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Abstract

With the advancements in natural language
processing tasks, math word problem solving
has received increasing attention. Previous
methods have achieved promising results but
ignore background common-sense knowledge
not directly provided by the problem. In
addition, during generation, they focus on
local features while neglecting global informa-
tion. To incorporate external knowledge and
global expression information, we propose a
novel knowledge-aware sequence-to-tree (KA-
S2T) network in which the entities in the
problem sequences and their categories are
modeled as an entity graph. Based on this
entity graph, a graph attention network is used
to capture knowledge-aware problem repre-
sentations. Further, we use a tree-structured
decoder with a state aggregation mechanism
to capture the long-distance dependency and
global expression information. Experimental
results on the Math23K dataset revealed that
the KA-S2T model can achieve better perfor-
mance than previously reported best results.

1 Introduction

Math word problem solving has attracted increas-
ing attention, and many math word problem solving
systems have been developed. Early statisti-
cal learning methods (Feigenbaum et al., 1963;
Fletcher, 1985; Bakman, 2007; Roy and Roth,
2016) extracted templates or features from prob-
lems and generated corresponding math expres-
sions based on these templates or features. These
methods require a large number of manually for-
mulated features or can only be applied to small
application problems in small areas. In recent years,
many methods (Wang et al., 2017, 2018b; Xie and
Sun, 2019) have been developed that apply neural
networks to analyze math word problems, with
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Problem: Alan bought 2 green apples, 3 red apples, and 4 

oranges for a total of $50. Each apple weighed 0.4 kg and is 

worth $6. Each orange weighs half as much as an apple. 

How much does each orange cost?

Knowledge:

Expression tree:                          Expression sequence:

apple orange

fruit

apple orange fruit

food

green red
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/ - 50 3* + 2 6 4

8 step
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2 3
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?

0.4 apple weight

/

-

50

4
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6   apple price 
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Figure 1: An example of a math word problem.
With external knowledge, a model can capture the
relationships between the entities in the problem. With
the global information of a generated expression tree, a
model can capture information between long-distance
nodes.

promising results. These methods use end-to-end
models to directly generate the corresponding math
expressions from the problem text.

Although previous methods have achieved
promising results, several problems remain that
need to be addressed: 1) Background knowledge
and common sense should be incorporated. For
example, as shown in Figure 1, both apples and
oranges are fruit. Humans are naturally aware of
this common-sense information, but it is difficult
for the model to learn this information from
the problem text alone. 2) When generating
expressions, sequence-to-sequence (Seq2Seq)
methods tend to focus on local features and ignore
global information. For example, the root node
“/” of the expression tree in Figure 1 is directly
adjacent to its right child “4”, but they are eight
steps apart in the pre-order expression sequence.
Xie and Sun (2019) proposed a sequence-to-tree
(Seq2Tree) method for generating an expression
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tree in pre-order based on the parent node and the
left sibling tree of each node. However, global
information is still not being considered in the
generated expression tree.

To overcome these problems, we propose a novel
knowledge-aware sequence-to-tree (KA-S2T)
method for exploring how to better utilize external
knowledge and capture the global expression
information. The proposed model connects
related entities and categories based on external
knowledge bases to capture common-sense
information and obtain better interaction between
words. In addition, we designed a tree-structured
decoder to capture the long-distance dependency
and global expression information. KA-S2T
updates all nodes in the generated expression at
each time step, whereby the node state is updated
by a recursive aggregation of its neighboring nodes.
Through multiple iterations of aggregation, the
model can use global information associated with
the generated expression to generate the next node
and thereby achieve better predictions.

The main contributions of this paper can be
summarized as follows:

• We incorporate common-sense knowledge
from external knowledge bases into math
word problem solving tasks.

• We propose a tree-structured decoder for
generating math expressions. To incorporate
global information associated with generated
partial expressions, we recursively aggregate
the neighbors of each node in the expression
at each time step.

• We conducted experiments on the Math23k
dataset to verify the effectiveness of our
KA-S2T model, and the results show that
our model achieved better performance than
previous methods.

2 Models

In this section, we define the problem and present
our proposed KA-S2T model. As shown in Figure
2, we first use a bidirectional long short-term
memory (LSTM) network to encode the math word
problem sequences (Section 2.2). Then, we con-
struct an entity graph based on external knowledge
to model the relationships between different entities
and categories in the problem (Section 2.3), and
use a two-layer graph attention network (GAT) to

obtain knowledge-aware problem representations
(Section 2.4). Finally, we used a tree-structured
decoder with a state aggregation mechanism to
generate pre-order traversal math expression trees
(Section 2.5).

2.1 Problem Definition
Consider the input sequence of a math word
problem X = (x1, x2, . . . , xn). Our goal is to
train a model that can generate its math expression
Y = (y1, y2, . . . , yn′). The task is to estimate
a probability distribution in which P(Y|X) =∏n′

t=1P(yt|y<t,X). Here, words generated in the
math expression Y are either drawn from the input
math word problem X, or a vocabulary V. Y, the
pre-order sequence of a math expression tree, is
executed to produce the answer to the problem X.

2.2 Bidirectional LSTM Encoder
The encoder transforms the words in math word
problems into vector representations. We used a
bidirectional LSTM (BiLSTM) (Hochreiter and
Schmidhuber, 1997) network to encode each word
xi into a vector representation hseq

i :

hseq
i = BiLSTM(e(xi),h

seq
i−1) ∈ Rn×2d, (1)

where n and d are the size of the input sequence
X and the BiLSTM hidden state, respectively.
e(xi) is the word embedding for word xi in the

problem.
−−→
hseq
i and

←−−
hseq
i are the BiLSTM hidden

states generated by reading X in the forward and
backward order, respectively. We define the final
vector representation hseq

i as the concatenation
of the forward and backward hidden states, i.e.,
hseq
i = [

−−→
hseq
i :

←−−
hseq
i ].

2.3 Constructing Entity Graphs with
External Knowledge

Each math word problem corresponds to an entity
graph G = (N,A), where N is a node list and A
is the adjacent matrix of these nodes. The graphs
are retrieved from external knowledge bases, with
the words in the math word problem as nodes. If
multiple words in X belong to the same category c
in the knowledge base, we set category c as a node
in the graph G and connect these words with their
categories. For example, both “green” and “red”
belong to the category “color”.

To incorporate knowledge about phrases, if
several phrases in X are combined with words
belonging to the same category and the same words
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Figure 2: Main structure of our proposed KA-S2T model. At the top side of this figure shows an encoder consisting
of a bidirectional LSTM network and a knowledge-aware graph attention network (see Section 2.2 and Section 2.4
for more details). The red line hnum indicates the representation of numbers in the problem, which are identified
as {N1, N2, N3, . . .} according to their positions in the problem. Instead of generating these numbers directly
from the output vocabulary, KA-S2T generates position identifiers that copy the numbers from the problem. The
bottom of the figure shows a tree-structured decoder. At each time step, this decoder generates a current node state
based on its parent node. Then, the decoder uses a state aggregation mechanism to obtain the context state rt for
each node in the partial expression tree, and generates context vector ct based on encoder’s hidden states. See
Section 2.5 for more details.

N1 green apples , N2 red apples and N3 oranges

color fruit food

color+apple

Figure 3: An example of an entity graph

in order, then we build a phrase category c′ for
these phrases and set c′ as a node. As shown
in Figure 3, “green apples” and “red apples” are
combined in the same category words “green, red”
and by the same word “apple”. We build a phrase
category “color+apple” for these two phrases. Then
we connect this phrase category c′ to the first and
last words of its related phrase.

With n words from the problem and m cate-
gories from the knowledge base, an entity graph

has a node list N = {x1, x2, . . . , xn, c1, . . . , cm}
with n+m nodes.

2.4 Knowledge-aware Problem
Representations

For an entity graph, we initialize category c with
the average of the vector representations of words
adjacent to c. For example, for the category
c1 “color” adjacent to the word x2 “green” and
the word x6 “red”, we initialize c1 as c1 =
avg(hseq

2 ,hseq
6 ). In this way, for the nodes in

this entity graph, we have node initial vectors
hseq′ = {hseq

1 , . . . ,hseq
n , c1, . . . , cm}. Then, we

use a two-layer GAT (Veličković et al., 2017) to
obtain the hidden vectors hknow′ of these nodes.
The GAT functions are given as follows:

hknow′
i = ||

k=1,...,K

σ(
∑
Aij=1

αijWkh
seq′

j ), (2)
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αij =
exp(LRelu(wT

s [Whh
seq′

i ||Whh
seq′

j ]))∑
Aij=1

exp(LRelu(wT
s [Whh

seq′

i ||Whh
seq′

j ]))
,

wherewTs , Wh, Wk are trainable weight vector and
matrices. || is concatenation operation and LRelu
is a LeakyRelu activation function (Xu et al., 2015).
K is the number of heads in GAT and Aij = 1
means there are edge between the i-th and j-th
node.

To represent n words in problem X, we simply
select the first n vectors of hknow′ ∈ R(n+m)×2d

as the knowledge graph vectors.

hknow = hknow′ [0 : n]. (3)

After concatenating the word vector hseq

and the knowledge graph vectors hknow, the
knowledge-aware problem representation hka is
obtained and fed to the tree-structured decoder.

hka = [hseq : hknow]. (4)

If there are nnum numbers in X, we may want
to copy them directly from problem X rather than
generating them from the vocabulary. We extract
hnum ∈ Rnnum×2d from hka based on the position
of these numbers. hnum

i is the representation of
the i-th number in the problem. We use hnum to
compute the distribution score of these numbers in
Equation 6.

2.5 Tree-structured Decoder
In the KA-S2T tree-structured decoder, we gener-
ate pre-order expressions Y from top to bottom. At
time step t, if the yt we generate is an operator, this
means it is an internal node and its left child yt,l
and right child yt,r must still be generated. If yt is
a number, it is a leaf node. Once the children of
all the internal nodes are generated, then the output
expression sequence Y can be transformed into a
complete executable expression tree.

The tree-structured decoder has three roles: 1)
it attentively reads the knowledge-aware problem
representation to obtain a context vector, and uses
this vector to update the decoder’s state; 2) it
recursively aggregates the neighbors of each node
in the generated partial expression to capture global
information; and 3) it adaptively chooses a word
from the vocabulary or copies a number from the
math word problem for generation.

The decoder updates its state as follows:

st,l = σ(Wleft[st : ct : rt : (e(yt)]),

st,r = σ(Wright[st : ct : rt : (e(yt)]),
(5)

where Wleft and Wright are the weight matrices
and σ is a sigmoid function. e(yt) is the embedding
of t-th generated word yt. st,l and st,r is the left
child state and right child state of st, respectively.
For the root node y1, it initializes s1 with the max
pooling of hka. ct is the context vector for the
hidden states of the encoder. rt is the context state
for the partial expression generated at previous time
steps.

Finally, the tree-structured decoder generates
a word from vocabulary V or copies a number
from the math word problem X with the following
distributions:

Pgen(yt)=softmax(Wg[st :ct :rt])

Pcopy(yt)=softmax(Wp[st :ct :rt :hnum])

βt=σ(Wz[st :ct :rt :hnum]),

P(yt|y<t,X) =

{
(1− βt)Pgen(yt)

βt Pcopy(yt)
,

(6)

where Wg, Wp are weight matrices. βt ∈ [0, 1] is
a gate value to determine whether generate a word
from vocabulary or copy a number from math word
problem. y<t represents the words generated at ear-
lier timesteps. The final distribution P(yt|y<t,X)
is a concatenation of generate distribution Pgen(yt)
and copy distribution Pcopy(yt).

Attention. We use attention mechanism (Bah-
danau et al., 2014) to compute the context vector
ct. Given the decoder state st and the expression
context state rt, it first attends on the encoder’s
problem representation hka to obtain ct, which is
defined as below:

αti =
exp(Wetanh(Wmh

ka
i +Wsst+Wrrt))

n∑
j=1

exp(Wetanh(Wmhka
j +Wsst+Wrrt))

,

ct =

n∑
i=1

αtih
ka
i ,

(7)

where We, Wm and Ws are the weight matri-
ces. αti denotes the attention distribution on the
knowledge-aware problem representations hka.

State Aggregation Mechanism: To incorpo-
rate the global information associated with the
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previously generated expression tree, the node state
is recursively aggregated with its neighbor nodes in
the expression tree at each time step. At time step t,
all the generated nodes (rt)

0 = {s1,s2,. . ., st} are
aggregated with a two-layer graph convolutional
network (GCN) (Kipf and Welling, 2016). The
aggregation functions are as follows:

Dii =
∑n

j=1
Aexp

ij ,

(rt)
γ+1 = σ(D−1Aexp(rt)

γWr),
(8)

where Wr is weight matrix. Aexp is the adjacent
matrix of the generated partial expression. If yi
is the child or parent of yj or i = j, Aexp

ij = 1. D
means the number of adjacent nodes of each node
plus 1. We use D−1A to normalize A. In this study,
after two hops of GCN computation, we obtained
the final context state rt for each node in the partial
expression.

2.6 Training
Given the training data D = (X,Y), the objective
function is to minimize the negative log likelihood:

∆(D, θ) = −
∑ND

i=1
logP(Y|X). (9)

During training, for each question–answer pair
(X,Y), we used the pre-order traversal of Y as
the ground truth. The conditional probability is
P(Y|X):

logP(Y|X) =
n′∏
t=1

[ P(yt|y<t,X)

+P(yt,l|y<t,X)+P(yt,r|y<t,X)]

(10)

Here, P(yt,l|y<t,X) is an additional regular term
about the child loss. At time step t, we only
used the left child state st,l and right child state
st,r to calculate the respective distribution scores
P(yt,l|y<t,X) and P(yt,r|y<t,X), as shown in
Equation 6. We expect that the distribution of
node yt is close to the ground truth, and that the
distributions of its left and right children yt,l, yt,r
are also close to the ground truth.

3 Experiment

3.1 Dataset
We evaluated the proposed method on a large-scale
dataset called Math23K, which was gathered by
Wang et al. (2017) and contains 23,161 elementary
school math word problems. Each problem was

originally associated with an expression and an-
swer. All problems in this dataset are described in
Chinese and can be solved by a linear expression
that contains only one unknown variable. We
randomly split the dataset into a training set (80%)
and testing set (20%).

Furthermore, we replaced all of the numbers in
the problems with position tokens (e.g., N1, N2,
N3) in the preprocessing stage. After the model
generated the expression, we replaced the position
tokens in the expression with the numbers from
the original problem, and executed this replaced
expression to produce the answer.

We used Cilin (Mei, 1985) and Hownet (Dong
et al., 2006) as our External Knowledge Source.
Cilin is a Chinese synonym dictionary, where each
word belongs to several different word groups.
Hownet is a knowledge graph of Chinese words and
concepts, where each word is labeled by several
semantic units. We used these word groups and
semantic units as our categories, and we set the
max length of phrases in the phrase category to 3.
We obtained 8,883 word-category pairs and 10,864
phrase category pairs.

3.2 Implementation Details
Our code was implemented with Pytorch 1. We se-
lect the 4,000 words that appeared most frequently
in the training data as the input vocabulary, and
replaced the rest of the words in the problems with
a token UNK. We set the dimension of hidden
vectors d = 256. Both GCN and GAT have two
layers. The number of heads K in GAT is 8.
Model optimization was performed using an Adam
optimizer (Kingma and Ba, 2014) with the learning
rate set to 0.001. For the hyper-parameter setting,
we set the dropout (Srivastava et al., 2014) rate to
0.5 and the batch size to 64. During training, it took
80 epochs to train the model. During decoding, the
beam size was set to 5.

3.3 Baselines
To evaluate the performance of the proposed
method, we compare it with the following base-
lines:

• DNS (Wang et al., 2017): This method has a
two-layer GRU (Chung et al., 2014) encoder
and a two-layer LSTM decoder. In addition,
it uses a retrieval model to detect the problem
that is most similar to the query problem from

1https://pytorch.org/
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Models Accuracy
DNS (Wang et al., 2017) 58.1%
DNS+Retrieval (Wang et al., 2017) 64.7%
Bi-LSTM (Wang et al., 2018a) 66.7%
ConvS2S (Wang et al., 2018a) 64.2%
Transformer (Wang et al., 2018a) 62.3%
Ensemble (Wang et al., 2018a) 68.4%
RecursiveNN (Wang et al., 2019) 68.7%
Tree-Decoder (Liu et al., 2019) 69.0%
GTS (Xie and Sun, 2019) 74.3%
KA-S2T (Our) 76.3%

Table 1: Answer accuracy of our model and other state-
of-the-art models on Math23K dataset.

the training set, and uses its expression as a
template for the query problem. It combines
the retrieval model with the DNS model to
form a hybrid model “DNS+Retrieval”.

• Ensemble (Wang et al., 2018a): This ensem-
ble model combines three types of Seq2Seq
models: a bidirectional LSTM network (Wu
et al., 2016), a convolutional Seq2Seq model
(Gehring et al., 2017), and a transformer
(Vaswani et al., 2017).

• RecursiveNN (Wang et al., 2019): A recur-
sive neural network model first predicts the
tree structure template using a Seq2Seq model,
and then infers the expression based on the
features extracted by a bidirectional LSTM
and self-attention mechanism.

• Tree-Decoder (Liu et al., 2019): A Seq2Tree
generative model with an auxiliary stack and
a tree-structured decoder that generates the
abstract syntax tree of the equation in a top-
down manner. We call this method “Tree-
Decoder”.

• GTS (Xie and Sun, 2019): A tree structured
neural model that generates an expression
tree in a goal-driven manner based on the
parent node and the left sibling tree of each
node. It uses top-down goal decomposition
and bottom-up subtree embedding to directly
predict the expression tree.

3.4 Result Analysis

To assess the overall performance of our KA-S2T
model, we compared it with the performances

Models Accuracy
GTS (Xie and Sun, 2019) 74.3%
KA-S2T w/o knowledge 75.5%
KA-S2T w/o multiple category 75.7%
KA-S2T w/o phrase category 76.0%
KA-S2T 76.3%

Table 2: Ablation study on reducing the amount of
external knowledge incorporated into the model. “w/o
phrase category” indicates the removal of knowledge
about phrase categories from the KA-S2T model. “w/o
multiple category” indicates that each entity in the
knowledge base is connected to only one category that
is most relevant to it.

of other state-of-the-art models on the Math23K
dataset. Table 1 shows the accuracy of the results
obtained by executing the generated expressions
of these models, from which we can conclude the
following:

1) The tree-structured decoder can improve the
performance of most baselines. For example,
the Seq2Tree baseline Tree-Decoder and GTS
performed better than the best-performing Seq2Seq
baseline RecursiveNN. This result demonstrates the
effect of the tree-structured decoder.

2) The deep-learning models DNS and Ensemble
did not perform as well as the RecursiveNN with
attention mechanism. Tree-Decoder and GTS both
have an attention structure, which proves that an
attention mechanism can effectively capture the
key features of a problem.

3) GTS performed the best of all the baselines,
even better than the Tree-Decoder, which also has a
Seq2Tree structure. The reason for this may be that
GTS directly uses the states of the parent node and
left sibling node to generate the current node. Tree-
Decoder still sequentially generates expressions
based on the last node state, and takes the sibling
node and parent node states as additional features.

4) Finally, compared with GTS, the accuracy
of KA-S2T was 2.0% better. We attribute the
superior performance of KA-S2T to two properties:
KA-S2T incorporates external knowledge, which
can better capture the relationship between words.
KA-S2T recursively aggregates the neighbors of
each node in the partial expression, and thus better
captures the global information associated with the
currently generated expression tree.

3.5 Ablation Study

Effect of external knowledge: Table 2 shows the
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Models Accuracy
RecursiveNN (Wang et al., 2019) 68.7%
GTS (Xie and Sun, 2019) 74.3%
KA-S2T w/o child loss & state agg 72.9%
KA-S2T w/o state agg 73.5%
KA-S2T w/o child loss 75.2%
KA-S2T 75.5%

Table 3: Ablation study of different decoder structures.
“w/o state agg” indicates that the model did not use
the context state rt to incorporate global expression
information at each time step. “w/o child loss”
indicates that the loss function did not use the
additional regular terms defined in Equation 10 to
introduce child loss. For a fair comparison, no external
knowledge was used in KA-S2T and its variants.

results of ablation experiments conducted to reduce
the amount of external knowledge incorporated into
the model. We have the following observations:

1) Without external knowledge, the KA-S2T’s
answer accuracy would be reduced to 75.5%. How-
ever, “KA-S2T w/o knowledge” still outperforms
the best-performing baseline GTS, which further
verifies the effectiveness of our tree-structured
decoder. We will analyze the effectiveness of these
tree-structured decoder in the following section.

2) The use of multiple categories and phrase
categories can improve accuracy by 0.2% and
0.5%, respectively. Their combination can provide
further improvement in model performance. These
results show that the external knowledge of the
relationship between entities and categories enables
the model to capture common-sense information
and obtain better interaction between words.

Effect of KA-S2T tree-structured decoder:
We designed several ablation experiments to mea-
sure the effect of our KA-S2T tree-structured
decoder, the results of which are shown in Table
3. For a fair comparison, we used no external
knowledge in these KA-S2T and variant models.
From the table, we can see that:

1) The “KA-S2T w/o child loss & state agg”
model, which can be regarded as a basic Seq2Tree
model, achieved better accuracy than the best-
performing Seq2Seq baseline RecursiveNN. The
main difference between this model and Recur-
siveNN is that this model generates the current
node state based on its parent node, and Recur-
siveNN generates the current node state based on
the last node. This finding once again confirms the
effectiveness of the Seq2Tree structure because fa-
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Figure 4: Model performance on expression trees of
different lengths

cilitates the capture of long-distance dependencies.
2) The “KA-S2T w/o child loss” model out-

performed the best-performing Seq2Tree baseline
GTS, but the “KA-S2T w/o child loss & state agg”
model did not perform as well as GTS. Compared
with the basic Seq2Tree model, GTS uses bottom-
up subtree embedding to introduce left sibling tree
information. The state aggregation mechanism
achieves further improvements, not only focusing
on the left sibling subtree, but also incorporating
the global information associated with the entire
generated partial expression. This result proves the
effectiveness of the state aggregation mechanism.

3) The KA-S2T model with child loss is better
than the KS-S2T model without child loss, which
proves that the child loss function obtains better
performance.

Model performance on expression trees of
different lengths: We compared the KA-S2T
model with the other three best-performing state-of-
the-art methods to investigate the performances of
the models that have expression trees of different
lengths. As shown in Figure 4, KA-S2T outper-
formed the other three state-of-the-art methods
with respect to expression trees of different lengths,
especially when the length of the expression tree
was between 5 and 9. One possible explanation for
this is that because the expression tree is complex,
to achieve better performance, the model needs
external knowledge and the global information
associated with the expression. However, when
the expression is too complex, the probability of
the model producing correct results is too low,
so the performance gap between the different
models is not as obvious. These results further
demonstrates the beneficial effect of incorporating
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Problem 1: The library purchased N1 different types of books. Among them, there are N2 literary
books and N3 encyclopedias. The number of science books is N4 more than N5 times the number
of literary books. How many books are there in total?
GTS: + + * N2 N5 N4 N2 KA-S2T: + + * N2 N5 N4 + N2 N3
Problem 2: A school spent N1 to buy N2 basketballs and N3 footballs. The price of each basketball
is N4. How much does each basketball cost more than each football?
GTS: - N4 / - N1 * N2 N4 N2 KA-S2T: - N4 / - N1 * N2 N4 N3

Table 4: Two examples of expressions generated by KA-S2T compared with GTS.

external knowledge and using state aggregation
mechanism.

3.6 Case Study

Table 4 shows two examples generated by our KA-
S2T model for comparison with GTS (Xie and Sun,
2019).

In Problem 1, without external knowledge, GTS
does not know that encyclopedias are books much
like literary books and scientific books, and there-
fore it generates incorrect results. By incorporating
external knowledge, KA-S2T is able to obtain the
relationship between these three types of books.

In Problem 2, there is a long distance between
“N3” and the first two nodes [-, N4] of the expres-
sion tree. GTS does not realize that the current sub-
expression tree indicates the price of each football
and generates “N2” based on the nearest node “N4”.
Our proposed method can capture long-distance
features and therefore generate correct results.

4 Related Work

Solving math word problems has long been a
challenging task (Fletcher, 1985; Bakman, 2007;
Roy and Roth, 2016) and has attracted the attention
of many researchers. Some methods on math word
problem solving incorporate extra features by man-
ually crafting fine-grained templates or defining
math concepts. Huang et al. (2017) formulated fine-
grained templates and aligned numbers in math
word problems to those candidate templates. Roy
and Roth (2018) developed declarative rules to
transform math concepts into expressions. These
methods require manually formulated features and
may be difficult to apply to math word problems
in different domains. Recently, many studies have
used deep learning methods to incorporate external
knowledge from the knowledge base into many
NLP tasks, such as dialogue systems (Zhong et al.,
2019) and reading comprehension (Wang and Jiang,
2019; Qiu et al., 2019). These methods extend

knowledge triples into natural language sequences
or build multi-hop inference graphs based on
relationships in the knowledge base, and have
achieved promising results. In this paper, we model
the entities in the problem and their categories as
entity graphs and use graph attention to generate
knowledge-aware problem representations.

Seq2Seq neural networks (Sutskever et al., 2014)
have achieved promising results on math word
problem solving. For instance, Wang et al. (2017)
used a Seq2Seq model to generate math expres-
sions. Wang et al. (2018b) incorporated reinforce-
ment learning into the model to construct a math
expression step by step. Zou and Lu (2019) used a
data-driven approach to semantically parsing text
into math expressions. Recently, tree-structured
decoder was used to further improve the seq2seq
framework. Xie and Sun (2019) propose a seq2tree
model to generate expression tree in a goal-driven
manner based on the parent node and left sibling
tree of each node. Liu et al. (2019) propose a
tree-structured decoding method with an auxiliary
stack that generates the abstract syntax tree of the
equation in a top-down manner. In this paper, we
generated the pre-order math expression tree based
on parent node state of each node and recursively
aggregated neighbors of each node in the partial
expression tree to incorporate global information.

5 Conclusion

In this study, we proposed a novel knowledge-
aware sequence-to-tree model that can automati-
cally solve math word problems. We used an entity
graph to incorporate common sense knowledge
from external knowledge bases into the proposed
model. In addition, we proposed a tree-structured
decoder with a state aggregation mechanism for
generating math expressions. Our experimental
results confirmed that our KA-S2T model outper-
formed other state-of-the-art models.



7145

Acknowledgments

The authors wish to thank the anonymous reviewers
for their helpful comments. This work was partially
funded by China National Key R&D Program
(No.2018YFB1005104, 2018YFC0831105,
2017YFB1002104), National Natural Science
Foundation of China (No.61751201, 61976056,
61532011), Shanghai Municipal Science and
Technology Major Project (No.2018SHZDZX01),
Science and Technology Commission of
Shanghai Municipality Grant (No.18DZ1201000,
17JC1420200).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Yefim Bakman. 2007. Robust understanding of
word problems with extraneous information. arXiv
preprint math/0701393.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation
of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555.

Zhendong Dong, Qiang Dong, and Changling Hao.
2006. Hownet and the computation of meaning.

Edward A Feigenbaum, Julian Feldman, et al. 1963.
Computers and thought, volume 7. McGraw-Hill
New York.

Charles R Fletcher. 1985. Understanding and solving
arithmetic word problems: A computer simulation.
Behavior Research Methods, Instruments, &amp;
Computers, 17(5):565–571.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In ICML, pages
1243–1252. JMLR. org.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Danqing Huang, Shuming Shi, Chin-Yew Lin, and Jian
Yin. 2017. Learning fine-grained expressions to
solve math word problems. In EMNLP, pages 805–
814.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019. Tree-structured decoding for
solving math word problems. In EMNLP-IJCNLP,
pages 2370–2379.

Jiaju Mei. 1985. Tongyi ci cilin. Shangai cishu
chubanshe.

Delai Qiu, Yuanzhe Zhang, Xinwei Feng, Xiangwen
Liao, Wenbin Jiang, Yajuan Lyu, Kang Liu, and
Jun Zhao. 2019. Machine reading comprehension
using structural knowledge graph-aware network. In
EMNLP-IJCNLP, pages 5898–5903.

Subhro Roy and Dan Roth. 2016. Solving gen-
eral arithmetic word problems. arXiv preprint
arXiv:1608.01413.

Subhro Roy and Dan Roth. 2018. Mapping to
declarative knowledge for word problem solving.
Transactions of the Association for Computational
Linguistics, 6:159–172.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing
systems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008.
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