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Abstract

Abductive and counterfactual reasoning, core
abilities of everyday human cognition, require
reasoning about what might have happened at
time t, while conditioning on multiple contexts
from the relative past and future. However,
simultaneous incorporation of past and future
contexts using generative language models
(LMs) can be challenging, as they are trained
either to condition only on the past context or
to perform narrowly scoped text-infilling.

In this paper, we propose DELOREAN, a new
unsupervised decoding algorithm that can flex-
ibly incorporate both the past and future con-
texts using only off-the-shelf, left-to-right lan-
guage models and no supervision. The key in-
tuition of our algorithm is incorporating the fu-
ture through back-propagation, during which,
we only update the internal representation of
the output while fixing the model parameters.
By alternating between forward and backward
propagation, DELOREAN can decode the out-
put representation that reflects both the left
and right contexts. We demonstrate that our
approach is general and applicable to two
nonmonotonic reasoning tasks: abductive text
generation and counterfactual story revision,
where DELOREAN outperforms a range of
unsupervised and some supervised methods,
based on automatic and human evaluation.1

1 Introduction

Everyday causal reasoning requires reasoning
about the likely explanations to partially observ-
able past and future (abductive reasoning (Peirce,
1960)) and reasoning about the alternative future
based on counterfactual past (counterfactual rea-
soning). Such nonmonotonic reasoning requires

1Code is available at https://github.com/
qkaren/unsup_gen_for_cms_reasoning

She hit the rope 
and the tire fell 
on top of her.

Abductive Reasoning 

Ray hung a tire on 
a rope to make his 
daughter a swing.

Past Observation 

Ray ran to his 
daughter to make 
sure she was okay.

Future Observation 

Original Ending 

Zeke thought about 
being a vampire or 
a wizard.  

Then he decided on 
a scarier costume.  

Zeke dressed up 
like a skeleton. 

Zeke thought about 
Lannister, but he 
didn’t want to look 
like a Lannister. 

He wanted to look 
like a Stark. 

Zeke dressed up like 
a Stark.

Story Context 

Zeke was throwing 
a party. 

All his friends were 
dressing up for this 
Halloween party.  

All his friends were 
dressing up for this 
Game of Thrones 
themed party. 
[Counterfactual]
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Rewritten Ending

Hypothesis

Counterfactual Reasoning

Figure 1: DELOREAN, our proposed method, with gen-
erated reasoning results. Top: the goal in abductive
reasoning is to generate a hypothesis (Y ) of what hap-
pened between the observed past (X) and future (Z)
contexts. Bottom: In counterfactual reasoning, given
a story context altered by a counterfactual condition,
X , and the original ending Z, the goal is to generate a
new ending Y which is coherent with X while remain-
ing similar to Z. The story from TIMETRAVEL (Qin
et al., 2019a) consists of five sentences. Our approach
alternates forward (left-to-right) and backward (right-
to-left) passes that iteratively refine the generated texts
w.r.t context from each side.

inferring plausible but potentially defeasible con-
clusions from incomplete or hypothetical observa-
tions (Reiter, 1988). While humans are remarkably
good at this type of causal reasoning, developing
AI systems capable of nonmonotonic reasoning for

https://github.com/qkaren/unsup_gen_for_cms_reasoning
https://github.com/qkaren/unsup_gen_for_cms_reasoning
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a wide range of situations describable in natural
language has been a major open research question.

More concretely, with abductive reasoning, the
goal is to find the most plausible explanation for
incomplete observations (Peirce, 1960). In the top
part of Figure 1, given the first observation that
Ray is “making his daughter a swing” and the later
observation that he “ran to [her] to make sure she
was okay,” we can hypothesize that she somehow
got hurt by the swing.

In contrast, counterfactual reasoning concerns
the causal changes to future events given a change
in the past condition (i.e., “counterfactual condi-
tion”; Goodman, 1947). For example, the bottom
part of Figure 1 shows the original five sentence
story (S1, ..., S5) and an alternative counterfac-
tual condition given in S′2—that instead of being
a generic “Halloween party”, the new counterfac-
tual condition is that it is going to be a “Game
of Thrones themed party”! Given these, the prob-
lem we want to solve is to update the future events
(S′3, ..., S

′
5), so that instead of “Zeke dressed up as

skeleton”, we have “Zeke dressed up like a Stark”.2

Recently, two tasks and corresponding bench-
marks have been introduced to tackle language-
based nonmonotonic reasoning: the ART dataset
for abductive NLG (Bhagavatula et al., 2019), and
the TIMETRAVEL dataset for counterfactual story
rewriting (Qin et al., 2019a). Both tasks are framed
as conditional generation, with multiple contexts
to condition on. The currently dominant paradigm
for conditional text generation tasks is fine-tuning
pre-trained language models (LMs), such as GPT2
(Radford et al., 2019a), on large-scale training data
for supervision. However, despite the large num-
ber of training examples, supervised approaches
still perform considerably worse than humans and
are subject to developing superficial strategies such
as repeating the observations as is or memorizing
prevalent surface patters specific in the dataset (Qin
et al., 2019a). Furthermore, having to require large-
scale training data for each domain and task would
be utterly inefficient for broad-coverage nonmono-
tonic reasoning in language.

In this paper, we investigate an alternative path
toward language-based nonmonotonic reasoning
using pre-trained language models as is. Intuitively,
both the abductive and counterfactual reasoning

2“Lannister” in S′
3 and “Stark” in S′

4 and S′
5 refer to char-

acter names in the TV show, “Game of the Thrones.” All the
output text shown in Figure 1 is the actual system output from
DELOREAN.

requires learning coherent patterns in narrative,
which should be already available in large-scale
pretrained language models. However, the key chal-
lenge is that most generative language models are
trained to condition only on the left context, or to
perform narrowly scoped text-infilling.

This paper presents DELOREAN: DEcoding for
nonmonotonic LOgical REAsoNing, an unsuper-
vised decoding algorithm that only assumes off-the-
shelf left-to-right language models with no supervi-
sion. The key intuition of our algorithm is incorpo-
rating the future through back-propagation, during
which, we only update the internal representation
of the output while fixing the model parameters.
More specifically, DELOREAN alternates between
the forward and backward passes, where the for-
ward pass performs left-to-right inference given
the left context (roughly maximizing P (Y |X) in
Figure 1), while the backward pass instills the
right constraint through right-to-left backpropaga-
tion with a task-specific loss (roughly maximizing
P (Z|XY )). The forward and backward outputs
are mixed into a single vector, from which tokens
are sampled to generate the desired output. To
choose the best output across iterations, we employ
an unsupervised ranking step based on BERT’s
next sentence prediction task to measure coherence
(Devlin et al., 2018).

On both tasks, DELOREAN outperforms all other
unsupervised methods in terms of both automatic
metrics and human evaluation, demonstrating that
nonmonotonic reasoning through conditional de-
coding is a promising research direction. Moreover,
outputs produced by our model are judged as more
coherent than those from the supervised models. In
sum, our study shows that backpropagation-based
decoding may enable additional future applications
of unsupervised generation and reasoning.

2 Background

Most NLP benchmarks have focused on reason-
ing about information that is entailed from the
premise. For instance, natural language infer-
ence (NLI; Bowman et al., 2015) focuses primarily
on whether a hypothesis is entailed from a given
premise, which means the information stated in the
hypothesis is a subset of the information provided
in the premise. However, it has been noted that
human reasoning is often the other way, where hy-
potheses often contain new information that was
not available in the premise, but plausibly true (but
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ỹ f

1 ỹ f
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Figure 2: Illustration of the DELOREAN decoding procedure, using abductive reasoning as an example. At ini-
tialization (upper-left box), the language model (LM) initializes the logits
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2 ỹ f

Nỹ f
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Nỹb3

ỹ2 ỹNỹ3
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subsequent forward pass, for each step n, we compute the forward logits

…
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ỹ2 ỹNỹ3
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ỹfn conditioning on the preceding logits

…
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possibly defeasible with new additional context)
(Johnson-Laird, 2006; Mercier and Sperber, 2017).
This type of reasoning corresponds to nonmono-
tonic reasoning (Kraus et al., 1990), as it contra-
dicts the monotonicity property according to which
valid arguments cannot be made invalid by adding
premises. We study two tasks of that nature: abduc-
tive reasoning (§2.1) and counterfactual reasoning
(§2.2).

2.1 Abductive Reasoning

Abductive reasoning aims at finding the most likely
explanation to partial observations (Peirce, 1960).
It has a central role in the human ability to “read be-
tween the lines,” and is crucial for language acqui-
sition (Andersen, 1973), understanding sentences
in discourse (Hobbs et al., 1993), and many more.
Despite the importance, however, relatively little
focus has been given to it in NLP research.

Recently, Bhagavatula et al. (2019) propose the

abductive reasoning task. Given two observations,
the goal is to determine the most likely explana-
tion of what happened in-between. The dataset
introduced for the task, ART, consists of 20k obser-
vations derived from the first and last sentence of
stories in the ROCStories dataset (Mostafazadeh
et al., 2016a). We focus on the abductive NLG
setup introduced in the paper, which is framed as a
conditional generation task where a plausible expla-
nation to the observations must be generated using
language. The authors reported the performance of
several pre-trained LM-based baselines and showed
promises and limitations of such approaches.

2.2 Counterfactual Reasoning

Counterfactual reasoning aims at inferring alterna-
tive past events that could have happened given
a certain change in conditions (Goodman, 1947;
Starr, 2019). While counterfactual reasoning plays
an important role in AI systems (Isard, 1974; Gins-
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berg, 1986), it requires causal reasoning abilities,
which are arguably absent from current association-
based AI (Pearl and Mackenzie, 2018). While
there has been work on counterfactual reasoning
in NLP, including recognizing counterfactuals in
text (Son et al., 2017), and improving the perfor-
mance of NLP tasks using counterfactual learn-
ing (Lawrence et al., 2017; Lawrence and Riezler,
2018), it remains a major research challenge.

Recently, Qin et al. (2019a) introduce the task of
counterfactual story generation. Given a 5-sentence
original story, and an alternative context in which
the second sentence of the story was altered by
a counterfactual, the task is to generate a new 3-
sentence story ending that addresses the alternative
beginning while minimally editing the original end-
ing. The associated TIMETRAVEL dataset is based
on fictional narratives from ROCStories, for which
counterfactual contexts and alternative endings are
crowdsourced, yielding 29,849 problem instances.
Qin et al. (2019a) report several baseline perfor-
mances, and find that models based on pre-trained
LMs produce output that recognize the counterfac-
tual, but generated endings which deviated consid-
erably from the original storyline. In contrast, in
the supervised setup, models optimize the easier of
the two goals and generate endings that are overly
similar to the original endings.

3 The DELOREAN Approach

Humans make inferences based on available in-
formation and refine them when new information
arrives. Since currently available pre-trained LMs
generate text by sequentially predicting the next
token from left to right, they are incapable of con-
ditioning on future constraints. Therefore, we pro-
pose DELOREAN: an unsupervised backprop-based
decoding algorithm, which is summarized in Algo-
rithm 1, illustrated in Figure 2, and detailed below.
DELOREAN intermittently refines the predictions
to cohere with either the context or the constraints
(Section 3.1). The candidate generations are then
ranked by coherence (Section 3.2).

3.1 Decoding Strategy

Given context textX , the goal is to generate contin-
uation text Y = (y1, . . . , yN ), such that Y satisfies
certain constraints according to the reasoning tasks,
usually defined based on another context Z (see
Figure 1; we discuss the task-specific constraints
in the respective task sections).

Algorithm 1: DELOREAN Decoding
Input: Pre-trained language model (LM)

Context X
Future constraint Z

1: Initialize logits Ỹ (0)

2: Initialize Ys, list of candidate generations
3: for t← 1 to T do
4: // Backward pass
5: for n← N to 1 do
6: Compute backward logits ỹb

n, Eq.(1)
7: end for
8: // Forward pass
9: for n← 1 to N do

10: Compute forward logits ỹf
n, Eq.(2)

11: Mix forward and backward logits, Eq.(3)
12: end for
13: Sample candidate Y from logits Ỹ and add to Ys

14: end for
15: Rank Ys by coherence
Output: The most coherent generated text Y from Ys

The proposed approach interleaves two proce-
dures, namely, forward and backward, that produce
and iteratively refine the generation, for a prede-
fined number of iterations T . In particular, the
forward pass ensures the generated text is a fluent
continuation of the context X , while the backward
pass informs the model about the constraint and
steers the generation to satisfy it.

As detailed below, the backward pass uses gradi-
ent descent to update the generation Y . However,
Y is a discrete text that is not differentiable. In-
stead, throughout the algorithm, we maintain a soft
representation of the sequence Ỹ = (ỹ1, . . . , ỹN ),
where ỹn ∈ RV represents the logits of the n-th
token and V is the vocabulary size. After the logits
are refined over multiple iterations of the forward
and backward passes, we generate discrete text at
each step by sampling from yn ∼ softmax(ỹn/τ),
where τ > 0 is the temperature.

We start by initializing the logits before the first
iteration, Ỹ (0) = (ỹ

(0)
1 . . . ỹ

(0)
N ), by feeding the

context X into the LM and greedily decoding N
continuation tokens.

Backward The backward pass uses gradient
backpropagation to update the generation with
respect to the constraint. Specifically, we ex-
press the task-specific constraint as a loss function
L(X, Ỹ (t−1), Z) that evaluates how well the gener-
ation Y (approximated with the soft representation
Ỹ ) obeys the constraint (see the subsequent sec-
tions for concrete instantiations of the loss). The
goal of this pass is thus to minimize the loss w.r.t
the generation. Specifically, at iteration t, for each
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step n in the generation, we update its logits with:

ỹ
(t),b
n = ỹ

(t−1)
n − λ · ∇ỹnL(X, Ỹ (t−1), Z), (1)

where ∇ỹnL(X, Ỹ (t−1), Z) is the gradient of the
constraint-informed loss L w.r.t the n-th logits, and
λ ∈ R is the step size. In practice, we may repeat
the gradient updates multiple times in a single pass.

Forward The forward pass ensures that Y is flu-
ent and coherent with the preceding context X . At
iteration t, for a particular step n, we compute the
forward logits with the LM:

ỹ(t),f
n = LM(X, Ỹ

(t)
1:n−1). (2)

We then mix the nth-step forward and backward
logits to get the final logits of iteration t:

ỹ(t)
n = γ · ỹ(t),f

n + (1− γ) · ỹ(t),b
n , (3)

where 0 < γ < 1 is the mixing weight. The result-
ing logits ỹ(t)

n are then fed to the LM to compute
the forward logits at the (n+1)th step (Eq.2). This
way, information from the backward pass is inte-
grated into the left-to-right generation process to
produce text that is informed by the constraint.

We pre-define the number of tokens N required
by the backward pass, but we allow the forward
pass to generate more than N tokens if those are
needed to obtain complete sentences. In that case,
we set the logits of the extra tokens to the forward
logits, without mixing: ỹ(t)

n = ỹ
(t),f
n for n > N .

We then prune any trailing tokens in the sampled
text to get complete sentences.

3.2 Ranking
The output of the decoding step is a list of candi-
date generations for each iteration: Ys = {Y (t)|t =
1, ..., T}. We further use an unsupervised approach
to rank and pick the best sample as the final out-
put. Specifically, we take advantage of the BERT
model, which was pre-trained with a next-sentence
prediction (NSP) objective. Given two sentences
A and B, we use NSP to compute the likelihood of
B following A as a proxy for coherence:

c(A,B) = BERT NSP(A,B), (4)

where c(·, ·) denotes the coherence score. This
score is used to evaluate the quality of a given
candidate continuation Y by measuring (1) its com-
patibility with the subsequent text of the context
X , (2) the internal consistency of Y if it consists
of multiple sentences, and (3) the compatibility of
Y with its right-side text when it is applicable.

Model BLEU-4 ROUGE-L BERT

Supervised
Sup 32.82 25.60 49.38
+COMET-Emb 33.97 26.06 49.71
Unsupervised
Zero-ShotX 18.30 14.99 39.36
Zero-ShotZX 15.90 14.23 40.03
Zero-ShotX -Ranked 19.24 16.76 41.58
Zero-ShotZX -Ranked 20.13 17.25 41.93
DELOREAN 22.60 18.94 42.86

Human 53.56 30.40 53.30

Table 1: Automatic evaluation results on the abductive
task, using the test set of ART.

4 Task 1: Abductive Reasoning

Each instance in the ART dataset consists of two
observations O1, O2 and a hypothesis H that ex-
plains the two observations. These inputs naturally
map to X , Z and Y in our framework. Formally,
the abductive generation task aims to maximize
P (Y |X,Z) – i.e. models must consider both left
and right contexts (X and Z) jointly.

4.1 Task Setup

Constraints We maximizeZ givenXỸ by defin-
ing the loss function as the cross-entropy loss of
generating Z given XỸ with the LM:3

L(X, Ỹ , Z) := −
∑NZ

n=1 logPLM(zn|X, Ỹ , Z1:n−1), (5)

where PLM(aj |a1:j−1) is the likelihood of generat-
ing token aj given the preceding text a1:j−1.

Ranking We rank candidates by the overall co-
herence after inserting Y in between X and Z:

ranking score(Y ) = c(XY,Z) + c(X,Y Z). (6)

Hyperparameters We use GPT2-345M (Rad-
ford et al., 2019b) as the pre-trained LM for all
models. We use the ART development set to se-
lect hyperparameters. We use greedy decoding for
our method and top k decoding (Fan et al., 2018)
(k = 40, τ = 0.7) for our baselines. Other hyper-
parameters are outlined in Appendix A.1.

4.2 Experimental Setup

Baselines We compare our method against base-
lines from Bhagavatula et al. (2019). The unsu-
pervised baselines use a pre-trained GPT-2 model

3Note that this is applied to each prefix of Ỹ , although
some of them are not complete sentences.
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In April, Bob decided he need to do his taxes. The accountant prepared and filed Bob's taxes.

Bob then went to the IRS to do his.

Ray drive his car on a steep mountain road. Ray was fine but his car was totaled.

As he drives the car to the top of the mountain his car is hit by a car.

Peter was excited to go to the Sanders rally in New Hampshire. He couldn't wait to vote for him.

?

?

?

He has a long history of supporting Bernie Sanders and was excited to see him in person.

Figure 3: Examples of generated hypotheses on three abductive reasoning cases. Given observations O1 and O2,
DELOREAN generates a hypothesis explaining the observations.

to generate Y given a prompt text—either the ob-
servation X alone (Zero-ShotX ) or Z〈e〉X (Zero-
ShotZX ), where 〈e〉 denotes a special end-of-text
token. The supervised method (Sup) follows
the same input format as Zero-ShotZX , but fine-
tunes GPT-2 on the ART training set. Finally,
our knowledge-informed baseline (+COMET-Emb)
further augments the representation of Sup with
knowledge from COMET (Bosselut et al., 2019).

To separately study the contribution of our de-
coding strategy and ranking component, we also
report the performance of ranking the baseline out-
puts. Specifically, we let each baseline generate 20
candidates and rank them by coherence (Eq. 6).4

4.3 Results

Automatic Evaluation We report the same met-
rics as Bhagavatula et al. (2019): BLEU-4 (Pa-
pineni et al., 2002), ROUGE-L (Lin, 2004) and
BERTSCORE (Zhang et al., 2019) (with the bert-
base-uncased model). The results in Table 1 show
that DELOREAN performs best among the unsuper-
vised systems across all metrics. We also note that
our ranking step improves both the performance of
our model and that of the zero-shot baselines.

Human Evaluation We conduct two sets of hu-
man evaluations on 100 test examples using crowd-
workers from Amazon Mechanical Turk. In the
scoring setting, presented in Table 2, workers were
presented a pair of observations (X and Z) and
a generated hypothesis Y , and asked to rate the
coherence of the hypothesis with respect to the ob-
servation X (X-Y ), the observation Z (Y -Z), and
both (X-Y -Z), on a 4-point Likert scale. In the

4We tried ablating the ranking component from our method
in preliminary experiments, and found that ranking is essential
to obtaining good performance. By adding ranking to our
baselines, we assess the contribution of our decoding strategy.

Model X-Y Y -Z X-Y -Z

Supervised
Sup 0.510 0.375 0.314
+COMET-Emb 0.466 0.342 0.286
Unsupervised
Zero-ShotZX 0.233 0.103 0.108
Zero-ShotX -Ranked 0.478 0.208 0.195
Zero-ShotZX -Ranked 0.474 0.238 0.236
DELOREAN 0.522 0.325 0.297

Human 0.879 0.823 0.783

Table 2: Human calibration results on test set of ART .
All scores are normalized to [0, 1].

Overall - Human Judges Preferred

Our model Neutral Comparator
DELOREAN 21% 43% 36% Sup
DELOREAN 25% 44% 31% +COMET-Emb

DELOREAN 23% 62% 15% Zero-ShotX -Ranked
DELOREAN 27% 50% 23% Zero-ShotXZ -Ranked

DELOREAN 3% 11% 86% Human

Table 3: Human pairwise comparison results on the test
set of ART, between DELOREAN and each of the base-
lines, by jointly considering all 3 criteria from Table 2.
“Neutral” means “equally good/bad”.

pairwise comparison setting, presented in Table 3,
workers were presented the outputs from a pair of
systems (DELOREAN and baseline) and asked to
choose the better output in terms of the same co-
herence criteria. Each example was labeled by 3
workers.5

In both evaluation setups, our method sub-
stantially outperform the unsupervised baselines,
achieving a relative improvement of 36%− 215%
with respect to Y -Z coherence. Our method also
outperform the supervised methods with respect to
X-Y coherence (Table 2), and achieve competitive
performance in the pairwise comparison (Table 3).

5The average inter-rater agreement measured by Fleiss’
κ = 0.44 (“moderate agreement”) (Fleiss, 1971).
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BLEU ROUGE BERT

Supervised + Discriminative
Sup+Disc 75.71 72.72 62.39
Unsupervised+ Discriminative
Recon+CF 75.92 70.93 62.49
Unsupervised
FT 4.06 24.09 62.55
FT+CF 4.02 24.35 62.63
Pretrained-only
Zero-Shots1s′2 1.74 21.41 59.31
Zero-Shots1s′2 -Ranked 2.26 25.81 60.07
DELOREAN 21.35 40.73 63.36

Human 64.93 67.64 61.87

Table 4: Automatic evaluation results of counterfactual
story rewriting, on the test set of TIMETRAVEL.

Coherence - Human Judges Preferred

Our model Neutral Comparator
DELOREAN 25% 58% 17% Sup+Disc

DELOREAN 23% 70% 7% Recon+CF
DELOREAN 22% 48% 30% FT

DELOREAN 18% 60% 22% Zero-Shots1s′2
DELOREAN 27% 42% 31% Zero-Shots1s′2 -Ranked

DELOREAN 10% 29% 61% Human

Min-Edits - Human Judges Preferred

Our model Neutral Comparator
DELOREAN 4% 17% 79% Sup+Disc

DELOREAN 1% 14% 85% Recon+CF
DELOREAN 21% 76% 3% FT

DELOREAN 28% 71% 1% Zero-Shots1s′2
DELOREAN 37% 56% 7% Zero-Shots1s′2 -Ranked

M+Sup 8% 22% 70% Human

Table 5: Human pairwise comparison results on the
counterfactual task, between our best model and each
baseline with respect to coherence and min-edits.

Again, the ranking component contributes to in-
creasing performance for the zero-shot baselines.
Finally, the large performance gap between the
methods and human-written explanations stresses
the difficulty of this reasoning task and warrants
future research.

Qualitative Analysis Figure 3 presents two ex-
ample outputs produced by DELOREAN. We can
see our approach generates reasonable hypotheses
by taking into account both the past and future con-
texts. For instance, in the first example, the future
observation (O2) “car was totaled” indicates that
Ray had a car accident, which is correctly captured
in the generated hypothesis “car is hit by a car”.
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Figure 4: Human calibration results for counterfactual
generation in terms of weighted harmonic mean of co-
herence and min-edit, Hβ = (1+β2)·coherence·min edit

β2·coherence+min edit , as
a function of the scaling factor β. Low β values assign
more weight to coherence, and high β values empha-
size more on min-edit.

5 Task 2: Counterfactual Reasoning
Given an original story ending Z of story con-
text Xori, and a counterfactual condition X that
changes Xori to invalidate Z (see Fig. 1), the task
is to generate a new story ending Y that minimally
edits the original endingZ to regain coherence with
the counterfactual condition X (Qin et al., 2019a).

5.1 Task Setup

Constraints The constraint we enforce is that Y
is close to Z (i.e., minimal edits). We impose this
constraint by minimizing their KL divergence:

L(X, Ỹ , Z) :=KL
(
Z‖softmax(Ỹ /τ)

)
, (7)

where, with a slight abuse of notation, Z is the
one-hot distribution of the tokens in the original
ending. That is, we encourage the generated logits
to recover the original ending.

Ranking We rank the candidates based on both
their coherence with the context, as well as the
internal coherence between the multiple sentences
of each candidate (rewritten ending, consists of 3
sentences). More concretely, given a candidate Y ,
we compute the aggregated coherence score:

ranking score(Y ) = c(X,Y ) +
∑S−1

s=1 c(Y [s], Y [s+ 1]), (8)

where each candidate has S sentences (here, S = 3)
and Y [s] denotes the sth sentence.
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Kay was shopping online for an art set.

She couldn't find one she liked due to its high price.

Kay looked at the product reviews for the art set. Twenty of twenty reviewers 
noted that the pens in the set leaked. Kay did not buy the art set.

Kay looked at the price tag for the art set. She was shocked to see 
that the price was $1,000. Kay was not happy with the price.

She found one she liked due to its reasonable price.Story Context

Counterfactual Condition

Original Ending

Rewritten Ending

She knew of a cool place online that did custom fits really cheaply, and ordered  from there.

They browsed shirts from a variety of stores. Tara picked out a floral 
patterned shirt that she liked best. Tara looked forward to wearing it.

They sent her a shirt that fit her perfectly. Tara was so 
excited to wear it. She looked forward to wearing it.

Tara wanted to buy a new shirt for her upcoming school formal. She went to the mall with her mom.Story Context

Counterfactual Condition

Original Ending

Rewritten Ending

Shane enjoyed volunteering his time helping others.

John was not allowed to be friends with Shane anymore. this bothered John greatly but 
his mom explained the reasons. She explained that Shane was a bad influence on John.

John was a good student and was always looking for ways to help others. They were 
both very kind and caring people. Shane was a member of the Boy Scouts of America.

Shane and John were best friends at school. Shane was caught stealing and got suspended from school.Story Context

Counterfactual Condition

Original Ending

Rewritten Ending

Figure 5: Examples of generated story endings on three counterfactual reasoning cases. Given a story context, a
counterfactual condition, and a original ending, DELOREAN generates a rewritten ending which is coherent with
the counterfactual condition and is similar to the original ending.

Hyperparameters We largely follow the same
setting as in the abductive reasoning task, but tune
hyperparameters on the TIMETRAVEL develop-
ment set. Deviations from these settings are out-
lined in Appendix A.2.

5.2 Experimental Setup

Baselines We compare our method with base-
lines from Qin et al. (2019a). The zero-shot base-
line uses the pre-trained GPT-2 model to generate
Y as a continuation to the counterfactual condition
X . It is the most apt comparison to our method
which also doesn’t require additional supervision.
We also experiment with two baselines that fine-
tune GPT-2 on the original story XoriZ to fit the
model to the story domain, either with an LM ob-
jective (FT) or a tailored conditional objective that
encourages minimal edits of Z (Recon+CF).6 Fi-
nally, we report the performance of a supervised
baseline (Sup), in which GPT-2 is fine-tuned to
produce the gold Y from XoriZ and X .

5.3 Results

Automatic Evaluation Following Qin et al.
(2019a), we report BERTSCORE (Zhang et al.,
2019), which was shown to best correlate with hu-
man judges’ notion of counterfactual coherence,
and BLEU-4 and ROUGE-L, which better mea-
sure minimum-edits. We find that the discrimina-
tive baselines achieve the highest degree of plot

6See Qin et al. (2019a) for more details.

fidelity. Meanwhile, DELOREAN achieves the high-
est BERTSCORE for counterfactual coherence.

Human Evaluation We repeat the human eval-
uation setup from Section 4.3. Presented with the
original story, the counterfactual condition X , and
the generated ending Y , workers were asked to
judge (1) the coherence of Y with respect to the
X; and (2) to what extent the generated ending
minimally-edits the original ending.7 In order to
judge both criteria, we report the weighted har-
monic mean Hβ of these scores across a range of
weights β (Figure 4).

Our results show that DELOREAN is the only
model that maintains a consistent balance between
coherence (1.66) and minimal edits (1.54). While
the ranking-augmented zero-shot model produces
the most coherent endings (coherence = 1.8), it de-
viates from the original ending. As β is increased
(i.e., increasing importance of minimal edits), its
weighted performance drops considerably, indicat-
ing it cannot generate new endings that follow the
original plot of the story (min-edit = 1.25). Con-
versely, Recon+CF generates stories that are faith-
ful to the original endings, but are far less coher-
ent with the counterfactual condition (coherence =
1.23). Through human annotation, we found that
Recon+CF copies the original ending word-for-
word in a 84% of cases.

The pairwise comparison results in Table 5

7Fair inter-rater agreement with Fleiss’ κ = 0.34
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parallel these observations. DELOREAN signifi-
cantly outperforms the discriminative approaches
(Recon+CF and Sup+Disc) in coherence, while
falling short of the Zero-shot re-ranked baselines.
In minimal edits, this pattern is flipped with our
approach outperforming Zero-shot baselines con-
siderably and losing to the discriminative baselines.

Qualitative Analysis Figure 5 provides two ex-
ample results for counterfactual story rewriting by
DELOREAN. The approach successfully captures
the causal relations between events and properly
rewrites the endings with minimal edits. For in-
stance, in the first example, given the counterfac-
tual condition that “Tara ordered a shirt online” (as
opposed to the original “went to mall”), the rewrit-
ten ending is about “sent shirt” to Tara (as opposed
to the original “browsed from stores”). The last
sentence of the original ending “She looked for-
ward to wearing it” is correctly preserved as it is
coherent with the counterfactual condition.

6 Related Work

Unsupervised text generation. Unsupervised
approaches are often applied to problems that copy
information from a source text into decoded text.
Unsupervised paraphrasing requires repeating this
information (Miao et al., 2019; Bao et al., 2019),
as does translation, but with a bilingual transfor-
mation (Artetxe et al., 2017; Lample et al., 2018).
In summarization there is an additional task to se-
lect a subset of the original text (Baziotis et al.,
2019; Schumann et al., 2020; West et al., 2019). In
cases where information is mostly copied from the
original, auto-encoding objectives can ensure the
correct information is captured (Bao et al., 2019;
Baziotis et al., 2019; Artetxe et al., 2017). This
work tackles problems where generation is more
open-ended. Rather than reproducing information
from the prompt, generations should agree with and
expand on it, making autoencoding less applicable.

Controllable language generation. Earlier ap-
proaches for controllable generation involved pre-
serving the content of text while changing it along
discrete dimensions, such as theme, sentiment, or
style (Koncel-Kedziorski et al., 2016; Hu et al.,
2017; Ficler and Goldberg, 2017; Shen et al., 2017;
Lample et al., 2019). Recent works such as Grover
(Zellers et al., 2019) and CTRL model (Keskar
et al., 2019) used these ideas to augment trans-
former language models that can condition on struc-

tured metadata such as source, domain, etc. The
Plug & Play model (PPLM; Dathathri et al., 2019)
controls topic and sentiment in an approach similar
to ours that involves forward and backward passes
to update token distributions. However, PPLM
relies on trained attribute discriminators for super-
vision, while our method is unsupervised. While
these models are restricted to specific dimensions,
often with pre-defined values, our model can adjust
to any open-ended textual constraint. Perhaps the
most similar work in that aspect is the “text infill-
ing” models, which, however, are in a more narrow
setting by filling only a relatively short text span
(Devlin et al., 2018; Zhu et al., 2019; Donahue
et al., 2020), and more restrictive due to the reliance
on an extra right-to-left language model (Sun et al.,
2017) or a pre-specified generation length (Zeldes
et al., 2020, which is not publicly available).

Reasoning about narratives. A prominent re-
source from recent years is the RocStories corpus
(Mostafazadeh et al., 2016b), consisting of 98K
crowdsourced 5-sentence everyday life stories. It
was used for the story cloze task whose goal was to
predict the story ending from its first 4 sentences,
but gained popularity and became the base of ad-
ditional benchmarks (Rashkin et al., 2018). Addi-
tional related work includes “script knowledge”, i.e.
learning about prototypical series of events (Schank
and Abelson, 1977; Chambers and Jurafsky, 2008;
Pichotta and Mooney, 2014), temporal common-
sense (Granroth-Wilding and Clark, 2016; Li et al.,
2018), and modeling pre- and post- conditions of
events (Roemmele et al., 2011; Sap et al., 2019;
Bosselut et al., 2019). Qin et al. (2019b) studied
conversation modeling that reads and connects the
dots of events in related documents. Finally, a re-
cent line of work explores counterfactual questions
in reading comprehension (Huang et al., 2019; Tan-
don et al., 2019), but instantiates the problem of
counterfactual reasoning as a multiple choice task.

7 Conclusion

We presented DELOREAN, an unsupervised LM-
based approach to generate text conditioned on
past context as well as future constraints, through
forward and backward passes considering each con-
dition. We demonstrated its effectiveness for ab-
ductive and counterfactual reasoning, on which it
performed substantially better than unsupervised
baselines. Our method is general and can be easily
adapted for other generative reasoning tasks.
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