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Abstract

We propose a novel language-independent ap-
proach to improve the efficiency for Gram-
matical Error Correction (GEC) by dividing
the task into two subtasks: Erroneous Span
Detection (ESD) and Erroneous Span Correc-
tion (ESC). ESD identifies grammatically in-
correct text spans with an efficient sequence
tagging model. Then, ESC leverages a seq2seq
model to take the sentence with annotated erro-
neous spans as input and only outputs the cor-
rected text for these spans. Experiments show
our approach performs comparably to conven-
tional seq2seq approaches in both English and
Chinese GEC benchmarks with less than 50%
time cost for inference.

1 Introduction

Due to a growing number of error-corrected paral-
lel sentences available in recent years, sequence-
to-sequence (seq2seq) models with the encoder-
decoder architecture (Bahdanau et al., 2014;
Sutskever et al., 2014; Luong et al., 2015) have
become a popular solution to GEC, which take
the source (original) sentence as input and out-
put the target (corrected) sentence. Although auto-
regressive seq2seq models facilitate correction for
various grammatical errors and perform well, they
are not efficient enough for GEC. As previous work
(Zhao et al., 2019) points out, seq2seq models take
most decoding steps to copy grammatically correct
text spans from the source to the target during in-
ference, which is the main efficiency bottleneck. If
the time for the copying operations can be saved,
the efficiency should be much improved.

With this motivation, we propose a simple yet
novel language-independent approach to improve
the efficiency of GEC by dividing the task into

∗ This work was done during the author’s internship at
Microsoft Research Asia.

†Co-first authors with equal contributions.

two subtasks: Erroneous Span Detection (ESD)
and Erroneous Span Correction (ESC), shown in
Figure 1. In ESD, we use an efficient sequence
tagging model to identify the text spans that are
grammatically incorrect in the source sentence, as
Figure 1(a) shows. Then, we feed the sentence
with erroneous span annotations to a seq2seq model
for ESC. In contrast to conventional seq2seq ap-
proaches correcting the complete sentence, ESC
only corrects the erroneous spans (see Figure 1(b)),
which largely decreases the number of steps for
decoding. Experiments in both English and Chi-
nese GEC benchmarks demonstrate our approach
performs comparably to the state-of-the-art trans-
former based seq2seq model with less than 50%
time cost for inference. Furthermore, our approach
offers more flexibility to control correction, allow-
ing us to adapt the precision-recall trade-off to var-
ious application scenarios.

2 Related Work

Recently, many approaches have been proposed to
improve GEC performance. However, except those
adding synthetic erroneous data (Xie et al., 2018;
Ge et al., 2018a; Grundkiewicz et al., 2019; Kiyono
et al., 2019; Zhou et al., 2019) and Wikipedia revi-
sion logs (Lichtarge et al., 2019) for training, most
methods cause an increase in latency. For exam-
ple, language model and right-to-left (R2L) rescor-
ing (Grundkiewicz et al., 2019; Kiyono et al., 2019)
not only take time to rescore but also slow down the
correction model with a larger beam size during in-
ference; multi-round (iterative) decoding (Ge et al.,
2018a,b; Lichtarge et al., 2019) needs to repeatedly
run the model; BERT-fuse (Kaneko et al., 2020)
adds extra computation for model fusion.

In contrast to extensive studies on GEC per-
formance, little work focuses on improving the
efficiency of GEC models until the last years.
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Figure 1: An overview of erroneous span detection (ESD) and erroneous span correction (ESC). The detection
model is a sequence tagging model, while the correction model is a seq2seq model but only outputs the corrected
texts for annotated spans (i.e., 〈s1〉 to 〈/s1〉 and 〈s2〉 is to my hotel. 〈/s2〉). For example, the text span “is to my
hotel.” is identified as incorrect and then edited into “my hotel is.”.

One branch of the work is language-dependent
approaches, like PIE (Awasthi et al., 2019) and
GECToR (Omelianchuk et al., 2020). They pre-
dict a sequence of token-level edit operations in-
cluding a number of manually designed language-
specific operations like changing verb forms (e.g.,
VBZ→VBD) and prepositions (e.g., in→on). How-
ever, they are difficult to be adapted to other lan-
guages. The other branch is language-independent
models like LaserTagger (Malmi et al., 2019). They
learn a vocabulary of edit operations from training
data and thus can work for any language. However,
their performance is inferior to their seq2seq coun-
terpart. Our approach combines the advantages
of both branches, which is language-independent
and performs comparably to the state-of-the-art
seq2seq approach with efficient inference.

3 Erroneous Span Detection

To identify incorrect spans, we use a binary se-
quence tagging model in which tag 0 means the
token is in a correct span; while tag 1 means the to-
ken is in a grammatically incorrect span that needs
to be edited, as shown in Figure 1(a). In order to
train the tagging model, we align1 tokens across the

1Alignment can be solved by dynamic programming like
Levenshtein distance. We here use ERRANT (https://
github.com/chrisjbryant/errant) for alignment.

source and target sentence in training data. With
token alignment, we can identify the text spans
that are edited and thus can annotate the edited text
spans in the original sentences as erroneous spans.

4 Erroneous Span Correction

With ESD, we can identify grammatically incorrect
text spans in a sentence. If a sentence is identified
as error-free, we take no further action; otherwise,
we annotate the incorrect spans and use the ESC
model to correct them, shown in Figure 1(b).

To avoid ESC being misled by span detec-
tion errors from ESD during inference, we ran-
domly select text spans in the similar way to Span-
BERT (Joshi et al., 2019) instead of only using
gold erroneous spans in training data, to train the
ESC model. In this way, the ESC model will see
a large variety of span annotations and learn how
to correct during training, and thus its robustness
is improved: even if the detected spans during in-
ference are not exactly accurate, the ESC model
will not easily fail. With token alignment across
the source and target sentence in GEC training data,
we can generate training instances with span anno-
tations and corrections like the example in Figure
1(b) for ESC.

https://github.com/chrisjbryant/errant
https://github.com/chrisjbryant/errant
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Model Pretrained Faster/Slower CoNLL-14 (M2) BEA-19 (ERRANT)

P R F0.5 P R F0.5

Seq2seq No - 64.9 26.6 50.4 57.3 41.5 53.2
Levenshtein Transformer? (Gu et al., 2019) No Faster 39.9 24.4 35.4 32.2 39.2 33.4
Levenshtein Transformer? (distillation) No Faster 53.1 23.6 42.5 45.5 37.0 43.5
LaserTagger? (Malmi et al., 2019) No Faster 50.9 26.9 43.2 53.4 38.5 49.6
Our approach No Faster 66.0 24.7 49.5 62.7 38.6 55.7
Seq2seq Yes - 69.4 42.5 61.5 66.7 61.3 65.5
PRETLarge (Kiyono et al., 2019) Yes - 67.9 44.1 61.3 65.5 59.4 64.2
PIE (Awasthi et al., 2019) Yes Faster 66.1 43.0 59.7 58.0 53.1 56.9
Our approach Yes Faster 72.6 37.2 61.0 70.4 55.9 66.9
BERT-fuse GED (Kaneko et al., 2020) Yes Slower 69.2 45.6 62.6 67.1 60.1 65.6
BERT-fuse GED+R2L (Kaneko et al., 2020) Yes Slower 72.6 46.4 65.2 72.3 61.4 69.8
PRETLarge+SSE+R2L (Kiyono et al., 2019) Yes Slower 72.4 46.1 65.0 72.1 61.8 69.8
UEDIN-MS (Grundkiewicz et al., 2019) Yes Slower - - 64.2 72.3 60.1 69.5

Table 1: Performance in English GEC benchmarks (i.e., CoNLL-14 and BEA-19 test). Seq2seq is our implemented
seq2seq model based on Transformer (big) architecture, which is also the baseline for speed comparison (i.e.,
Faster/Slower in the table). The column Pretrained indicates whether the model is pretrained with synthetic or
additional (e.g., Wikipedia revision logs) error-corrected data. ? indicates the models are implemented by us with
the released codes of the original papers, trained and evaluated on the BEA-19 setting. The underlines indicate the
scores are evaluated by us for the released model on the BEA-19 test data.

Model
CoNLL-14 (1,312) NLPCC-18 (2,000)

Time (in second) Performance Time (in second) Performance
1 8 16 32 P R F0.5 1 8 16 32 P R F0.5

Seq2seq 363 85 51 33 64.9 26.6 50.4 690 166 101 63 36.9 14.4 28.1
Levenshtein Transformer 125 24 19 14 53.1 23.6 42.5 224 64 41 31 24.9 15.0 22.0
Our approach 137 34 21 16 66.0 24.7 49.5 253 60 39 29 37.3 14.5 28.4
Seq2seq (tensor2tensor) 680 138 97 85 58.7 30.5 49.5 1292 227 141 92 41.0 10.8 26.3
PIE 66 52 51 48 - - - - - - - - - -
LaserTagger 23 12 9 8 50.9 26.9 43.2 34 16 14 13 25.6 10.5 19.9

Table 2: Performance and total inference time of models without pretraining under various batch sizes (1/8/16/32)
using 1 Nvidia V100 GPU with CUDA 10.2 in the English (CoNLL-14: 1,312 sentences) and Chinese (NLPCC-
18: 2,000 sentences) GEC test sets. The top group of models is implemented with Pytorch, while the bottom
group is implemented with Tensorflow, thus their inference time cannot be compared. The performance of PIE in
CoNLL-14 is not reported because it is pretrained with synthetic data and thus unfair to be compared here. Also,
PIE has no result in NLPCC-18 because it is specific for English and difficult to be generalized to other languages.

5 Experiments

5.1 Experimental Setting

Following recent work in English GEC, we conduct
experiments in the same setting with the restricted
track of the BEA-2019 GEC shared task (Bryant
et al., 2019), using FCE (Yannakoudakis et al.,
2011), Lang-8 Corpus of Learner English (Mizu-
moto et al., 2011), NUCLE (Dahlmeier et al., 2013)
and W&I+LOCNESS (Granger, 1998; Bryant et al.,
2019) as training data. We use CoNLL-2013 test
set as the dev set to choose the best-performing
models, and evaluate on the well-known GEC
benchmark datasets: CoNLL-2014 (Ng et al., 2014)
and BEA-2019 test set with the official evaluation
scripts (m2scorer2 for CoNLL-14, ERRANT for
BEA-19). As previous work (Grundkiewicz et al.,
2019) trained with synthetic data, we synthesize

2https://github.com/nusnlp/m2scorer

260M sentence pairs in the same way to try pre-
training ESD and ESC. Also, we verify in Chinese
GEC whether our approach can be adapted to other
languages. We follow the setting of NLPCC-2018
Chinese GEC shared task (Zhao et al., 2018), using
its official training3 and evaluation datasets.

We fine-tune Roberta (Liu et al., 2019) base and
Chinese Bert (Devlin et al., 2018) base model for
English and Chinese ESD respectively. For ESC,
we train a Transformer (big) model (Vaswani et al.,
2017), using an encoder-decoder shared vocabulary
of 32K Byte Pair Encoding (Sennrich et al., 2015)
tokens for English and 8.4K Chinese character for
Chinese. During inference, ESC decodes with a
beam size of 5. We include more details of models,
training and inference in the supplementary notes.

3We sample 5,000 training instances as the dev set.

https://github.com/nusnlp/m2scorer
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Model #Sent for ESC/seq2seq Batch size
P R F0.51 8 16

ESD (base) + ESC 872 137 (23+114) 34 (5+29) 21 (3+18) 66.0 24.7 49.5
ESD (base) + seq2seq 872 284 (23+261) 66 (5+61) 41 (3+38) 67.0 25.1 50.2
ESD (large) + ESC 935 167 (43+124) 40 (8+32) 25 (6+19) 67.2 26.4 51.3
ESD (large) + seq2seq 935 318 (43+275) 77 (8+69) 47 (6+41) 66.6 25.5 50.3
seq2seq 1,312 363 85 51 64.9 26.6 50.4

Table 3: In-depth time cost (in second) analysis in CoNLL-14 which contains 1,312 test sentences. (base) and
(large) indicate that the ESD models are fine-tuned from the Roberta base and large models respectively. ESD +
seq2seq is implemented as follows: ESD first identifies the sentences that have grammatical errors, then the seq2seq
baseline model only corrects these sentences. The column #Sent for ESC/seq2seq shows the actual number of
sentences ESC/seq2seq processed. For the time cost in the brackets such as (23+114), the first term (e.g., 23) is
the time cost by the ESD model while the last term is the cost (e.g., 114) by the other parts.
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Figure 2: Attention Heatmap of ESC.

5.2 Experimental Results

Table 1 shows the performance of our approach
and recent models in English GEC. Although
the non auto-regressive models like Levenshtein
Transformer and LaserTagger are faster than the
seq2seq baseline, their performance is not desir-
able. Among the models without pretraining (top
group), our approach is the only one that performs
comparably to the Seq2seq baseline with faster in-
ference. When we add the synthetic data to pretrain
the ESD and ESC models, our approach’s results
are much improved, yielding state-of-the-art re-
sults among the models with good inference speed
(middle group). Though our approach underper-
forms the best systems (bottom group) which im-
prove results through various methods (e.g., model
fusion, ensemble decoding and rescoring) that seri-
ously hurt efficiency, it is much more efficient and
thus applicable in real world applications.

Table 2 compares the inference time of various
approaches. Compared to the Seq2seq implemen-
tation in Pytorch-fairseq, our approach saves over
50% time cost. It is notable that among the im-
plementations in Table 2, LaserTagger is the most
efficient though its results are not good enough.

threshold 0.2 0.3 0.4 0.5 0.6 0.7
P 62.4 63.8 64.8 66.0 66.2 67.0
R 27.4 26.8 25.6 24.7 23.4 21.7
F0.5 49.7 50.0 49.6 49.5 48.4 47.2

Table 4: As the probability threshold of ESD increases,
precision increases while recall drops in CoNLL-14.

Also, our approach consistently achieves compara-
ble performance with the Seq2seq baseline in Chi-
nese GEC, demonstrating that our approach can be
easily adapted to other languages.

We further analyze the corresponding time cost
of ESD and ESC. Table 3 shows that ESD is much
faster than the auto-regressive ESC model. It not
only efficiently filters out error-free sentences to
save effort for the following process, but also pin-
points incorrect spans, allowing ESC to only focus
on correcting the spans and reduce the decoding
steps, as shown in Figure 2. For the 872 sentences
ESD (base) identifies as incorrect, the total number
of decoding time steps (in the best beam) of ESC is
7,647, accounting for the efficiency improvement
over the seq2seq model whose corresponding de-
coding steps are 21,065. Furthermore, if we use a
larger ESD model (Roberta large), we observe bet-
ter results with a still marked reduction in time cost
compared to the baseline. More detailed qualitative
studies and analyses of ESD are presented in the
supplementary notes due to the space limitation.

Besides its efficiency advantage, our approach
offers more flexibility to control correction behav-
ior during inference, making it adaptive to various
real-world application scenarios. As shown in Ta-
ble 4, if the model is intended for high precision,
we can increase the probability threshold for ESD
so that it identifies the incorrect spans only when it
is very confident; on the other hand, if we want the
model to be aggressive for higher recall, we can
simply decrease the threshold.
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6 Conclusion and Future Work
We propose a novel language-independent ap-
proach to improve the efficiency of GEC. Our ap-
proach performs comparably to the state-of-the-art
seq2seq model with a considerable reduction in
inference time, and can be easily adapted to other
languages and offer more flexibility to control cor-
rection behavior (e.g., trading precision for recall).

Through our experiments in GEC, we verify the
feasibility of span-specific decoding, which has
been explored for text infilling (Raffel et al., 2019)
and text rewriting. It is inspiring and promising to
be generalized to more rewriting tasks, which will
be studied as our future work.
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A Experiment Details

Table 5 describes the details of datasets used for
English GEC. Except the sythetic data, all the data
can be found at the website4 of the BEA-19 shared
task. The synthetic data is generated from English
Wikipedia5, English Gigaword (Parker et al., 2011)
and Newscrawl6 as the previous work (Ge et al.,

4https://www.cl.cam.ac.uk/research/nl/
bea2019st/

5https://en.wikipedia.org/
6http://data.statmt.org/news-crawl/en/
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Corpus Sent. Tok. Usage
Synthetic data 256M 4.88B Pretraining
FCE 32.0K 0.5M Fine-tuning
Lang-8 1.04M 13.0M Fine-tuning
NUCLE 57.1K 1.2M Fine-tuning
W&I+LOCNESS 34.3K 0.6M Fine-tuning
CoNLL-13 1,381 29.2K Development
BEA-19 4,477 89.3K Test
CoNLL-14 1,312 30.1K Test

Table 5: Statistics of the datasets used for pretraining,
fine-tuning and evaluation.

Configurations Values
Pretraining

Model Architecture Roberta (base)
(Liu et al., 2019)

Number of parameters 125M
Number of epochs 5
Devices 8 Nvidia V100 GPU
Max tokens per GPU 12000
Optimizer Adam

(β1=0.9, β2=0.98, ε=1× 10−6)
(Kingma and Ba, 2014)

Learning rate 3× 10−5

Learning rate scheduler inverse sqrt
warmup 8000
weight decay 0.1
Dropout 0.3

Fine-tuning
Number of epochs 50
Devices 4 Nvidia V100 GPU
Max tokens per GPU 8000
Learning rate 1× 10−5

warmup 4000
Dropout 0.2

Table 6: Hyper-parameters values of ESD during the
pretraining and fine-tuning.

2018a; Zhang et al., 2019; Kiyono et al., 2019;
Grundkiewicz et al., 2019) did, using back trans-
lation and sentence corruption. Specifically, we
train a transformer (base) model (Vaswani et al.,
2017) for back translation using the training data
of the restricted track in the BEA-19 shared task.
For sentence corruption, we follow Edunov et al.
(2018) to randomly insert, delete, replace and swap
adjacent tokens in a sentence.

Hyper-parameters for the ESD and ESC model
for English GEC are listed in table 6 and table 7.
The hyper-parameters for Chinese GEC are almost
the same except that the ESD model is fine-tuned
from Chinese Bert (Devlin et al., 2018) base model.

At last, we highlight that the Levenshtein Trans-
former baselines in this paper are implemented us-
ing the master branch of fairseq (previous versions
may have different reproduced results).

Configurations Values
Pretraining

Model Architecture Transformer (big)
(Vaswani et al., 2017)

Number of parameters 209M
Number of epochs 5
Devices 8 Nvidia V100 GPU
Max tokens per GPU 12000
Optimizer Adam

(β1=0.9, β2=0.98, ε=1× 10−8)
(Kingma and Ba, 2014)

Learning rate 5× 10−4

Learning rate scheduler polynomial decay
Warmup 8000
weight decay 0.0
Loss Function label smoothed cross entropy

(label-smoothing=0.1)
(Szegedy et al., 2016)

Dropout 0.3
Fine-tuning

Number of epochs 30
Devices 4 Nvidia V100 GPU
Max tokens per GPU 5120
Learning rate 3× 10−4

Warmup 4000
Beam search 5

Table 7: Hyper-parameters values of ESC during the
pretraining and fine-tuning.

ESD Model Annotation 1 Annotation 2

P R F0.5 P R F0.5

ESD (base) 52.4 35.3 47.8 63.4 31.3 52.6
ESD (large) 49.5 40.0 47.2 61.4 36.4 54.0
ESD (base+pretrained) 50.9 40.1 48.3 63.7 36.8 55.6

Table 8: The performance of ESD on the two official
annotations for the CoNLL-14 shared task test dataset.

B ESD performance

We followed the previous work (Rei, 2017; Rei
and Yannakoudakis, 2017; Kaneko et al., 2017) in
Grammatical Error Detection (GED), using token-
level precision, recall and F0.5 to evaluate our ESD
model. Table 8 shows the results in CoNLL-14.

C Examples

In table 9 and table 10, we show examples that
are corrected by our approach to demonstrate the
effectiveness of our approach in practice. Accord-
ing to the results in these tables, it is clear that our
approach can yield satisfying corrections without
hurting fluency, which is consistent with our evalua-
tion results in the JFLEG (Napoles et al., 2017) test
set with respect to GLEU7 (Napoles et al., 2015) –
an automatic fluency metric for GEC.

7Our approach (without pretraining) achieves 53.0 GLEU,
comparable to 52.7 by its seq2seq counterpart in JFLEG.
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Source Sentence Instead, we will post a seed and tag our friends to inform this kind of changments.
Annotation Instead, we will post a seed and tag our friends to <s1> inform this kind of changments. </s1>
Correction <s1> inform them of these kinds of changes. </s1>
Final Output Instead, we will post a seed and tag our friends to inform them of these kinds of changes.
Source Sentence Personally I feel that we still should take our responsibility to tell them the situation.
Annotation <s1> Personally I </s1> feel that <s2> we still should </s2> take our responsibility to tell them the situation.
Correction <s1> Personally , I </s1> <s2> we should still </s2>
Final Output Personally, I feel that we should still take our responsibility to tell them the situation.
Source Sentence The law ’s spirit also include the fairness.
Annotation The law ’s spirit <s1> also include the fairness. </s1>
Correction <s1> also includes fairness. </s1>
Final Output The law ’s spirit also includes fairness.
Source Sentence Above all, life is more important than secret.
Annotation Above all, life is more important <s1> than secret. </s1>
Correction <s1> than a secret. </s1>
Final Output Above all, life is more important than a secret.
Source Sentence So, they have to also prepare mentally.
Annotation So, <s1> they have to also prepare </s1> mentally.
Correction <s1> they also have to prepare </s1>
Final Output So, they also have to prepare mentally.
Source Sentence To prevent the bigger problem to happen, it takes a lot of effort to take care of your body.
Annotation To prevent the bigger <s1> problem to happen, it </s1> takes a lot of effort to take care of your body.
Correction <s1> problem from happening, it </s1>
Final Output To prevent the bigger problem from happening, it takes a lot of effort to take care of your body.

Table 9: Examples of our ESD & ESC approach in English for GEC. ESD first detects the grammatical incorrect
text spans in the source sentence. Then the sentence with the erroneous span annotations (the Annotation row) are
fed into the ESC model to generate the corresponding corrections (the Correction row) for the annotated spans.
Finally, we replace the erroneous spans with the corresponding corrected text in ESC’s outputs (the Final Output
row).

Source Sentence 北京的空气太污染了，泛在北京的人一定要注意，别抽烟。
Annotation 北京的空气<s1>太太太污污污染染染了了了，，，泛泛泛在在在北北北</s1>京的人一定要注意，别抽烟。
Correction <s1>污污污染染染太太太严严严重重重了了了，，，在在在北北北</s1>
Final Output 北京的空气污染太严重了，在北京的人一定要注意，别抽烟。

Source Sentence 因为几乎的人们还没感到污染对自己的直接的影响。
Annotation 因<s1>为为为几几几乎乎乎的的的人人人们们们还还还</s1>没感到污染对自己的直接的影响。
Correction <s1>为为为人人人们们们几几几乎乎乎</s1>
Final Output 因为为人们几乎还没感到污染对自己的直接的影响。

Source Sentence 列车、汽车，飞机等人类科技发展的结果也重大问题。
Annotation 列车、汽车，飞机等人类科技发展的结果<s1>也也也重重重大大大</s1>问题。
Correction <s1>也也也存存存在在在重重重大大大</s1>
Final Output 列车、汽车，飞机等人类科技发展的结果也存在重大问题

Source Sentence 中国，悠久的历史，灿烂的文化，真是在历史上最难忘的国家。
Annotation 中国，悠久的历史，灿烂的文化，真<s1>是是是在在在历历历</s1>史上最难忘的国家。
Correction <s1>是是是历历历</s1>
Final Output 中国，悠久的历史，灿烂的文化，真是历史上最难忘的国家。

Source Sentence 以找到这些稳定的工作，我们有读书的必要
Annotation <s1>以以以找找找</s1>到这些稳定的工作，我们有读书的必要。
Correction <s1>为为为了了了找找找</s1>
Final Output 为了找到这些稳定的工作，我们有读书的必要

Table 10: Examples of our ESD & ESC approach in Chinese for GEC.


