LMs can surpass
static WEs like fastText (Bojanowski et al., 2017).

This study has only scratched the surface of this
research avenue. In future work, we plan to investi-
gate how domains of external corpora affect AOC

configurations, and how to sample representative
contexts from the corpora. We will also extend
the study to more languages, more lexical seman-
tic probes, and other larger underlying LMs. The
difference in performance across layers also calls
for more sophisticated lexical representation ex-
traction methods (e.g., through layer weighting or
attention) similar to meta-embedding approaches
(Yin and Schütze, 2016; Bollegala and Bao, 2018;
Kiela et al., 2018). Given the current large gaps
between monolingual and multilingual LMs, we
will also focus on lightweight methods to enrich
lexical content in multilingual LMs (Wang et al.,
2020; Pfeiffer et al., 2020).
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A Appendix

URLs to the models and external corpora used in
our study are provided in Table 3 and Table 4, re-
spectively. URLs to the evaluation data and task
architectures for each evaluation task are provided
in Table 5. We also report additional and more
detailed sets of results across different tasks, word
embedding extraction configurations/variants, and
language pairs:

• In Table 6 and Table 7, we provide full BLI
results per language pair. All scores are Mean
Reciprocal Rank (MRR) scores (in the stan-
dard scoring interval, 0.0–1.0).

• In Table 8, we provide full CLIR results per
language pair. All scores are Mean Average
Precision (MAP) scores (in the standard scor-
ing interval, 0.0–1.0).

• In Table 9, we provide full relation prediction
(RELP) results for EN and DE. All scores are
micro-averaged F1 scores over 5 runs of the
relation predictor (Glavaš and Vulić, 2018).
We also report standard deviation for each
configuration.

Finally, in Figures 8-10, we also provide
heatmaps denoting bilingual layer correspondence,
computed via linear CKA similarity (Kornblith
et al., 2019), for several EN–Lt language pairs (see
§4.1), which are not provided in the main paper
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Language URL

EN https://huggingface.co/bert-base-uncased
DE https://huggingface.co/bert-base-german-dbmdz-uncased
RU https://huggingface.co/DeepPavlov/rubert-base-cased
FI https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1
ZH https://huggingface.co/bert-base-chinese
TR https://huggingface.co/dbmdz/bert-base-turkish-uncased
Multilingual https://huggingface.co/bert-base-multilingual-uncased

IT
https://huggingface.co/dbmdz/bert-base-italian-uncased
https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased

Table 3: URLs of the models used in our study. The first part of the table refers to the models used in the main
experiments throughout the paper, while the second part refers to the models used in side experiments.

Language URL

EN http://opus.nlpl.eu/download.php?f=Europarl/v8/moses/de-en.txt.zip
DE http://opus.nlpl.eu/download.php?f=Europarl/v8/moses/de-en.txt.zip
RU http://opus.nlpl.eu/download.php?f=UNPC/v1.0/moses/en-ru.txt.zip
FI http://opus.nlpl.eu/download.php?f=Europarl/v8/moses/en-fi.txt.zip
ZH http://opus.nlpl.eu/download.php?f=UNPC/v1.0/moses/en-zh.txt.zip
TR http://data.statmt.org/wmt18/translation-task/news.2017.tr.shuffled.

deduped.gz
IT http://opus.nlpl.eu/download.php?f=Europarl/v8/moses/en-it.txt.zip

Table 4: Links to the external corpora used in the study. We randomly sample 1M sentences of maximum sequence
length 512 from the corresponding corpora.

Task Evaluation Data and/or Model Link

LSIM Multi-SimLex Data: multisimlex.com/

WA BATS Data: vecto.space/projects/BATS/

BLI Data: Dictionaries from Glavaš et al. (2019) Data: github.com/codogogo/xling-eval/
tree/master/bli_datasets

Model: VecMap Model: github.com/artetxem/vecmap

CLIR Data: CLEF 2003 Data: catalog.elra.info/en-us/
repository/browse/ELRA-E0008/

Model: Agg-IDF from Litschko et al. (2019) Model: github.com/rlitschk/UnsupCLIR

RELP Data: WordNet-based RELP data Data: github.com/codogogo/stm/tree/
master/data/wn-ls

Model: Specialization Tensor Model Model: github.com/codogogo/stm

Table 5: Links to evaluation data and models.

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-german-dbmdz-uncased
https://huggingface.co/DeepPavlov/rubert-base-cased
https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1
https://huggingface.co/bert-base-chinese
https://huggingface.co/dbmdz/bert-base-turkish-uncased
https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/dbmdz/bert-base-italian-uncased
https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased
http://opus.nlpl.eu/download.php?f=Europarl/v8/moses/de-en.txt.zip
http://opus.nlpl.eu/download.php?f=Europarl/v8/moses/de-en.txt.zip
http://opus.nlpl.eu/download.php?f=UNPC/v1.0/moses/en-ru.txt.zip
http://opus.nlpl.eu/download.php?f=Europarl/v8/moses/en-fi.txt.zip
http://opus.nlpl.eu/download.php?f=UNPC/v1.0/moses/en-zh.txt.zip
http://data.statmt.org/wmt18/translation-task/news.2017.tr.shuffled.deduped.gz
http://data.statmt.org/wmt18/translation-task/news.2017.tr.shuffled.deduped.gz
http://opus.nlpl.eu/download.php?f=Europarl/v8/moses/en-it.txt.zip
multisimlex.com/
vecto.space/projects/BATS/
github.com/codogogo/xling-eval/tree/master/bli_datasets
github.com/codogogo/xling-eval/tree/master/bli_datasets
github.com/artetxem/vecmap
catalog.elra.info/en-us/repository/browse/ELRA-E0008/
catalog.elra.info/en-us/repository/browse/ELRA-E0008/
github.com/rlitschk/UnsupCLIR
github.com/codogogo/stm/tree/master/data/wn-ls
github.com/codogogo/stm/tree/master/data/wn-ls
github.com/codogogo/stm
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Configuration EN–DE EN–TR EN–FI EN–RU DE–TR DE–FI DE–RU

FASTTEXT.WIKI 0.610 0.433 0.488 0.522 0.358 0.435 0.469

MONO.ISO.NOSPEC
AVG(L≤2) 0.390 0.332 0.392 0.409 0.237 0.269 0.291
AVG(L≤4) 0.430 0.367 0.438 0.447 0.269 0.311 0.338
AVG(L≤6) 0.461 0.386 0.476 0.472 0.299 0.359 0.387
AVG(L≤8) 0.472 0.390 0.486 0.487 0.315 0.387 0.407
AVG(L≤10) 0.461 0.386 0.483 0.488 0.321 0.395 0.416
AVG(L≤12) 0.446 0.379 0.471 0.473 0.323 0.395 0.412
MONO.AOC-10.NOSPEC
AVG(L≤2) 0.399 0.342 0.386 0.403 0.242 0.269 0.292
AVG(L≤4) 0.457 0.379 0.448 0.433 0.283 0.322 0.343
AVG(L≤6) 0.503 0.399 0.480 0.458 0.315 0.369 0.380
AVG(L≤8) 0.527 0.414 0.499 0.461 0.332 0.394 0.391
AVG(L≤10) 0.534 0.415 0.498 0.459 0.337 0.401 0.394
AVG(L≤12) 0.534 0.416 0.492 0.453 0.337 0.401 0.376
MONO.AOC-100.NOSPEC
AVG(L≤2) 0.401 0.343 0.391 0.398 0.239 0.269 0.293
AVG(L≤4) 0.459 0.381 0.449 0.437 0.288 0.325 0.343
AVG(L≤6) 0.504 0.403 0.484 0.459 0.318 0.373 0.382
AVG(L≤8) 0.532 0.418 0.503 0.462 0.334 0.394 0.389
AVG(L≤10) 0.540 0.422 0.504 0.459 0.338 0.402 0.393
AVG(L≤12) 0.542 0.426 0.500 0.454 0.343 0.401 0.378
MONO.ISO.ALL
AVG(L≤2) 0.352 0.289 0.351 0.374 0.230 0.265 0.283
AVG(L≤4) 0.375 0.317 0.391 0.393 0.264 0.302 0.331
AVG(L≤6) 0.386 0.330 0.406 0.407 0.289 0.350 0.376
AVG(L≤8) 0.372 0.327 0.409 0.413 0.291 0.370 0.392
AVG(L≤10) 0.352 0.320 0.396 0.402 0.290 0.370 0.383
AVG(L≤12) 0.313 0.310 0.373 0.394 0.283 0.358 0.371
MONO.ISO.WITHCLS
AVG(L≤2) 0.367 0.306 0.368 0.386 0.236 0.272 0.285
AVG(L≤4) 0.394 0.339 0.408 0.410 0.267 0.307 0.331
AVG(L≤6) 0.406 0.344 0.428 0.425 0.294 0.353 0.381
AVG(L≤8) 0.393 0.344 0.430 0.431 0.306 0.369 0.400
AVG(L≤10) 0.371 0.336 0.421 0.421 0.303 0.382 0.395
AVG(L≤12) 0.331 0.329 0.403 0.409 0.302 0.375 0.387
MULTI.ISO.NOSPEC
AVG(L≤2) 0.293 0.176 0.176 0.147 0.216 0.203 0.160
AVG(L≤4) 0.304 0.184 0.190 0.164 0.219 0.214 0.178
AVG(L≤6) 0.315 0.189 0.203 0.198 0.223 0.225 0.198
AVG(L≤8) 0.325 0.193 0.209 0.228 0.224 0.235 0.217
AVG(L≤10) 0.330 0.194 0.210 0.243 0.220 0.234 0.226
AVG(L≤12) 0.333 0.193 0.206 0.248 0.219 0.231 0.227
MULTI.AOC-10.NOSPEC
AVG(L≤2) 0.309 0.171 0.172 0.146 0.208 0.200 0.156
AVG(L≤4) 0.350 0.186 0.189 0.186 0.224 0.214 0.191
AVG(L≤6) 0.389 0.219 0.215 0.240 0.241 0.243 0.225
AVG(L≤8) 0.432 0.246 0.251 0.287 0.255 0.263 0.254
AVG(L≤10) 0.448 0.258 0.264 0.306 0.260 0.282 0.272
AVG(L≤12) 0.456 0.267 0.272 0.316 0.260 0.292 0.284
MULTI.ISO.ALL
AVG(L≤2) 0.292 0.173 0.175 0.143 0.209 0.203 0.154
AVG(L≤4) 0.301 0.176 0.188 0.155 0.211 0.213 0.171
AVG(L≤6) 0.307 0.181 0.198 0.186 0.216 0.221 0.193
AVG(L≤8) 0.315 0.184 0.202 0.207 0.213 0.228 0.208
AVG(L≤10) 0.318 0.182 0.197 0.216 0.208 0.226 0.215
AVG(L≤12) 0.319 0.181 0.189 0.220 0.209 0.220 0.213

MONO.ISO.NOSPEC (REVERSE)
AVG(L≥12) 0.104 – 0.054 – – 0.077 –
AVG(L≥10) 0.119 – 0.061 – – 0.063 –
AVG(L≥8) 0.144 – 0.108 – – 0.095 –
AVG(L≥6) 0.230 – 0.223 – – 0.238 –
AVG(L≥4) 0.308 – 0.318 – – 0.335 –
AVG(L≥2) 0.365 – 0.385 – – 0.372 –
AVG(L≥0) 0.446 – 0.471 – – 0.395 –

Table 6: Results in the BLI task across different language pairs and word vector extraction configurations. MRR
scores reported. For clarity of presentation, a subset of results is presented in this table, while the rest (and the
averages) are presented in Table 7. AVG(L≤n) means that we average representations over all Transformer layers
up to the nth layer (included), where L = 0 refers to the embedding layer, L = 1 to the bottom layer, and L = 12
to the final (top) layer. Different configurations are described in §2 and Table 1. Additional diagnostic experiments
with top-to-bottom layerwise averaging configs (REVERSE) are run for a subset of languages: {EN, DE, FI }.
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Configuration TR–FI TR–RU FI–RU average

FASTTEXT.WIKI 0.358 0.364 0.439 0.448

MONO.ISO.NOSPEC
AVG(L≤2) 0.237 0.217 0.290 0.306
AVG(L≤4) 0.279 0.261 0.337 0.348
AVG(L≤6) 0.311 0.288 0.372 0.381
AVG(L≤8) 0.334 0.315 0.387 0.398
AVG(L≤10) 0.347 0.317 0.392 0.401
AVG(L≤12) 0.352 0.319 0.387 0.396
MONO.AOC-10.NOSPEC
AVG(L≤2) 0.247 0.221 0.284 0.308
AVG(L≤4) 0.288 0.263 0.331 0.355
AVG(L≤6) 0.319 0.294 0.366 0.388
AVG(L≤8) 0.334 0.311 0.375 0.404
AVG(L≤10) 0.340 0.311 0.379 0.407
AVG(L≤12) 0.344 0.310 0.360 0.402
MONO.AOC-100.NOSPEC
AVG(L≤2) 0.244 0.220 0.285 0.308
AVG(L≤4) 0.288 0.261 0.333 0.356
AVG(L≤6) 0.322 0.291 0.367 0.390
AVG(L≤8) 0.338 0.309 0.376 0.406
AVG(L≤10) 0.348 0.314 0.377 0.410
AVG(L≤12) 0.349 0.311 0.361 0.407
MONO.ISO.ALL
AVG(L≤2) 0.226 0.212 0.284 0.287
AVG(L≤4) 0.270 0.254 0.328 0.322
AVG(L≤6) 0.302 0.274 0.358 0.348
AVG(L≤8) 0.318 0.296 0.371 0.356
AVG(L≤10) 0.328 0.303 0.373 0.352
AVG(L≤12) 0.328 0.306 0.368 0.340
MONO.ISO.WITHCLS
AVG(L≤2) 0.232 0.217 0.285 0.295
AVG(L≤4) 0.274 0.257 0.331 0.332
AVG(L≤6) 0.307 0.279 0.362 0.358
AVG(L≤8) 0.327 0.303 0.377 0.368
AVG(L≤10) 0.334 0.314 0.383 0.366
AVG(L≤12) 0.340 0.317 0.373 0.357
MULTI.ISO.NOSPEC
AVG(L≤2) 0.170 0.131 0.127 0.180
AVG(L≤4) 0.180 0.135 0.138 0.191
AVG(L≤6) 0.188 0.147 0.151 0.204
AVG(L≤8) 0.189 0.152 0.164 0.214
AVG(L≤10) 0.188 0.153 0.165 0.216
AVG(L≤12) 0.188 0.158 0.163 0.217
MULTI.AOC-10.NOSPEC
AVG(L≤2) 0.165 0.127 0.130 0.178
AVG(L≤4) 0.176 0.146 0.139 0.200
AVG(L≤6) 0.192 0.174 0.162 0.230
AVG(L≤8) 0.210 0.192 0.185 0.258
AVG(L≤10) 0.219 0.198 0.200 0.271
AVG(L≤12) 0.223 0.198 0.206 0.277
MULTI.ISO.ALL
AVG(L≤2) 0.163 0.126 0.123 0.176
AVG(L≤4) 0.175 0.128 0.133 0.185
AVG(L≤6) 0.179 0.139 0.142 0.196
AVG(L≤8) 0.182 0.144 0.152 0.203
AVG(L≤10) 0.178 0.141 0.153 0.203
AVG(L≤12) 0.175 0.143 0.150 0.202

Table 7: Results in the bilingual lexicon induction (BLI) task across different language pairs and word vector
extraction configurations: Part II. MAP scores reported. For clarity of presentation, a subset of results is presented
in this table, while the rest (also used to calculate the averages) is provided in Table 6 in the previous page.
AVG(L≤n) means that we average representations over all Transformer layers up to the nth layer (included), where
L = 0 refers to the embedding layer, L = 1 to the bottom layer, and L = 12 to the final (top) layer. Different
configurations are described in §2 and Table 1.
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Configuration EN–DE EN–FI EN–RU DE–FI DE–RU FI–RU average

FASTTEXT.WIKI 0.193 0.136 0.118 0.221 0.112 0.105 0.148
MONO.ISO.NOSPEC
AVG(L≤2) 0.059 0.075 0.106 0.126 0.086 0.123 0.096
AVG(L≤4) 0.061 0.069 0.098 0.111 0.075 0.106 0.087
AVG(L≤6) 0.052 0.061 0.079 0.112 0.068 0.102 0.079
AVG(L≤8) 0.042 0.048 0.075 0.112 0.063 0.105 0.074
AVG(L≤10) 0.036 0.043 0.067 0.107 0.065 0.080 0.066
AVG(L≤12) 0.032 0.034 0.059 0.097 0.077 0.083 0.064
MONO.AOC-10.NOSPEC
AVG(L≤2) 0.069 0.078 0.094 0.109 0.078 0.108 0.089
AVG(L≤4) 0.076 0.105 0.119 0.112 0.098 0.117 0.104
AVG(L≤6) 0.086 0.090 0.129 0.122 0.098 0.125 0.108
AVG(L≤8) 0.092 0.073 0.137 0.105 0.100 0.114 0.103
AVG(L≤10) 0.095 0.073 0.147 0.102 0.102 0.135 0.109
AVG(L≤12) 0.104 0.073 0.139 0.100 0.105 0.131 0.109
MONO.AOC-100.NOSPEC
AVG(L≤2) 0.073 0.081 0.097 0.111 0.078 0.106 0.091
AVG(L≤4) 0.078 0.107 0.115 0.107 0.100 0.115 0.104
AVG(L≤6) 0.087 0.087 0.127 0.132 0.103 0.123 0.110
AVG(L≤8) 0.091 0.076 0.137 0.118 0.101 0.106 0.105
AVG(L≤10) 0.099 0.074 0.161 0.103 0.104 0.104 0.107
AVG(L≤12) 0.106 0.076 0.146 0.105 0.106 0.100 0.106
MONO.ISO.ALL
AVG(L≤2) 0.044 0.045 0.076 0.095 0.067 0.098 0.071
AVG(L≤4) 0.039 0.042 0.079 0.094 0.066 0.100 0.070
AVG(L≤6) 0.024 0.034 0.069 0.089 0.066 0.094 0.063
AVG(L≤8) 0.018 0.020 0.039 0.068 0.059 0.092 0.049
AVG(L≤10) 0.016 0.016 0.030 0.048 0.058 0.067 0.039
AVG(L≤12) 0.014 0.013 0.033 0.034 0.064 0.061 0.036
MONO.ISO.WITHCLS
AVG(L≤2) 0.050 0.057 0.086 0.106 0.071 0.108 0.080
AVG(L≤4) 0.046 0.055 0.084 0.104 0.071 0.102 0.077
AVG(L≤6) 0.032 0.042 0.076 0.103 0.066 0.097 0.069
AVG(L≤8) 0.025 0.028 0.046 0.086 0.059 0.101 0.057
AVG(L≤10) 0.021 0.030 0.037 0.072 0.057 0.079 0.049
AVG(L≤12) 0.020 0.016 0.032 0.052 0.045 0.072 0.040
MULTI.ISO.NOSPEC
AVG(L≤2) 0.110 0.009 0.045 0.057 0.020 0.013 0.042
AVG(L≤4) 0.100 0.007 0.075 0.044 0.025 0.011 0.044
AVG(L≤6) 0.098 0.007 0.046 0.043 0.029 0.030 0.042
AVG(L≤8) 0.088 0.008 0.052 0.043 0.032 0.031 0.042
AVG(L≤10) 0.084 0.008 0.051 0.042 0.034 0.026 0.041
AVG(L≤12) 0.082 0.006 0.048 0.039 0.037 0.024 0.039
MULTI.AOC-10.NOSPEC
AVG(L≤2) 0.127 0.013 0.049 0.027 0.019 0.009 0.041
AVG(L≤4) 0.123 0.018 0.055 0.032 0.029 0.008 0.044
AVG(L≤6) 0.120 0.018 0.055 0.051 0.042 0.009 0.049
AVG(L≤8) 0.123 0.018 0.057 0.053 0.049 0.016 0.053
AVG(L≤10) 0.127 0.019 0.062 0.050 0.051 0.018 0.054
AVG(L≤12) 0.128 0.021 0.065 0.049 0.052 0.019 0.056
MULTI.ISO.ALL
AVG(L≤2) 0.072 0.005 0.032 0.014 0.016 0.004 0.024
AVG(L≤4) 0.075 0.004 0.027 0.014 0.022 0.005 0.024
AVG(L≤6) 0.065 0.004 0.026 0.015 0.027 0.007 0.024
AVG(L≤8) 0.054 0.004 0.035 0.015 0.032 0.008 0.025
AVG(L≤10) 0.054 0.005 0.032 0.017 0.035 0.007 0.025
AVG(L≤12) 0.058 0.004 0.034 0.018 0.032 0.006 0.025

MONO.ISO.NOSPEC (REVERSE)
AVG(L≥12) 0.005 0.012 – 0.001 – – –
AVG(L≥10) 0.002 0.002 – 0.001 – – –
AVG(L≥8) 0.004 0.002 – 0.002 – – –
AVG(L≥6) 0.014 0.006 – 0.004 – – –
AVG(L≥4) 0.020 0.012 – 0.016 – – –
AVG(L≥2) 0.024 0.019 – 0.043 – – –
AVG(L≥0) 0.032 0.034 – 0.097 – – –

Table 8: Results in the CLIR task across different language pairs and word vector extraction configurations. MAP
scores reported; AVG(L≤n) means that we average representations over all Transformer layers up to the nth layer
(included), where L = 0 refers to the embedding layer, L = 1 to the bottom layer, and L = 12 to the final
(top) layer. Different configurations are described in §2 and Table 1. Additional diagnostic experiments with
top-to-bottom layerwise averaging configs (REVERSE) are run for a subset of languages: {EN, DE, FI }.
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Configuration EN DE

FASTTEXT.WIKI 0.660±0.008 0.601±0.007

RANDOM.XAVIER 0.473±0.003 0.512±0.008

MONO.ISO.NOSPEC
AVG(L≤2) 0.688±0.007 0.649±0.002

AVG(L≤4) 0.698±0.002 0.664±0.004

AVG(L≤6) 0.699±0.007 0.677±0.006

AVG(L≤8) 0.706±0.003 0.674±0.016

AVG(L≤10) 0.718±0.002 0.679±0.008

AVG(L≤12) 0.714±0.012 0.673±0.003

MONO.AOC-10.NOSPEC
AVG(L≤2) 0.690±0.007 0.657±0.005

AVG(L≤4) 0.705±0.006 0.671±0.009

AVG(L≤6) 0.714±0.008 0.675±0.014

AVG(L≤8) 0.722±0.004 0.681±0.010

AVG(L≤10) 0.719±0.007 0.682±0.007

AVG(L≤12) 0.720±0.005 0.680±0.007

MONO.AOC-100.NOSPEC
AVG(L≤2) 0.692±0.007 0.655±0.007

AVG(L≤4) 0.709±0.007 0.670±0.005

AVG(L≤6) 0.718±0.009 0.672±0.008

AVG(L≤8) 0.717±0.003 0.680±0.006

AVG(L≤10) 0.721±0.009 0.678±0.004

AVG(L≤12) 0.715±0.003 0.678±0.006

MONO.ISO.ALL
AVG(L≤2) 0.688±0.008 0.654±0.012

AVG(L≤4) 0.698±0.011 0.662±0.008

AVG(L≤6) 0.711±0.005 0.664±0.005

AVG(L≤8) 0.709±0.008 0.663±0.015

AVG(L≤10) 0.712±0.006 0.669±0.003

AVG(L≤12) 0.704±0.005 0.666±0.013

MONO.ISO.WITHCLS
AVG(L≤2) 0.693±0.004 0.649±0.016

AVG(L≤4) 0.699±0.004 0.664±0.006

AVG(L≤6) 0.709±0.002 0.671±0.006

AVG(L≤8) 0.710±0.003 0.679±0.006

AVG(L≤10) 0.713±0.006 0.670±0.007

AVG(L≤12) 0.705±0.005 0.676±0.006

MULTI.ISO.NOSPEC
AVG(L≤2) 0.671±0.009 0.628±0.013

AVG(L≤4) 0.669±0.006 0.640±0.004

AVG(L≤6) 0.684±0.010 0.637±0.009

AVG(L≤8) 0.680±0.005 0.647±0.006

AVG(L≤10) 0.676±0.006 0.629±0.008

AVG(L≤12) 0.681±0.005 0.637±0.004

MULTI.AOC-10.NOSPEC
AVG(L≤2) 0.674±0.005 0.635±0.011

AVG(L≤4) 0.681±0.006 0.630±0.007

AVG(L≤6) 0.692±0.008 0.649±0.010

AVG(L≤8) 0.695±0.004 0.652±0.011

AVG(L≤10) 0.704±0.005 0.657±0.012

AVG(L≤12) 0.702±0.005 0.661±0.008

MULTI.ISO.ALL
AVG(L≤2) 0.674±0.004 0.626±0.014

AVG(L≤4) 0.682±0.009 0.640±0.009

AVG(L≤6) 0.680±0.002 0.632±0.007

AVG(L≤8) 0.683±0.003 0.638±0.010

AVG(L≤10) 0.678±0.007 0.638±0.015

AVG(L≤12) 0.676±0.013 0.636±0.005

MONO.ISO.NOSPEC (REVERSE)
AVG(L≥12) 0.683±0.007 0.628±0.009

AVG(L≥10) 0.692±0.014 0.628±0.008

AVG(L≥8) 0.688±0.016 0.648±0.007

AVG(L≥6) 0.704±0.015 0.658±0.006

AVG(L≥4) 0.704±0.008 0.668±0.007

AVG(L≥2) 0.707±0.008 0.667±0.004

AVG(L≥0) 0.714±0.012 0.673±0.003

Table 9: Results in the relation prediction task (RELP) across different word vector extraction configurations.
Micro-averaged F1 scores reported , obtained as averages over 5 experimental runs for each configuration; standard
deviation is also reported. AVG(L≤n) means that we average representations over all Transformer layers up to the
nth layer (included), where L = 0 refers to the embedding layer, L = 1 to the bottom layer, and L = 12 to the
final (top) layer. Different configurations are described in §2 and Table 1. RANDOM.XAVIER are 768-dim vectors
for the same vocabularies, randomly initialised via Xavier initialisation (Glorot and Bengio, 2010).
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(a) EN–DE: Word translation pairs (b) EN–DE: Random word pairs

Figure 8: CKA similarity scores of type-level word representations extracted from each layer (using different
extraction configurations, see Table 1) for a set of (a) 7K EN–DE translation pairs from the BLI dictionaries of
Glavaš et al. (2019); (b) 7K random EN–DE pairs.

(a) EN–FI: Word translation pairs (b) EN–FI: Random word pairs

Figure 9: CKA similarity scores of type-level word representations extracted from each layer (using different
extraction configurations, see Table 1) for a set of (a) 7K EN–FI translation pairs from the BLI dictionaries of
Glavaš et al. (2019); (b) 7K random EN–FI pairs.

(a) EN–TR: Word translation pairs (b) EN–TR: Random word pairs

Figure 10: CKA similarity scores of type-level word representations extracted from each layer (using different
extraction configurations, see Table 1) for a set of (a) 7K EN–TR translation pairs from the BLI dictionaries of
Glavaš et al. (2019); (b) 7K random EN–TR pairs.


