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Abstract

In recent years, pre-trained Transformers have
dominated the majority of NLP benchmark
tasks. Many variants of pre-trained Trans-
formers have kept breaking out, and most fo-
cus on designing different pre-training objec-
tives or variants of self-attention. Embedding
the position information in the self-attention
mechanism is also an indispensable factor in
Transformers however is often discussed at
will. Therefore, this paper carries out an
empirical study on position embeddings of
mainstream pre-trained Transformers, which
mainly focuses on two questions: 1) Do po-
sition embeddings really learn the meaning of
positions? 2) How do these different learned
position embeddings affect Transformers for
NLP tasks? This paper focuses on providing
a new insight of pre-trained position embed-
dings through feature-level analysis and empir-
ical experiments on most of iconic NLP tasks.
It is believed that our experimental results can
guide the future work to choose the suitable
positional encoding function for specific tasks
given the application property.1

1 Introduction

Word ordering often determines the meaning of
a sentence; therefore how to utilize the position
information of a word sequence has been an impor-
tant topic in NLP and widely investigated recently.
A common approach for modeling word ordering
is to use recurrent neural networks (RNN), such
as long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) or gated recurrent unit
(GRU) (Chung et al., 2014), which use a hidden
state to represent the information of an ordered se-
quence and update model weights by backpropaga-
tion through time (BPTT) (Werbos, 1990); thus the

1The source code is available at: https://github.
com/MiuLab/PE-Study

ordering information can be modeled by this struc-
ture. However, RNN and BPTT are very inefficient
in modern GPU computation due to the difficulty of
parallelization with the time dependency. To solve
this problem, recent work, such as convolutional
seq2seq (Gehring et al., 2017) and Transformers
(Vaswani et al., 2017) which apply convolutional
neural network (CNN) (LeCun et al., 1995) and
self-attention respectively, succeed to eliminate the
time dependency to take the computational advan-
tage of GPU. Instead of storing the information of
ordered sequences, these models utilize the posi-
tion information by using a feature-level positional
encoding. For example, convolutional seq2seq pro-
posed learnable position embeddings to represent
the positions in a sequence.

Recently, various pre-trained Transformer lan-
guage models keep breaking state-of-the-art results
in numerous NLP tasks. There are many different
ways to pre-train a Transformer language model.
For example, using an encoder, decoder, or the
whole part of the Transformer, adapting the self-
attention masks, or training with different objec-
tives (Devlin et al., 2018; Liu et al., 2019; Radford
et al., 2018, 2019; Lewis et al., 2019; Raffel et al.,
2019; Yang et al., 2019). However, in terms of po-
sitional encoding, most work only used a learned
position embedding which is originally proposed
in convolutional seq2seq (Gehring et al., 2017)
without any analysis, even different objectives may
learn completely different position information.

Motivated by the above observations, our goal
is to investigate what position information the
pre-trained Transformers could learn under differ-
ent settings. We conduct a deep analysis of the
learned position embeddings among three iconic
pre-trained Transformer language models: BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019)
and GPT-2 (Radford et al., 2019). To examine the
performance of different NLP types, we conduct

https://github.com/MiuLab/PE-Study
https://github.com/MiuLab/PE-Study
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the experiments on text classification, language
modeling, and machine translation, and empirically
analyze and explain the meaning and influence of
position embeddings from different aspects.

The contributions of this paper are 3-fold:

• This paper is among the first study that pro-
vides a complete analysis about what learned
position embeddings capture in different pre-
trained models.

• This paper empirically examines the perfor-
mance of different position embeddings for
many NLP tasks.

• This paper connects the empirical perfor-
mance with the task property based on the
analysis, providing the guidance of the future
work for choosing the suitable positional en-
coding method in the target task.

2 Related Work

The concept of using position embedding on
position-insensitive models was first proposed by
convolutional seq2seq (Gehring et al., 2017), which
built an encoder-decoder architecture on convo-
lutional neural networks. Vaswani et al. (2017)
proposed Transformers that used the self-attention
mechanism in the basic blocks. Because the atten-
tion mechanism is position-insensitive, it proposed
a pre-defined sinusoidal function as positional en-
coding. Pre-trained language models became a
trend among many NLP tasks after (Peters et al.,
2018) introduced ELMo. Affected by ELMo, Ope-
nAI GPT (Radford et al., 2018) is the first pre-
trained language model using a Transformer archi-
tecture, then many different variant of pre-trained
Transformer including BERT (Devlin et al., 2018),
RoBERTa (Roberts, 2005) and GPT-2 (Radford
et al., 2019) started evolving the researches of NLP
tremendously. In Transformers, the attention val-
ues are the same in each input position. Thus, Shaw
et al. (2018) proposed a relative position represen-
tation in the attention level to address this issue.
Dai et al. (2019) used a segment-level recurrence
mechanism on Transformers and also utilized an
adaptive version of relative position embeddings
inspired by Shaw et al. (2018). Furthermore, Wang
et al. (2019) extended the embedding space from
real numbers to complex values , and also pro-
posed a new learnable positional encoding function
instead of a simple position embedding mapping.

3 Transformer

Transformer is an encoder-decoder sequence-to-
sequence model proposed by Vaswani et al. (2017).
In the architecture, Transformer is composed of
self-attention blocks that are position-insensitive
modules. Therefore, a positional embedding should
be considered together with the NLP tasks. To elab-
orate on the experiments we conduct, this section
briefly introduces Transformers.

Input Representation Due to the property of
position-insensitive in the attention module, the
input representations should also contain the posi-
tion information. In Transformers (Vaswani et al.,
2017), a word embedding is directly added with
the positional encoding as the final representation:

zi = WE(xi) + PE(i),

where xi is the token at the i-th position, WE is
the word embedding, and PE is the positional en-
coding, which can be either a learnable embedding
or a pre-defined function.

Multi-Head Self-Attention The attention mech-
anism is often used in an encoder-decoder architec-
ture, and there are many variants of attention im-
plementations (Bahdanau et al., 2014; Britz et al.,
2017). In Transformers, the scaled dot-product
attention is applied:

attention(Q,K, V ) = softmax(
QWKTW√

dk
)VW,

where W is a linear projection and Q, K, V repre-
sent query, key and value matrices respectively.

Transformer blocks are composed of multi-head
self-attention. Literally, the inputs Q, K, V are the
same and the attention is performed multiple times,
and then the output heads are concatenated as the
final output hidden state h. This process can be
formulated as

headi = attention(Q,K, V )

h = concat([head1, ..., headn])W.

Transformer Encoder A Transformer encoder
layer is composed of multi-head self-attention
following a position-wise feed-forward network
(FFN) with the residual connection (He et al., 2016)
and layer normalization (Ba et al., 2016):

output = layernorm(h+ FFN(h)),

and then stacked the layers sequentially to form a
Transformer encoder.
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Transformer Decoder The Transformer de-
coder is also stacked by self-attention blocks, and
it only has two major differences from the encoder:

1. Each Transformer decoder layer has an addi-
tional sub-layer to perform attention on the
encoder output.

2. To ensure the decoder can only decode tokens
depending on the tokens in the past, it uses an
attention mask to mask the attention values of
the subsequent tokens.

Therefore, the Transformer decoder can decode
tokens autoregressively like other conventional lan-
guage models such as RNN.

4 Position Embedding Analysis

In this section, we conduct feature-level analyses of
the pre-trained position embeddings of two Trans-
former encoders: BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019), one Transformer de-
coder: GPT-2 (Radford et al., 2019), and also the si-
nusoidal function proposed by Vaswani et al. (2017)
is defined as

PE(i,2j) = sin(i/100002j/dmodel),

PE(i,2j+1) = cos(i/100002j/dmodel),

where i is the position index and j is the dimension
index.

4.1 Do Embeddings Learn the Meaning of
Positions?

Given the position space P and the embedding
space X , the goal of the position embedding func-
tion is to learn a mapping f : P → X . In the
following experiments, we focus on answering two
questions for better understanding what the embed-
dings capture:

1. Can the learned embedding space X represent
the absolute positions of the words?

2. Are P and X isomorphic?

4.1.1 Absolute Position Regression
If a position embedding can actually capture its
absolute position, it should be easy to reconstruct
a reversed mapping function g : X → P . Thus,
we use linear regression to learn a function g that
transfers the embeddings to the original positions.
The feature dimension is 768, and the maximum

Type PE MAE

Learned
BERT 34.14
RoBERTa 6.06
GPT-2 1.03

Pre-Defined sinusoid 0.0

Table 1: Mean absolute error of the reversed mapping
function learned by linear regression.

Type PE Error Rate

Learned
BERT 19.72%
RoBERTa 7.23%
GPT-2 1.56%

Pre-Defined sinusoid 5.08%

Table 2: Error rate of the relative position regression.

position in GPT-2 is trimmed from 1024 to 512
for comparison which BERT and RoBERTa. Be-
cause we only have 512 data points for each learned
embedding, a 5-fold cross-validation is applied to
avoid overfitting. The reversed mapping functions
are evaluated by Mean Absolute Error (MAE),
and the result is shown in Table 1.

From the results, the reversed mapping function
of sinusoid can perfectly represent the absolute
positions, and GPT-2 only has a small error. In
contrast, the embeddings learned by Transformer
encoders do not learn the information about the
absolute positions, especially BERT which has an
extremely high mean absolute error.

Additionally, we have also tried some more com-
plicated non-linear models such as SVM or MLP
to map the embeddings back. However, they easily
overfit and the testing results are even worse than
linear models. This implies that the position infor-
mation in Transformer can actually be modeled by
a linear model.

4.1.2 Relative Position Regression
In addition to absolute positions, the relation be-
tween positions is also informative (relative posi-
tions). If P and X are isomorphic, there should
exist a bijection of distance operation between two
spaces. Thus we define a mapping function of dis-
tances from X to P : h(xi, xj) = ‖i− j‖, where
i, j are two position indices, ‖i − j‖ is the dis-
tance between i and j in the space P , and xk is
the position embedding at the k-th position. In
this scenario, we can also build a mapping func-
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Figure 1: Visualization of position-wise cosine similarity of different position embeddings. Lighter in the figures
denotes the higher similarity.

tion to check whether the embeddings can capture
the relation between positions. However, in our
preliminary experiments, we find that using linear
regression to predict the distance of positions is too
hard, since the relation between positions in the
space X may not be completely linear. Hence, we
simplify this problem to whether the embeddings
capture the order of every two positions:

h(xi, xj) =

{
1 if i ≥ j
0 if i < j

}
,

and then use logistic regression to learn this binary
classification problem.

The results in Table 2 show that the position em-
beddings of Transformer encoders still learn less in-
formation about their position relations, especially
for BERT. Moreover, the sinusoid function, which
can represent absolute positions perfectly, has a
higher error rate than GPT-2 in relative positions
but better than Transformer encoders, indicating
the surprising capability of capturing such relations
in GPT-2.

4.2 What do Transformer Encoders Capture
about Positions?

According to the previous analyses, Transformer
encoders (BERT and RoBERTa) may not well cap-
ture the meaning of positions (absolute and rela-
tive positions). Therefore, the interested question
becomes “what do Transformer encoders capture
about positions?”.

4.2.1 Position-Wise Cosine Similarity
Figure 1 shows the visualization of position-wise
cosine similarity of each position embedding. The
point at (i, j) indicates the similarity between the i-
th position and the j-th position. First, we observe
that the embedding space of sinusoid and GPT-2

Figure 2: Accumulated top eigenvalues of position em-
beddings.

have obvious periodic patterns along with position
orders, which aligns the findings in the section 4.1,
where these two embeddings can actually capture
the meanings of positions. With regard to BERT,
we can only observe that embedding vectors are
similar to the positions nearby but have no explain-
able patterns in long-term relations. Also, another
observation is that BERT position embeddings have
an obvious gap at the position 128, because the pre-
trained procedure of BERT trains on the sentences
with the length of 128 in the first stage, and then
extends to the length of 512 in the second stage.
The figure illustrates that the learned position in-
formation in the first stage can not be completely
generalized to the second stage. Last but not least,
the visualization of RoBERTa is similar to BERT,
but have some limited non-periodic visible patterns
at the positions nearby.

4.2.2 Informativeness of Position
Embeddings

In order to examine the informativeness of the
learned position embeddings, we apply singular
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value decomposition (SVD) on position embed-
dings and analyze their eigenvectors. Figure 2
shows the curves of accumulated top n eigenvalues
versus the proportion of total eigenvalues. Mathe-
matically, the summation of the top n eigenvalues
indicates how informative can a matrix be if the
matrix is transformed into a n-dim space. For a
position space P , which is a 1-dim space, we may
not need a high-dimension embedding space X to
represent the positions. Thus, the summation of the
top n eigenvalues in a position embedding should
account for the most proportion of total eigenval-
ues with only a very small n. However, in Figure
2, we find that the position embeddings of BERT
take a very large n to achieve a high proportion of
total eigenvalues, and RoBERTa also takes a larger
n than GPT-2 and sinusoid. This implies that the
position embeddings of Transformer encoders may
learn more complex information rather than only
about positions, and this rich information may only
be useful in Transformer encoders. This assump-
tion will be further investigated in the experiments.

4.3 What Make the Differences?
Thus far, it can be found that the learned position
embeddings between Transformer encoders and
decoders are completely different. In this section,
we will illustrate what makes these embeddings
different.

4.3.1 Pre-Training Objectives
One of the main reason for the difference is the
pre-training objectives. Pre-trained Transformer
encoders minimize the masked language modeling
loss, which can be formulated as

L(U) =
∑
i

logP (ui|u1, ...ui−1, ui+1, ...ul; θ),

where U = {u1, ...ul} is the pre-training corpus
with the length l, and θ is the model parameters.
For Transformer decoders, the objective is the tra-
ditional autoregressive language modeling loss:

L(U) =
∑
i

logP (ui|u1, ...ui−1; θ).

Transformer encoders can predict tokens depend-
ing on the tokens in both directions, while decoder
can only predict depending on the token in the past.
With enough context information, it is believed that
Transformer encoders can succeed to predict to-
kens by only performing attention on the tokens
nearby. That is why position embeddings learned

Figure 3: Visualized position-wise cosine similarity of
the simplified RoBERTa position embeddings.

by Transformer encoders do not need to involve
the precise position information, aligning with the
previous experiments in section 4.1.

We infer that encoder position embeddings may
capture the local position information, which can
force the output capturing the positions nearby, es-
pecially BERT almost involving nothing about ab-
solute positions. The inference makes the previous
observations in sections 4.2.2 and 4.2.1 sensible
and explainable, and we will verify this inference
through empirical experiments in section 5.

4.3.2 Differences Between BERT and
RoBERTa

Both BERT and RoBERTa use the same Trans-
former encoder architecture, but there are still
some obvious differences in the previous discus-
sion. Hence, we want to know what makes the
position embeddings of BERT and RoBERTa dif-
ferent. The main improvements from BERT to
RoBERTa are (Liu et al., 2019):

1. Sequentially increasing the batch size from
256 to 8192 during training.

2. Dynamically changing the token masks.

3. Eliminating the additional next sentence pre-
diction (NSP) loss.

Due to the limitation of computing resources for
experiments with a large batch size, we instead
train a simplified version of RoBERTa that remains
the 256 batch size and the shorter block length
for faster convergence. The visualized position-
wise cosine similarity of the simplified RoBERTa
position embeddings showing in Figure 3 is very
similar to BERT but without a gap at the position
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128. As a result, we infer that a large batch pre-
training can make the position embedding more
robust and involve more clear position information
in Transformer encoders.

5 Performance Effect

In addition to the behavior analysis, we are inter-
ested in the performance difference of positional
embeddings for different NLP tasks, where we con-
duct text classification (encoding), language model-
ing (decoding) and machine translation (encoding
and decoding). Note that each chosen task has its
own important property where position information
may cause different effects in Transformers.

5.1 Text Classification

Generally, for a text segment s = {x1, x2, ...xn}
containing n tokens, a Transformer for classifica-
tion can be formulated as

h0 = [z1, ..., zn] ,

hi = transformer block(hi−1),

P (y | s) = softmax(hln),

where zi is the representation for the token xi, y
is the output class and hi is the i-th layer output
hidden state in Transformers.

Conventionally, a special token, usually [eos]
or [CLS] would be appended to the end of input
tokens, so that the output hidden state can perform
attention on all other input tokens. In other words,
no matter an encoder or a decoder is applied, the
attention mask of the output hidden state and the
objective can be identical. Therefore, we conduct a
fair comparison with pre-trained position embed-
dings of both encoders and decoders in order to
check whether all settings achieve similar perfor-
mance.

Experimental Setup We experiment on six com-
mon text classification datasets: SST2, TREC,
SUBJ, CR, MR, and MPQA. Since the last four
datasets have no train/dev/test splits, we evaluate
them with 5-fold cross-validation. We use the same
model architecture as Wang et al. (2019), building a
1 layer Transformer encoder with 256 and 512 hid-
den size for self-attention and feed-forward respec-
tively and 8 attention heads. Then five settings of
the initialized position embeddings are performed:
random, BERT, RoBERTa, GPT-2, and sinusoid,
and other weights are initialized randomly.

Figure 4: Length versus accuracy in text classification.

Discussions Table 3 shows the results of text clas-
sification accuracy. BERT and RoBERTa position
embeddings perform much worse than GPT-2 and
sinusoid in most cases. Because the output hidden
state can utilize the information of all input tokens,
the importance of absolute positions is certainly
greater than local position information. However,
in TREC and MPQA, the difference between 5
settings is insignificant, and we notice that the aver-
age lengths of these two sets are much shorter than
others shown in the bottom of Table 3. Therefore,
the position information is not very important in
these tasks (TREC and MPQA), considering that
the local positions or even random initialization
can result in the performance as well as one with
absolute positions. The experiments imply that
even though text classification allows the model to
utilize all tokens when making the prediction, the
absolute positions, which GPT-2 can capture, may
be still salient for longer inputs.

Length Sensitivity To further analyze how the
position embeddings affect text classification with
different sentence lengths, we plot different ranges
of lengths versus accuracy in Figure 4. Here we
only calculate the average accuracy of SUBJ, SST,
and CR since the average lengths of TREC and
MPQA are too short. MR dataset is also excluded,
because we find the distribution of length and accu-
racy in MR is too different from other three datasets
and it may cause a huge bias in the figure. Note
that the results of MR roughly agrees with others.

In Figure 4, sinusoid and GPT-2 still have higher
accuracy with the length shorter than one standard
deviation of the whole dataset, but the difference
is very subtle. In contrast, there is a significant
gap between Transformer encoders and GPT-2 in
longer sentences. In terms of extremely long sen-
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PE Average ∆ SUBJ SST2 CR MR TREC MPQA

Random 0.7797 - 0.8638 0.7166 0.7313 0.7039 0.8520 0.8104

BERT 0.7868 (+0.0071) 0.8753 0.7221 0.7388 0.7142 0.8540 0.8125
RoBERTa 0.7886 (+0.0089) 0.8820 0.7353 0.7491 0.7266 0.8380 0.8004
GPT-2 0.7969 (+0.0172) 0.8845 0.7446 0.7581 0.7314 0.8540 0.8087
sinusoid 0.7983 (+0.0186) 0.8801 0.7474 0.7549 0.7369 0.8580 0.8125

Average Length 23 19 19 20 10† 3†

Table 3: Testing accuracy of text classification. † indicates the much shorter average length in TREC and MPQA,
so position embedding can not significantly affect the result.

LM PE Wikitext-2 Wikitext-103
Perplexity ∆ Perplexity ∆

MLM

BERT 147.93 - 12.45 -
+skip position 198.61 (+50.68) 323.12 (+310.67)

RoBERTa 157.98 - 12.61 -
+skip position 199.13 (+41.14) 14.44 (+1.83)

Autoregressive
GPT-2 172.97 - 25.83 -

+skip position 171.20 (−1.77) 25.74 (−0.09)

Table 4: Testing perplexity in Wikitext-2 and Wikitext-103.

tences (longer than one standard deviation), we can
only observe that BERT and random initialization
perform much worse than others. We consider that
the data distributions in this range have a too large
bias so the results may not be robust. Therefore, the
analysis provides a hint that GPT-2 may be better
to tackle the longer inputs for classification.

5.2 Language Modeling
In section 4.3.1, we have introduced the objectives
of the masked language model and autoregressive
language model for Transformer encoders and de-
coders respectively. Also, in the previous discus-
sions, it is believed that the masked language model
only learns the local position information to make
the output tokens capture the positions nearby. To
further verify this inference, we propose the skip
position attack on position embeddings.

Skip Position Attack We propose a skip position
attack that skips the position index of input tokens.
Originally, the input embedding can be represented
as

zi = WE(xi) + PE(i)

. However, in this attack, we multiply the input
position index by a constant k, then the input em-
bedding of token xi becomes

zi = WE(xi) + PE(i ∗ k).

If the embedding only learns the local position
information, skip position attack will skip the posi-
tion indices nearby and lose local information. On
the other hand, the absolute positions will not be in-
fluenced so much, because the order of the skipped
positions is still the same. Based on the design, we
conduct experiments to validate our inference.

Experimental Setup We conduct the experi-
ments on the Wikitext-2 and Wikitext-103 datasets,
which have 2 million and 103 million tokens
respectively. For model architecture, we take
BERT-Base for a masked language model and
GPT-2-Base as an autoregressive language
model, both models have 12 Transformer layers
and 768 hidden size. Similar to text classification,
all weights are randomly initialized except position
embeddings. The constant k in the skip position at-
tack is set to 4, and we slice the corpus into blocks
of 128 length to fit the maximum length of pre-
trained position embeddings, which is 512.

Discussions Table 4 shows the results. On av-
erage, the masked language models (BERT and
RoBERTa) have slightly lower perplexity than the
autoregressive language model (GPT-2) due to their
bidirectional token dependency. However, the skip
position attack significantly harms the performance
of the masked language models, while it affects
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nothing on the autoregressive language model.
Another observation is that, in Wikitext-2, the

distribution of position information is not robust
enough so the difference between position embed-
dings of BERT and RoBERTa is not significant.
However, in the larger dataset: Wikitext-103, skip
position attack leads BERT position embeddings
to extremely awful performance. The observation
here is consistent with the inferences mentioned
in section 4, and we can conclude that position
embeddings of Transformer encoders focus on cap-
turing the information nearby, especially BERT,
which involves even less position information than
RoBERTa.

5.3 Machine Translation
Neural machine translation is often trained by
a sequence-to-sequence model (Sutskever et al.,
2014), which includes both encoder and decoder
in the model. Thus, there are two position embed-
dings in a Transformer for machine translation, and
the position embeddings in the encoder and in the
decoder may cause different effects in this task.

Experimental Setup We experiment on the
Multi30k English-German dataset from WMT2016
shared tasks. The properties of the dataset are
shown in Table 5. We use the scripts implemented
by Fairseq (Ott et al., 2019) for a faster training pro-
cess. The encoder and decoder have both 6 layers
where each layer has 4 heads, 512, and 1024 hid-
den size for attention head and feed-forward respec-
tively. Also, byte-pair encoding (BPE) (Sennrich
et al., 2015; Gage, 1994) is applied to the corpus
and the vocabulary size is reduced to 10, 000.

Train Valid Test

Sentence Pairs 29, 000 1, 015 1, 000
Average Length 12 12 12

Table 5: Statistics of Multi30k dataset.

To respectively investigate the effectiveness on
the encoder and the decoder, there are total four dif-
ferent initialization settings of pre-trained position
embeddings:

1. Position embeddings only for the encoder
2. Position embeddings only for the decoder
3. Different types of position embeddings for the

encoder and decoder
4. Same position embeddings for both encoder

and decoder

PE BLEU

Encoder Decoder Full Set Length
> 2σ

Random Random 32.19 18.04

BERT - 35.54 22.98
GPT-2 - 34.36 22.05

- BERT 32.08 17.77
- GPT-2 32.81 18.05

BERT GPT-2 34.11 21.29
GPT-2 BERT 32.80 21.96

BERT BERT 35.94 23.60
RoBERTa RoBERTa 35.47 24.50
GPT-2 GPT-2 35.80 25.12

Table 6: BLEU scores on full set and long sentences
(> 2σ) of Multi30k translation data. The hyphen (-) in
the table means the same as the baseline (random).

For the first three settings, only BERT and GPT-2
are performed for conciseness.

The results are shown in Table 6, where we eval-
uate the BLEU scores on the sentences longer than
2 standard deviation (for both source and target) to
analyze the effectiveness of longer sentences with
consideration that the average length of Multi30k
is relatively short.

Encoder Both BERT and GPT-2 position embed-
ding can be effective in the encoder, especially
BERT. The reason is that the decoded tokens can
perform attention on all encoder outputs, thus the
objective would be similar to the masked language
modeling.

Decoder The effectiveness of position embed-
dings in the decoder is not as significant as one in
the encoder, because the decoder cannot capture
the order of the source language. We also observe
that applying BERT position embeddings on the
decoder even slightly harms the performance, since
it may make the decoder tend to focus on the tokens
nearby only.

Different for Encoder/Decoder According to
the previous results, we hypothesize that using
BERT in the encoder and GPT-2 in the decoder
could perform best. However, in our experiments,
using different pre-trained position embeddings is
even worse, probably because the divergence of
position embeddings trained by different models
is quite huge and mixing them in the same model
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may not suitable. Also, we swap the position em-
beddings in the encoder and decoder to see the
impact. The BLEU score of the full set drops a lot,
but in terms of long sentences, using GPT-2 in the
encoder may not lose too much performance.

Same for Encoder/Decoder The results show
that the performance between three pre-trained po-
sition embeddings are very close in the full set.
However, in terms of longer sentences, GPT-2 is
much better than BERT and RoBERTa. This obser-
vation aligns well with the previous analysis that
the absolute position information is more important
for longer sentences.

To sum up, there main observations are found:
1) The effectiveness of position embeddings in the
encoder is more significant than one in the decoder.
2) Mixing different position embeddings in a model
is not suitable. 3) GPT-2 position embeddings out-
perform others when modeling longer sentences.

6 Conclusion

This paper investigates the implicit meaning of pre-
trained Transformer position embeddings. Trans-
former encoders learn the local position informa-
tion that can only be effective in masked language
modeling. On the other hand, the Transformer
decoders for autoregressive language modeling ac-
tually learn about absolute positions. The empiri-
cal experiments on the pre-trained position embed-
dings validate our hypothesis. We also show that
different NLP tasks with different model architec-
tures and different training objectives may utilize
the position information in different ways. As a re-
sult, it is believed that this study will benefit future
work about choosing suitable positional encoding
functions or designing other modeling methods for
position information in the target NLP tasks based
on their properties.
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A Reproducibility

A.1 Datasets
The datasets we used can be downloaded from the
following linked pages, and the details of datasets
are also described in the pages.

• Text Classification: link

• Language Modeling: link

• Machine Translation: link

A.2 Training Details

Text Classification

tokenizer spacy
optimizer Adam

lr 1−4

batch size 32
max epoch 40

Language Modeling

Wikitext02 Wikitext-103

lr - 2.5−4

batch size 32 32
max epoch 20 3
warup steps - 4000

Machine Translation

optimizer Adam
weight decay 0.0001

lr 1−4

max tokens 2048
max epoch 40
lr scheduler inverse sqrt
warup steps 4000
label smooth 0.1

Since the goal of this paper is to compare po-
sition embedding, we do not try too many hyper-
parameters on Transformers, and most setting are
default as the implementation of hugginface and
Fairseq.

A.3 Running Time
All our experiments are trained on 1 GTX 2080
TI GPU. Except language modeling on Wikitext-
103 takes about 10 hours, all other trainings can be
done within 2 hours.
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https://github.com/huggingface/transformers/tree/master/examples/language-modeling
https://github.com/pytorch/fairseq

