
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 6943–6954,
November 16–20, 2020. c©2020 Association for Computational Linguistics

6943

Re-examining the Role of Schema Linking in Text-to-SQL

Wenqiang Lei∗† , Weixin Wang∗†, Zhixin Ma†, Tian Gan‡, Wei Lu§, Min-Yen Kan†, Tat-Seng Chua†
†National University of Singapore

‡Shandong University
§Singapore University of Technology and Design

wenqianglei@gmail.com weixin.wang@comp.nus.edu.sg
zhixinma97@gmail.com gantian@sdu.edu.cn

luwei@sutd.edu.sg kanmy@comp.nus.edu.sg dcscts@nus.edu.sg

Abstract

In existing sophisticated text-to-SQL models,
schema linking is often considered as a simple,
minor component, belying its importance. By
providing a schema linking corpus based on
the Spider text-to-SQL dataset, we systemati-
cally study the role of schema linking. We also
build a simple BERT-based baseline, called
Schema-Linking SQL (SLSQL) to perform
a data-driven study. We find when schema
linking is done well, SLSQL demonstrates
good performance on Spider despite its struc-
tural simplicity. Many remaining errors are
attributable to corpus noise. This suggests
schema linking is the crux for the current text-
to-SQL task. Our analytic studies provide in-
sights on the characteristics of schema linking
for future developments of text-to-SQL tasks.1

1 Introduction

Structured Query Language (SQL), while exact and
powerful, suffers from a complex grammar pre-
senting significant challenges for laymen to write
queries. Automatically parsing natural language
into SQL (text-to-SQL) thus has huge potential,
as it would enable lay users to mine the world’s
structured data using natural language queries.

To achieve practical text-to-SQL workflow, a
model needs to correlate natural language queries
with the given database. Therefore, schema link-
ing is considered helpful for text-to-SQL pars-
ing (Guo et al., 2019; Bogin et al., 2019b; Dong
et al., 2019; Wang et al., 2020). Here, schema
linking means identifying references of columns,
tables and condition values in natural language
queries. For example, for the question “Find the
names of schools that have a donation with amount

* Equal contribution.
1Our code and annotation are available at https://

github.com/WING-NUS/slsql.

above 8.5” (shown with relevant tables in Figure 1),
“name” is a column reference to school.name,
“donation” a table reference to endowment, and
“8.5” and “sale” are value references, corresponding
to the condition values in the SQL query.

Existing solutions largely treat schema linking as
a minor component implemented with simple string
matching (Guo et al., 2019; Yu et al., 2018a; Lin
et al., 2019) heuristics to support sophisticated text-
to-SQL models. An exception is Dong et al. (2019),
which framed schema linking as a task to be solved
by sequential tagging. While they did show the
importance of schema linking, how it contribute to
text-to-SQL task performance remains unanswered
as there is no annotated corpus to analyze.

To address these shortcomings, we perform an in-
depth study on the role of schema linking in text-to-
SQL parsing. Intuitively, schema linking helps both
cross-domain generalizability and complex SQL
generation, which have been identified as the cur-
rent bottlenecks of the text-to-SQL task (Finegan-
Dollak et al., 2018; Yu et al., 2018c). By cross-
domain generalizability, we refer to the proper
separation of training and testing instances and
databases, requiring a model to infer against with
arbitrary databases where the schema and the do-
main are previously unknown. This means the
model must be aware of what tables and columns
are involved in the question — exactly what schema
linking does. Schema linking indirectly addresses
the complex SQL generation challenge: the writing
of SQL queries comprising a mixture of select,
group by, and nested clauses. Generating such
queries requires the modeling of complex semantic
dependencies in the input and to manage complex
SQL grammar during decoding. As discussed in
Dong et al. (2019), detecting and removing domain-
specific words from the model’s purview allows
the model to focus on learning syntactic conversion
between natural language and SQL, reducing the

https://github.com/WING-NUS/slsql
https://github.com/WING-NUS/slsql

6944

Figure 1: Two examples of schema linking. Column, table and value references are marked in red, yellow and
green, respectively. The arrows of column and table references indicate their respective referents in the schema.
For value references, the arrows point to the columns they compare with.

input’s syntactic sparsity. For example, if we view
the words linked with the schema as placeholders,
the two natural language queries in Figure 1 can be
deemed syntactically similar.

To perform a systematic data-driven study, we
annotate and contribute ground truth schema link-
ing data for the publicly-available training and
development set of the Spider dataset (Yu et al.,
2018c). We then build a simple BERT baseline,
named Schema-Linking SQL (SLSQL), which
links the schema in a natural language query and
parses the SQL query with awareness of the pre-
dicted schema linking results. We systematically
compare several variants of SLSQL, each of which
utilizes schema linking differently. We find that
schema linking always leads to better SQL pars-
ing performance. But the performance of schema
linking is far from perfect, even under supervised
learning (≤ 0.83 F1). To maximize the potential
of schema linking, we study how SLSQL performs
during inference when provisioned with oracle
schema linking results (i.e., ground truth annota-
tion). As such, we find our simple SLSQL model
performs impressively on Spider — the remaining
gap is largely due to corpus noise, including in-
consistent patterns and errors in the dataset. This
evidence points to schema linking as a critical task
for text-to-SQL parsing, and also provides an in-
dicative upper bound on performance on the Spider
dataset. Interestingly, our analyses on the failure
cases caused by model deficiencies reveal advanced
challenges on the text-to-SQL task like deep logi-
cal reasoning and extremely complex structure (c.f.
Section 5). Our annotated data enables us to ad-
dress these challenges without the interference of
the current noisy schema linker.

In summary, we contribute an annotation of
schema linking and in-depth analyses on the role

of schema linking in the text-to-SQL task. We
identify schema linking as a crux for the further
improvement of text-to-SQL parsing. Our analy-
ses provide insights to advance the understanding
of text-to-SQL parsing, facilitating future research
on the areas of problem identification, dataset con-
struction and model evaluation.

2 Related Work

Text-to-SQL Parsing: Text-to-SQL parsing has
been long studied in past decades (Finegan-Dollak
et al., 2018; Yu et al., 2018c). Early text-to-SQL
systems rely heavily on complicated rules and hand-
crafted feature engineering (Zhong et al., 2017;
Finegan-Dollak et al., 2018). Fortunately, the re-
search progress has been largely accelerated in re-
cent years thanks to both large-scale text-to-SQL
datasets (Zhong et al., 2017; Yu et al., 2018c) and
interests in neural modeling (Xu et al., 2017; Dong
and Lapata, 2018; Sun et al., 2018; Yu et al., 2018b;
Guo et al., 2019; Wang et al., 2020). With years
of studies, current research on this task focuses
on addressing cross-domain generalizability and
generating complex SQL queries. To improve
cross-domain generalizability, advanced represen-
tations of the schema and the queries are explored,
e.g., graph-based schema representations (Bogin
et al., 2019b,a), contextualized question represen-
tations (Hwang et al., 2019; Guo et al., 2019) and
relation-aware self-attention (Wang et al., 2020).
As for the complex SQL query generation, ap-
proaches are proposed to constrain the output with
SQL grammar, e.g., modular decoders for separate
SQL clauses (Yu et al., 2018b), intermediate lan-
guage representation (Guo et al., 2019), recursive
decoding for nested queries (Lee, 2019), schema-
dependent grammar for SQL decoding (Lin et al.,

6945

2019), etc. Unlike their perspective, this work calls
attention to schema linking, which we consider
is the crux for the text-to-SQL task and yet to be
sufficiently studied.

Schema Linking: The idea of schema linking
has been broadly studied in similar tasks like en-
tity linking in the field of knowledge graphs (Fu
et al., 2020; Wu et al., 2019; Rijhwani et al., 2019;
Logeswaran et al., 2019) and slot filling in dia-
logue systems (Xu and Hu, 2018; Ren et al., 2018;
Nouri and Hosseini-Asl, 2018; Rastogi et al., 2017),
where ample annotated data and models have been
proposed to address their specific properties. In the
general domain of semantic parsing, it has been
demonstrated that decoupling underlying structure
with lexicon benefits cross-domain semantic pars-
ing (Su and Yan, 2017; Herzig and Berant, 2018).
However, when it comes to the text-to-SQL prob-
lem, many existing approaches treat schema linking
as a minor pre-processing procedure using simple
heuristics, such as string matching between natural
language utterances and column/table names (Guo
et al., 2019; Yu et al., 2018a; Lin et al., 2019).
As discussed in Dong et al. (2019), such sim-
ple heuristics are difficult to accurately identify
columns/tables involved in a natural language utter-
ance and well understand the relation between an
utterance and the corresponding database schema.
Therefore, they make the first step towards treat-
ing schema linking as an individual research prob-
lem. Nevertheless, due to the lack of direct schema
linking supervision, they achieve limited improve-
ment on the challenging Spider dataset, further
illustrating the difficulties of this problem. Unlike
these prior approaches, more recent models (Bo-
gin et al., 2019a,b; Wang et al., 2020) integrate
schema linking as a learnable component into the
network, which brings significant improvements.
In this work, we take one step further along this line
to perform a thorough study by conducting schema
linking annotation, discussing its importance and
revealing its unique characteristics.

3 Schema Linking Annotation

To support a data-driven and systematical study, we
annotate the schema linking information for each
instance in the training and development set of Spi-
der (Yu et al., 2018c) (the test set is hidden), the
largest and most challenging text-to-SQL dataset
so far. A simple way is conducting automatic anno-
tation by matching table/column names and values

in a ground truth SQL query against its correspond-
ing natural language query. However, such auto-
matic annotation method can bring much noise that
would potentially hinder the model performance.
Therefore, we annotate the dataset combining both
automatic and manual processing.

Automatic Annotation: We first programmati-
cally annotate the schema linking for easy cases to
reduce the manual work. The string matching strat-
egy we use is inspired by Guo et al. (2019). We first
generate n-grams for each natural language query
and only keep those with a length less than 6. For
each condition value in a ground truth SQL query,
we label the n-gram which it exactly matches. After
labeling all n-grams matching with SQL condition
values, we enumerate all unlabeled n-grams in the
ascending order of length. If an n-gram contains all
tokens in a column name, we label and regard this
n-gram as a reference to that column. This process
deals with cases where a column name is exactly
mentioned or slightly paraphrased (e.g., column
“type code” mentioned as “code of type”). How-
ever, a column/table name can also partially occur
(e.g., column “type code” mentioned as “code”).
To deal with such cases, we enumerate all unla-
beled n-grams in descending order of length. If an
n-gram contains any token in a column name, we la-
bel it as the reference to the corresponding column.
Table reference labeling is conducted similarly.

Manual Annotation: We then recruit three com-
puter science majors to further manually refine the
automatic annotation. They are trained with a de-
tailed annotation guideline and 50 trial samples.
One is allowed to start after getting all trial sam-
ples correctly annotated. During the process, strict
quality control is conducted by calculating their
inter-annotator agreement (IAA)2. Specifically, the
dataset is divided into 10 batches where instances
in each batch are equally distributed to the annota-
tors with 5% overlap. We accept a batch if the IAA
is higher than 0.7 (at least 70% of the instances
have exactly the same annotation by all three an-
notators); otherwise, the annotators are required to
re-examine their annotations individually. Once a
batch of annotation is accepted, we let the annota-
tors discuss their disagreed annotations and come
up with a final agreed result.

2In this work, we treat one instance as agreed if the three
annotators have exactly the same annotations on it.

6946

Category Precision Recall F1
column 0.682 0.897 0.775
table 0.867 0.744 0.801
value 0.997 0.845 0.915

Table 1: The micro-average precision, recall and F1 of
the automatic annotation using our final manual anno-
tated data as the ground truth.

Analysis: To evaluate how noisy and coarse the
automatic annotation is, we calculate its F1 score
by treating the manually improved result as the
ground truth (see Table 1). For value reference,
some missing annotations are caused by abbrevi-
ation. For example, the text span “assistant pro-
fessor” in a natural language query is abbrevi-
ated as rank="AsstProf" in the corresponding
ground truth SQL query. For column and table ref-
erence, an issue is that it cannot deal with columns
and tables are not textually referred to in the cor-
responding utterance. For example, the column
elevation is mentioned as “altitude” in a sen-
tence. Other issues of the automatic annotation are
largely caused by similar column/table names.

4 Model

To conduct an in-depth study of the role of schema
linking, we develop the SLSQL model, as depicted
in Figure 2. It comprises a base model (the left
part), which is based on the encoder–decoder struc-
ture, and an explicit schema linking component (the
right part). While many sophisticated models have
been proposed, we adopt this structure to leverage
its simplicity to systematically analyze the factor of
schema linking. In our experiments, we will study
different variants of this structure by configuring
the model in various ways.

Before the detailed model description, we first
introduce our mathematical notations. We denote
the natural language query Q as Q = {qi}|Q|i=1, where
qi indicates the ith token ofQ and |Q| indicates the
length. Similarly, we denote the database schema
E as E = {ei}|E|i=1. It is the concatenation of a spe-
cial token [none], the name of each table and the
names of its columns. Here, [none], which we
treat as a special element in the schema, is designed
for schema linking — if a word in Q does not link
to any column or table, it links to this token. In
addition, we use MLP to mean multilayer percep-
tron, ⊕ to represent the concatenation operation,
and bold symbols to denote dense representations.

4.1 Base Model

We now detail the base model which consists of
an encoder and a decoder. The encoder (part 1©
in Figure 2) processes the input (i.e., Q and E)
into hidden representation (denoted as h) and the
decoder (part 2© in Figure 2) generates the SQL
query (i.e, S) accordingly.

Encoder: Following (Hwang et al., 2019; Guo
et al., 2019; Zhang et al., 2019), we concatenate
the input query Q and database schema E to an in-
tegrated sequence as input for BERT (Devlin et al.,
2019) to generate embeddings for each question to-
ken and element in the schema (namely Q = {qi}|Q|i=1

and E = {ei}|E|i=1) and the overall representation
for the input as h. Here, E consists of embed-
dings of all the columns/tables and the special to-
ken [none]. The embedding of the special token
[CLS] in BERT is taken as h. Formally, we have:

{[CLS], Q,E} → h, {qi}|Q|i=1, {ei}|E|i=1. (1)

Note that, in this representation, the schema link-
ing information has also been captured by the multi-
layer self-attention implicitly. However, we argue
the explicit supervisions are required. While a plau-
sible solution is to use the relation-aware encoding
proposed by Wang et al. (2020) to do this, we later
propose a simpler solution to facilitate our analyti-
cal study.

Decoder: Inspired by the prior work (Yin and
Neubig, 2017; Dong and Lapata, 2016, 2018;
Zhang et al., 2019), we adopt a two-step decoder to
generate the SQL query from the hidden represen-
tation h. We first generate a coarse SQL query S′,
namely a SQL sequence without aggregate func-
tions, using a GRU network (Cho et al., 2014). We
then synthesize the final SQL query S based on S′.
The 2© part in Figure 2 illustrates the generation
of aggregate functions for the column budget
during the decoding process.

4.2 Schema Linking Extension

To study the role of schema linking, we extend the
encoder to explicitly capture the schema linking
information. It works in two steps: in step 1.1,
we learn the explicit schema linking based on our
annotation; in step 1.2, we learn h, the overall rep-
resentation for the input, by integrating our explicit
schema linking results.

6947

Figure 2: Schematic of our SLSQL model. The left part illustrates the base model, an encoder–decoder framework
commonly used in the text-to-SQL task. The right part shows our extension of schema liking component.

Schema Linking Learning: We denote the
ground truth schema linking distribution as Θ and
the estimated one as Θ̂. We denote the linking prob-
ability of the token qi and the schema element ej
as P̂i,j , which is calculated as

P̂i,j = softmax
[
MLP (qi ⊕ ej)

]
(2)

where 1 ≤ i ≤ |Q| and 1 ≤ j ≤ |E|. Therefore, the
estimated schema linking distribution is formulated
as Θ̂ = {P̂i,j}1≤i≤|Q|,1≤j≤|E|. The loss function of
the schema linking step is defined as

L = − 1

|Q||E|

|Q|∑
i=1

|E|∑
j=1

[
Pi,j log P̂i,j

+(1− Pi,j) log(1− P̂i,j)
]
,

(3)

where Pi,j ∈ Θ is the ground truth value for each
pair of qi and ej .

Schema-aware Representation: In step 1.2, we
learn the schema-aware representation (i.e., h)
based on the predicted schema linking results (i.e.,
Θ̂), Q, and E. To cover the temporal relation, we
use a bi-directional GRU to generate h. Thus, the
schema-aware representation is learned from

h = Bi-GRU
[
f(Θ̂,Q,E)

]
, (4)

where f is the reference mechanism. It is calcu-
lated by concatenating the embedding of qi and
the embedding of the schema element (including
[none]) it likely links with. We here imple-

mented it in a soft manner through weighted aver-
age embedding. Specifically,

f(Θ̂,Q,E) = {qi ⊕
|E|∑
j=1

P̂i,jej}|Q|i=1. (5)

5 Experiments

In this section, we conduct systematic studies on
the role of schema linking in text-to-SQL parsing.
We examine several variants of SLSQL and thor-
oughly analyze the experimental results, providing
detailed analyses and discussions to shed light on
its unique characteristics.

5.1 Experiment Settings
Dataset: We conduct the experiments on the Spi-
der (Yu et al., 2018c) dataset, a large-scale bench-
mark for cross-domain complex text-to-SQL task.
Spider consists of 11,840 examples which are
split into training (size: 7,000), development (size:
2,134) and test set (size: 1,034), covering 138 dif-
ferent domains. In addition, SQL queries in the
dataset are categorized into four difficulty levels
based on the number of SQL keywords. Models are
evaluated using the official exact matching accu-
racy metric of Spider. We conduct ablation studies
on the development set since the test set is used
for scoring models on the leaderboard and is not
publicly accessible.

Model Variants: To study the contribution of
schema linking to the text-to-SQL parsing prob-
lem, we examine the following variants of SLSQL,

6948

each with one way of utilizing the schema linking
information. To facilitate discussions, the model
described in Section 4 is referred to as default in
this section.

• base model: To evaluate the impact of explicit
schema linking, we use the base model, as a
variant, whose encoder is defined as EQ. (1) and
followed by the decoder directly. Note there is
no schema linking component in this variant.

• auto: To validate the advance of the manual
annotation, we build this variant, which is trained
with the automatic schema linking annotation in
EQ. (3) instead of the manual annotation.

• hard reference: As introduced in Section 4.2,
we generate schema-aware representation using
reference mechanism f . Here, we further build
this variant using hard reference concatenation.
Specifically, instead of computing weighted av-
erage embeddings of all database schema ele-
ments as described in EQ. (5), we concatenate a
question token embedding qi with ej which is
the embedding of the schema element with the
highest linking probability, i.e. P̂i,j , to validate
whether a different way of integrating schema
linking information impacts the performance.

• oracle: To explore the maximum potential ben-
efit of schema linking to the text-to-SQL task,
we design the oracle variant. In this variant,
we remove the schema liking learning com-
ponent (step 1.1 in Figure 2), connect the en-
coder part with step 1.2 directly, and replace
the estimated distribution Θ̂ with the ground
truth distribution Θ in EQ. (4), namely, h =
Bi-GRU

[
f(Θ,Q,E)

]
. Like the auto variant,

we build the oracle auto variant using the auto-
matic annotation instead.

Implementation Details: We use Stanford
CoreNLP (Manning et al., 2014) to preprocess the
corpus. We implement SLSQL in PyTorch (Paszke
et al., 2017). We use the pre-trained uncased BERT-
Base model with 12 layers provided by Wolf et al.
(2019). We use Adam (Kingma and Ba, 2014) with
the learning rate set to 5× 10−5 and batch size set
to 4. Considering the ablation studies have to be
conducted on the development set due to the model
submission policy of Spider (at most 2 models are
allowed for evaluation on the hidden test set), all
hyperparameters are tuned on the training set. The
model converges within 20 epochs.

Model SL Dev Test

SLSQL

default 0.81 61.4 55.0
hard ref 0.80 60.8 55.7
base - 57.4 -
auto 0.77 59.2 -
oracle 1.0 72.4 -
oracle auto 0.83 65.7 -

GlobalGNN (Bogin et al., 2019b) - 52.7 47.4
EditSQL (Zhang et al., 2019) - 57.6 53.4
IRNet (Guo et al., 2019) - 61.9 54.7
Bertrand-DR (Kelkar et al., 2020) - 57.9 54.6
RYANSQL (Choi et al., 2020) - 70.6 60.6
RATSQL (Wang et al., 2020) - 69.7 65.6

Table 2: Exact matching accuracy of our model variants
and other recently published text-to-SQL models which
are evaluated on Spider. The default and hard ref vari-
ants are evaluated on the hidden test set. For each vari-
ant, we report their overall schema linking F1 score (de-
noted as SL) on the development set by treating the
manual annotation as the ground truth.

5.2 Overall Performance Analysis

Table 2 shows the performance of SLSQL and
other recent models evaluated on Spider. We can
observe that there is a strong positive correlation
between the schema linking performance and the
exact matching accuracy. For example, without
schema linking, SLSQL-base has the lowest exact
matching accuracy among all variants. By compar-
ing the three variants with a trained schema linking
component (default, hard ref and auto), we find
that training SLSQL models with higher quality
annotations leads to better performance (default &
hard ref v.s. auto), while using soft or hard con-
catenation for propagating schema linking informa-
tion does not make a significant difference (default
v.s. hard ref). As expected, feeding SLSQL with
Θ rather than Θ̂ during inference leads to a signifi-
cantly higher result (oracle and oracle auto). Sim-
ilarly, using the manual annotation instead of the
automatic annotation for the oracle setting largely
improves the model performance.

We also list top models on the Spider leader-
board for reference in Table 2. As we do not aim at
putting effort in building sophisticated models, our
default and hard ref variants cannot compete with
the state-of-the-art models like RYANSQL (Choi
et al., 2020) and RATSQL (Wang et al., 2020).
However, the oracle variant shows that a simple
model has the potential to sharply outperform these
strong models (on the development set), by improv-
ing schema linking performance, which shows an
important future direction. We will have further
discussions on this issue in Section 5.5.

6949

Variant easy medium hard extra all
default 79.6 66.6 49.4 33.5 61.4
hard ref 79.2 66.4 48.9 31.8 60.8
base 77.6 60.0 47.1 31.8 57.4
auto 77.2 64.1 48.3 31.2 59.2
oracle 89.5 75.1 66.1 46.4 72.4
oracle auto 86.0 70.2 53.4 36.5 65.7

Table 3: Exact matching accuracy by difficulty on the
development set of Spider.

Reference Precision Recall F1
column 0.826 0.820 0.823
table 0.806 0.840 0.822
value 0.773 0.741 0.757

Table 4: Schema linking results of different references
categories on the development set of Spider. Precision,
recall and F1 scores are micro-averaged.

5.3 Can Schema Linking Help Manage
Complex Queries?

To have further insights on how schema linking
can help complex queries, we investigate detailed
model performance under different difficulty lev-
els. Table 3 presents the result. We can observe
that, generally schema linking helps boost the per-
formance of SLSQL across all different difficulty
levels (base v.s. other variants). More accurate
schema linking predictions lead to more significant
accuracy improvements. For example, the oracle
variant, which has access to the manual annotation,
achieves the highest score on all different difficulty
levels. Besides, default and hard ref outperform
the auto variant trained with automatic annotation
on all difficulty levels, thanks to the higher quality
of schema linking annotation.

5.4 Schema Linking Performance Analyses
To have a better understanding of the schema link-
ing task itself, we test its performance for SLSQL-
default and list some representative wrong predic-
tions, as shown in Table 4 and Table 5. We observe
that, with the model trained with explicit super-
vision, the F1 scores for column, table and value
linking are still far from satisfactory, demonstrating
that schema linking is not an easy task and requires
future efforts to improve.

Particularly, linking value references with the
schema is the most difficult part as its F1 score
is the lowest. We find most of wrong value
predictions are due to the lack of world knowl-
edge. As shown in Ex.1, the model mistak-
enly predicts Aruba as a language instead of a

World
Knowledge

Ex.1
Q: How many languages are spoken in Aruba?
G: country.name - value
P: countrylanguage.language - value

Ex.2
Q: . . . in African countries that are republics?
G: country.government form - colum
P: none

Semantic
Understanding

Ex.3
Q: . . . average rank for winners in all matches?
G: matches.winner rank - column
P: ranking.rank - column

Ex.4
Q: . . . names of students who have no friends?
G: highschooler - table
P: none

Type
Error Ex.5

Q: List all the student details . . .
G: student.other student details - column
P: student - table

Table 5: Representative erroneous schema linking pre-
dictions. Notations Q, G, P stand for question, ground
truth and prediction, respectively. Reference types are
in italics and none means not being a reference.

country. In Ex.2, the model fails to understand
that “republic” is a government form. We find
that, despite using BERT as underlying language
understanding module, the model still has dif-
ficulty in dealing with some of such value ref-
erence linking. To help the model accurately
link value references with the schema, a solu-
tion can be scanning the content stored in the
database, as applied in some prior work (Bogin
et al., 2019b; Wang et al., 2020), to facilitate the
model inference. The motivation behind it is that
“Aruba” occurs in the column country.name
instead of countrylangauge.language or
city.name. However, in real scenarios, database
contents are not always accessible to text-to-SQL
models and condition values mentioned in hu-
man utterances do not necessarily exist in the
database (Zhong et al., 2017). An alternative so-
lution can be looking for external knowledge re-
sources which easily identify that the word “repub-
lic” is related to “government form”, as adopted in
Guo et al. (2019). Nevertheless, such solution re-
lies heavily on the quality and availability of knowl-
edge resources, making the model less portable for
practical use. Most of the remaining errors have
commonalities with wrong table/column reference
linking, in terms of causes.

When it comes to column and table reference
linking, we find the error sources are complex,
which mainly include failing to capture semantic
relations between words and tables/columns and
predicting other linking types. We observe that
sometimes the model is biased towards predict-
ing columns/tables that exactly occur in an utter-
ance while neglecting more global information. As

6950

shown in Ex.3, the model links the word “rank”
to the column ranking.rank while the cor-
rect choice should be matches.winner rank
if considering more global information. In addition
to neglecting global semantic information, failing
to capture semantic similarity between words is
another cause of errors such as the case shown in
Ex.4. We find that some of such issues are caused
by the WordPiece tokenization (Wu et al., 2016)
in BERT. For example, it tokenizes “highschooler”
as “highs ##cho ##ole ##r” while tokenizing “high
schooler” as “high school ##er”, which is the cause
of this case. Besides, columns can have common
words with their table names, making the model
mistakenly predict some part of a column reference
as a table reference (or vice versa) in some cases
like Ex.5. However, with such linking errors, the
model usually is still able to finally generate de-
sired SQL queries, which means they typically are
not as harmful as other errors described above.

Fortunately, many of the aforementioned prob-
lems have been extensively studied in similar tasks
such as zero-shot entity linking in knowledge graph
tasks (Wu et al., 2019; Logeswaran et al., 2019; Ri-
jhwani et al., 2019; Fu et al., 2020) and domain
adaptive slot filling in dialogue system domains
(Xu and Hu, 2018; Rastogi et al., 2017; Ren et al.,
2018; Nouri and Hosseini-Asl, 2018). With anno-
tated data, there is an ample room to transfer these
approaches, which are mostly based on supervised
learning, to the schema linking problem for further
improving the text-to-SQL parsing ability.

5.5 Error Analysis of the Oracle Variant

To further investigate what the remaining problems
lie on, provided that schema linking can be done
perfectly, we conduct error analyses using the or-
acle variant. We randomly sample 100 error in-
stances on the development set. We analyze the
errors and classify them into three categories: Cor-
rect Equivalent, Corpus Error and Model Incapa-
bility. Considering many examples in the dataset
have textually similar questions, erroneous predic-
tions having the same cause are counted once dur-
ing analysis. This process is repeated for five times
and we take the average percentage for each error
type. We find many errors are due to the the corpus
noises, namely the first two error types. Table 6
provides representative examples for each category.
We now detail the three error categories.

Correct Equivalent: One SQL query can have
several semantic equivalents with different writ-
ing patterns. We find that in the Spider dataset,
it is not always consistent that which of such pat-
terns is given as the ground truth. We identify
some SQL queries generated by SLSQL are actu-
ally semantically correct while treated as wrong
predictions due to not only co-existence of differ-
ent SQL writing patterns in the training set but also
the exact matching evaluation. According to our
manual verification, such false negative samples
take up around 30% of the sampled errors. Ex.1
shows a case where two SQL queries are semanti-
cally equivalent, despite different writing patterns.
There are also some inconsistent patterns in partic-
ular clauses like group by, as illustrated in Ex.2.
Such errors suggest that either pattern consistency
or more flexible, robust evaluation metric should
be focused on for future dataset construction.

Corpus Error: After carefully examining each
sampled errors, we also identify around 26% of
them are caused by incorrectly annotated exam-
ple in the dataset, e.g., wrong ground truth SQL
queries, incomprehensible utterances, problematic
database schemas, etc. As shown in Ex.3, “greater
area than that of any country” is indeed logically
equivalent to “greater than the maximum area of
all countries”, while the ground truth SQL query
means “greater area than that of some countries”.
Some of these errors are even hard to identify as
incorrect ground truth at first glance. Ex.4 looks
like a correct equivalent case while actually the
ground truth SQL query is wrong. Moreover, we
find typos in natural language queries can lead to
incorrect SQL queries. For example, one instance
has a text span “the sname of every sing” in the
natural language query which we believe should
be “the name of every song”. While better data
annotations definitely result in better SQL parsing
performance, such errors suggest a robust text-to-
SQL parser should be tolerant of noises like typos
and grammatical errors, which is an important but
overlooked problem for real application.

Model Incapability: Even with oracle schema
linking annotation, SLSQL is yet to be perfect. We
find about 44% of the failing instances are due to
modeling incapability. Many problems lie in the re-
quirement of deep logical reasoning and extremely
complex structure. Considering the case shown in
Ex.5, the model directly translates the word “and”

6951

Correct
Equivalent
(29.6%)

Ex.1
Q: What are the names of people who do not play poker?
G: select name from people where people id not in (select people id from poker player)
P: select people.name from people except select people.name from poker player join people

Ex.2
Q: For each shop, return the number of employees working there and the name of the shop.
G: select count(∗), t2.name from hiring as t1 join shop as t2 on t1.shop id = t2.shop id group by t2.name
P: select shop.name, count(∗) from shop join hiring on hiring.shop id = shop.shop id group by shop.shop id

Corpus
Error
(26.3%)

Ex.3
Q: Which countries have greater area than that of any country in Europe?
G: select name from country where surface area > (select min(surface area) from country where continent = 'Europe')
P: select name from country where surface area > (select max(surface area) from country where continent = 'Europe')

Ex.4
Q Find the number of concerts happened in the stadium with the highest capacity.
G: select count(∗) from concert as t1 join stadium as t2 order by t2.capacity desc limit 1
P: select count(∗) from stadium join concert where stadium.capacity = (select max(capacity) from stadium)

Model
Incapability
(44.1%)

Ex.5
Q: What is the total surface area of the continents Asia and Europe?
G: select sum(surface area) from country where continent = 'Asia' or continent = 'Europe'
P: select sum(surface area) from country where continent = 'Asia' and continent = 'Europe'

Ex.6

Q: How many countries speak both English and Dutch?

G: select count(∗) from (select t1.name from country as t1 join countrylanguage as t2 where t2.language = 'English'
intersect select t1.name from country as t1 join countrylanguage as t2 where t2.language = 'Dutch')

P: select count(∗) from countrylanguage where countrylanguage.language = 'English'
intersect select count(∗) from countrylanguage where countrylanguage.language = 'Dutch'

Table 6: Representative examples of the three error types and their average percentages during sampling. Notations
Q, G and P stand for question, ground truth and prediction, respectively. Some on clauses are omitted for display.

into the SQL keyword and, leading to a SQL query
with contradictory conditions. Although this query
is classified as “medium” by the Spider evaluation
script, it is actually difficult as it requires a model
to perform logic reasoning based on the understand-
ing that a country cannot be in Asia and Europe
at the same time. A similar case is “singers with
birth year before 1945 and after 1955” where a nu-
meric comparison is required to avoid generating
contradictory where conditions. Ex.6 is a case of
extremely complex structure where three logical
steps are required to synthesize the SQL query, i.e.,
1) selecting English-speaking countries and Dutch-
speaking countries; 2) finding their intersection
using intersect; and 3) counting the intersec-
tion size with an outer query. Unfortunately, the
model writes a plausible but wrong SQL query.

Discussion: The above results and analyses sug-
gest that, with schema linking well solved, even a
simple BERT baseline can capture quite a large por-
tion of the patterns in the Spider dataset. This indi-
cates that schema linking is the crux for current re-
search on text-to-SQL task, providing an appealing
perspective to this task. Also, through experiments
and analyses with schema linking annotation, some
previously unnoticed challenges like deep logical
reasoning and extremely complex structure have
emerged, also pointing further research directions.
Such problems were interwoven with schema link-
ing problems in the original Spider dataset. Our
schema linking annotation makes it possible for
such problems to be separately approached without
the interference of database schemas.

6 Conclusion

We critically examine the role of schema link-
ing for the text-to-SQL task. To support model-
independent and thorough studies, we invest human
resources to annotate schema references and con-
tribute a high-quality, large-scale schema linking
corpus. Experimenting with our designed Schema
Linking SQL (SLSQL) model, we demonstrate that
more accurate schema linking conclusively leads
to better text-to-SQL parsing performance. Impor-
tantly, given oracular schema references, a sim-
ple BERT model like SLSQL can achieve an im-
pressive performance. Our experiments show that
schema linking, often overlooked as simple pre-
processing, is actually a requisite for good SQL
parsing performance, providing an intriguing per-
spective for future improvements on this task. Our
study sheds light on the characteristics of text-to-
SQL parsing for future efforts including advanced
modeling, problem identification, dataset construc-
tion and model evaluation.

Acknowledgments

This research is supported by the National Re-
search Foundation, Singapore under its Interna-
tional Research Centres in Singapore Funding Ini-
tiative. Any opinions, findings and conclusions
or recommendations expressed in this material are
those of the author(s) and do not reflect the views
of National Research Foundation, Singapore. We
thank the anonymous reviewers for their precious
comments. We also thank Bo Pang and Tao Yu for
helping with the model evaluation.

6952

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019a.
Representing schema structure with graph neural
networks for text-to-SQL parsing. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4560–4565, Florence,
Italy. Association for Computational Linguistics.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019b.
Global reasoning over database structures for text-
to-SQL parsing. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3657–3662, Hong Kong, China. As-
sociation for Computational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,
and Dong Ryeol Shin. 2020. Ryansql: Recursively
applying sketch-based slot fillings for complex text-
to-sql in cross-domain databases. arXiv preprint
arXiv:2004.03125.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742, Melbourne, Australia. Association
for Computational Linguistics.

Zhen Dong, Shizhao Sun, Hongzhi Liu, Jian-Guang
Lou, and Dongmei Zhang. 2019. Data-anonymous

encoding for text-to-SQL generation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5404–5413, Hong
Kong, China. Association for Computational Lin-
guistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-SQL evaluation methodology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 351–360, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Xingyu Fu, Weijia Shi, Zian Zhao, Xiaodong Yu,
and Dan Roth. 2020. Design challenges for low-
resource cross-lingual entity linking. arXiv preprint
arXiv:2005.00692.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-SQL in cross-
domain database with intermediate representation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4524–4535, Florence, Italy. Association for Compu-
tational Linguistics.

Jonathan Herzig and Jonathan Berant. 2018. Decou-
pling structure and lexicon for zero-shot semantic
parsing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1619–1629, Brussels, Belgium. Association
for Computational Linguistics.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
arXiv preprint arXiv:1902.01069.

Amol Kelkar, Rohan Relan, Vaishali Bhardwaj,
Saurabh Vaichal, and Peter Relan. 2020. Bertrand-
dr: Improving text-to-sql using a discriminative re-
ranker. arXiv preprint arXiv:2002.00557.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Dongjun Lee. 2019. Clause-wise and recursive decod-
ing for complex and cross-domain text-to-SQL gen-
eration. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6044–6050, Hong Kong, China. Association for
Computational Linguistics.

Kevin Lin, Ben Bogin, Mark Neumann, Jonathan
Berant, and Matt Gardner. 2019. Grammar-
based neural text-to-sql generation. arXiv preprint
arXiv:1905.13326.

https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/D19-1378
https://doi.org/10.18653/v1/D19-1378
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/D19-1543
https://doi.org/10.18653/v1/D19-1543
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/D18-1190
https://doi.org/10.18653/v1/D18-1190
https://doi.org/10.18653/v1/D18-1190
https://doi.org/10.18653/v1/D19-1624
https://doi.org/10.18653/v1/D19-1624
https://doi.org/10.18653/v1/D19-1624

6953

Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee,
Kristina Toutanova, Jacob Devlin, and Honglak Lee.
2019. Zero-shot entity linking by reading entity de-
scriptions. arXiv preprint arXiv:1906.07348.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Elnaz Nouri and Ehsan Hosseini-Asl. 2018. Toward
scalable neural dialogue state tracking model. arXiv
preprint arXiv:1812.00899.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.

A. Rastogi, D. Hakkani-Tr, and L. Heck. 2017. Scal-
able multi-domain dialogue state tracking. In 2017
IEEE Automatic Speech Recognition and Under-
standing Workshop (ASRU), pages 561–568.

Liliang Ren, Kaige Xie, Lu Chen, and Kai Yu. 2018.
Towards universal dialogue state tracking. arXiv
preprint arXiv:1810.09587.

Shruti Rijhwani, Jiateng Xie, Graham Neubig, and
Jaime Carbonell. 2019. Zero-shot neural transfer
for cross-lingual entity linking. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6924–6931.

Yu Su and Xifeng Yan. 2017. Cross-domain seman-
tic parsing via paraphrasing. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1235–1246, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Yibo Sun, Duyu Tang, Nan Duan, Jianshu Ji, Gui-
hong Cao, Xiaocheng Feng, Bing Qin, Ting Liu, and
Ming Zhou. 2018. Semantic parsing with syntax-
and table-aware SQL generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 361–372, Melbourne, Australia. Association
for Computational Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for

text-to-SQL parsers. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7567–7578, Online. Association
for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2019. Zero-shot
entity linking with dense entity retrieval. arXiv
preprint arXiv:1911.03814.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Puyang Xu and Qi Hu. 2018. An end-to-end approach
for handling unknown slot values in dialogue state
tracking. arXiv preprint arXiv:1805.01555.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir Radev. 2018a. TypeSQL: Knowledge-
based type-aware neural text-to-SQL generation. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 588–594, New
Orleans, Louisiana. Association for Computational
Linguistics.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang,
Dongxu Wang, Zifan Li, and Dragomir Radev.
2018b. SyntaxSQLNet: Syntax tree networks for
complex and cross-domain text-to-SQL task. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1653–
1663, Brussels, Belgium. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018c. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In

https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.18653/v1/D17-1127
https://doi.org/10.18653/v1/D17-1127
https://doi.org/10.18653/v1/P18-1034
https://doi.org/10.18653/v1/P18-1034
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/N18-2093
https://doi.org/10.18653/v1/N18-2093
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

6954

Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911–3921, Brussels, Belgium. Association for
Computational Linguistics.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caim-
ing Xiong, Richard Socher, and Dragomir Radev.
2019. Editing-based SQL query generation for
cross-domain context-dependent questions. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5338–5349,
Hong Kong, China. Association for Computational
Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

A Model Details

A.1 Encoder Implementation
For each example, we concatenate all the col-
umn/table names, a special token [none] and the
natural language query, separated by [SEP], as
the input sequence to BERT. Here the special token
[none] is designed for the subsequent schema
reference resolution that we will introduce later.
For each column, we concatenate the column name
with its table name, separated by a dedicated sym-
bol [#], as its canonical string representation. If a
word is tokenized into multiple pieces by the BERT
tokenizer, the embedding of the first piece is taken
as the corresponding word embedding. Representa-
tions of columns and tables are computed through
a GRU (Cho et al., 2014) which takes as input their
word embeddings generated by BERT.

A.2 Decoder Implementation
The decoder of SLSQL is largely based on the work
of Zhang et al. (2019) and uses the attention mech-
anism (Bahdanau et al., 2014; Luong et al., 2015).
For ease of readability, we define the attention func-
tion attention(Q,K) as follows:

scorei = QWKi

α = softmax(score)

output =
∑
i

αiKi

(6)

where W is a learnable weight. At each decoding
step t, we generate the next hidden state ht+1 as
follows:

ht+1 = GRU
(
[kt; st; ct]

)
(7)

where kt is the embedding of the clause keyword at
step t, which can be select, from, where, etc.
We denote the embedding of the generated SQL
query token at step t as st. The context vector ct is
the concatenation the context of column/table and
the context of natural language question.

ct = [ccol/tbl
t ; cq

t] (8)

Here, the context of column/table ccol/tbl
t is obtained

as follows:

eq
i,j = [ei; qj ; fi]

ẽq
i = attention(kt−1, e

q
i)

ccol/tbl
t = attention(ht, ẽq)

(9)

where ei is the embedding of i-th column/table.
Here, fi is a feature vector that consists of binary
features such indicating whether i-th column/table
is a primary key or a foreign key column, etc. We
have the context of question as follows:

cq
t = attention(ht, q̃) (10)

where q̃ is the reference-aware question representa-
tion. At the decoding step t, the SQL query token
yt is predicted as follows.

scorecol/tbl
i = MLP

(
[ht; ẽq

i ; cq
t]
)

scorekw = MLP
(
[ht; cq

t]
)

P (yt) = softmax
(
[scorecol/tbl; scorekw]

) (11)

If yt is a clause keyword (e.g., select, from,
where, etc.), we set kt+1 as the embedding of yt.
Otherwise, it will remain as is. If yt is a column
in select, group by, or having clause, we
predict its aggregate functions as follows:

scoreagg = MLP
(
[ht; ẽq

i]
)
∈ R5

Pagg(j) = sigmoid
(
scoreagg

j

) (12)

where j is the index of the five aggregate functions.

A.3 Inference Constraints
During inference, syntax-based constraints are ap-
plied to prune the prediction space. For exam-
ple, having can never come before group by.
Since columns with aggregate functions are re-
duced into a single token in the target SQL se-
quence, we can determine the type of the next to-
ken before it is generated. For example, a column
comes after a select token or a comma (,). To
this end, a transition function constructed by scan-
ning over the dataset is used to further prune the
prediction space in Formula 11.

https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537

