
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 6813–6828,
November 16–20, 2020. c©2020 Association for Computational Linguistics

6813

Pretrained Language Model Embryology: The Birth of ALBERT

Cheng-Han Chiang
National Taiwan University,

Taiwan
dcml0714@gmail.com

Sung-Feng Huang
National Taiwan University,

Taiwan
f06942045@ntu.edu.tw

Hung-yi Lee
National Taiwan University,

Taiwan
hungyilee@ntu.edu.tw

Abstract

While behaviors of pretrained language mod-
els (LMs) have been thoroughly examined,
what happened during pretraining is rarely
studied. We thus investigate the developmen-
tal process from a set of randomly initialized
parameters to a totipotent1 language model,
which we refer to as the embryology of a pre-
trained language model. Our results show
that ALBERT learns to reconstruct and pre-
dict tokens of different parts of speech (POS)
in different learning speeds during pretrain-
ing. We also find that linguistic knowledge and
world knowledge do not generally improve
as pretraining proceeds, nor do downstream
tasks’ performance. These findings suggest
that knowledge of a pretrained model varies
during pretraining, and having more pretrain
steps does not necessarily provide a model
with more comprehensive knowledge. We pro-
vide source codes and pretrained models to
reproduce our results at https://github.

com/d223302/albert-embryology.

1 Introduction

The world of NLP has gone through some tremen-
dous revolution since the proposal of contextual-
ized word embeddings. Some big names are ELMo
(Peters et al., 2018), GPT (Radford et al.), and
BERT (Devlin et al., 2019), along with its vari-
ants (Sanh et al., 2019; Liu et al., 2019b; Lan et al.,
2019). Performance boosts on miscellaneous down-
stream tasks have been reported by finetuning these
totipotent pretrained language models. With a view
to better grasping what has been learned by these
contextualized word embedding models, probing is
generally applied to the pretrained models and the

1According to Wikipedia, totipotency is the ability of a
single cell to divide and produce all of the differentiated cells
in an organism. We use its adjective form here to refer to
the ability of a pretrained model which can be finetuned for a
variety of downstream tasks.

models finetuned from them. Probing targets can
range from linguistic knowledge, including seman-
tic roles and syntactic structures (Liu et al., 2019a;
Tenney et al., 2019, 2018; Hewitt and Manning,
2019), to world knowledge (Petroni et al., 2019).

While the previous work focuses on what
knowledge has been learned after pretraining of
transformer-based language models, few delve into
their dynamics during pretraining. What happened
during the training process of a deep neural net-
work model has been widely studied, including
Gur-Ari et al. (2018), Frankle et al. (2019), Raghu
et al. (2017), Morcos et al. (2018). Some previ-
ous works also study the dynamics of the training
process of an LSTM language model (Saphra and
Lopez, 2018, 2019), but the training dynamics of
a large scale pretrained language models are not
well-studied. In this work, we probe ALBERT
(Lan et al., 2019) during its pretraining phase every
N parameter update steps and study what it has
learned and what it can achieve so far. We perform
a series of experiments, detailed in the following
sections, to investigate the development of predict-
ing and reconstructing tokens (Section 3), how lin-
guistic and world knowledge evolve through time
(Section 4, Section 6), and whether amassing those
information serves as an assurance of good down-
stream task performances (Section 5).

We have the following findings based on AL-
BERT:

• The prediction and reconstruction of tokens
with different POS tags have different learning
speeds. (Section 3)

• Semantic and syntactic knowledge is devel-
oped simultaneously in ALBERT. (Section 4)

• Finetuning from model pretrained for 250k
steps gives a decent GLUE score (80.23), and

https://github.com/d223302/albert-embryology
https://github.com/d223302/albert-embryology

6814

further pretrain steps only make the GLUE
score rise as high as 81.50.

• While ALBERT does generally gain more
world knowledge as pretraining goes on, the
model seems to be dynamically renewing its
knowledge about the world. (Section 6)

While we only include the detailed results of
ALBERT in the main text, we find that the results
also generalize to the other two transformer-based
language models, ELECTRA (Clark et al., 2019)
and BERT, which are quite different from ALBERT
in the sense of pretext task and model architecture.
We put the detailed results of ELECTRA and BERT
in the appendix.

2 Pretraining ALBERT

ALBERT is a variant of BERT with cross-layer
parameters sharing and factorized embedding pa-
rameterization. The reason why we initially chose
ALBERT as our subject lies in its parameter effi-
ciency, which becomes a significant issue when we
need to store 1000 checkpoints during the pretrain-
ing process.

To investigate what happened during the pre-
training process of ALBERT, we pretrained an
ALBERT-base model ourselves. To maximally re-
produce the results in Lan et al. (2019), we follow
most of the training hyperparameters in the original
work, only modifying some hyperparameters to fit
in our limited computation resources2. We also fol-
low Lan et al. (2019), using English Wikipedia as
our pretraining data, and we use the Project Gutten-
berg Dataset (Lahiri, 2014) instead of BookCorpus.
The total size of the corpus used in pretraining is
16GB. The pretraining was done on a single Cloud
TPU V3 and took eight days to finish 1M pretrain
steps, costing around 700 USD. More details on
pretraining are specified in appendix B.1.

3 Learning to Predict the Masked Tokens
and Reconstruct the Input Tokens

During the pretraining stage of a masked LM
(MLM), it learns to predict masked tokens based
on the remaining unmasked part of the sentence,
and it also learns to reconstruct token identities of
unmasked tokens from their output representations
of the model. Better prediction and reconstruction

2We use the official implementation of ALBERT
at https://github.com/google-research/
albert.

0 5 k 10 k 15 k 20 k 25 k 30 k
pretrain step

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

 (r
es

ca
le

d)

conj.
det.
prep.
adj.
noun
proper noun
pron.
adv.
verb

(a) Token reconstruction

0 25 k 50 k 75 k 100 k
pretrain step

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

 (r
es

ca
le

d)

(b) Mask prediction

Figure 1: Rescaled accuracy of token reconstruction
and mask prediction during pretraining. We rescale the
accuracy of each line by the accuracy when the model
is fully pretrained, i.e., the accuracy after pretraining
1M steps. Token reconstruction are evaluated every 1K
pretrain steps, and mask prediction evaluated every 5K
steps.

results indicate the model being able to utilize con-
textual information. To maximally reconstruct the
input tokens, the output representations must keep
sufficient information regarding token identities.

We investigate the behavior of mask prediction
and token reconstruction for tokens of different
POS during the early stage of pretraining. We use
the POS tagging in OntoNotes 5.0 (Weischedel
et al., 2013) in this experiment. For the mask pre-
diction part, we mask a whole word (which may
contain multiple tokens) of an input sentence, feed
the masked sentence into ALBERT, and predict the
masked token(s). We evaluate the prediction per-
formance by calculating the prediction’s accuracy
based on POS of the word; the predicted token(s)
should exactly match the original token(s) to be
deemed an accurate prediction. As for the token
reconstruction part, the input to the model is simply

https://github.com/google-research/albert
https://github.com/google-research/albert

6815

0 200 k 400 k 600 k 800 k 1 M
Pretrain steps

0

2

4

6

8

10

Lo
ss

Loss
pretrain loss

(a) Total loss during pretraining

0 200 k 400 k 600 k 800 k 1 M
Pretrain steps

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
Re

su
lt

Evaluation result
MLM
SRL
POS

Const
Coref

(b) Masked LM accuracy and F1 scores of different
probing tasks over the course of pretraining

Figure 2: The probing results of hidden representation
from layer 8; all four tasks are evaluated with test set
of OntoNotes 5.0 and F1 scores are reported. MLM
accuracy is also shown. We smoothed the lines by av-
eraging 3 consecutive data points for better illustration.
The unsmoothed result is in Appendix D.3.

the original sentence.

The results of reconstruction are shown in Fig-
ure 1(a). ALBERT first learns to reconstruct func-
tion words, e.g., determiners, prepositions, and
then gradually learns to reconstruct content words
in the order of verb, adverb, adjective, noun, and
proper noun. We also found that different forms
and tenses of a verb do not share the same learning
schedule, with third-person singular present be-
ing the easiest to reconstruct and present participle
being the hardest (shown in Appendix C.2). The
prediction results in Figure 1(b) reveal that learning
mask prediction is generally more challenging than
token reconstruction. ALBERT learns to predict
masked tokens with an order similar to token recon-
struction, though much slower and less accurate.
We find that BERT also learns to perform mask
prediction and token reconstruction in a similar
fashion, with the results provided in Appendix C.4.

4 Probing Linguistic Knowledge
Development During Pretraining

Probing is widely used to understand what kind
of information is encoded in embeddings of a lan-
guage model. In short, probing experiments train
a task-specific classifier to examine if token em-
beddings contain the knowledge required for the
probing task. Different language models may give
different results on different probing tasks, and rep-
resentations from different layers of a language
model may also contain different linguistic infor-
mation (Liu et al., 2019a; Tenney et al., 2018).

Our probing experiments are modified from the
“edge probing” framework in Tenney et al. (2018).
Hewitt and Liang (2019) previously showed that
probing models should be selective, so we use lin-
ear classifiers for probing. We select four prob-
ing tasks for our experiments: part of speech
(POS) tagging, constituent (const) tagging, corefer-
ence (coref) resolution, and semantic role labeling
(SRL). The former two tasks probe syntactic knowl-
edge hidden in token embeddings, and the last two
tasks are designed to inspect the semantic knowl-
edge provided by token embeddings. We use an-
notations provided in OntoNotes 5.0 (Weischedel
et al., 2013) in our experiments.

The probing results are shown in Figure 2b. We
observe that all four tasks show similar trends dur-
ing pretraining, indicating that semantic knowledge
and syntactic knowledge are developed simulta-
neously during pretraining. For syntactically re-
lated tasks, the performance of both POS tagging
and constituent tagging boost very fast in the first
100k pretrain steps, and no further improvement
can be seen throughout the remaining pretraining
process, while performance fluctuates from time to
time. We also observe an interesting phenomenon:
the probed performances of SRL peak at around
150k steps and slightly decay over the remaining
pretraining process, suggesting that some informa-
tion in particular layers related to probing has been
dwindling while the ALBERT model strives to ad-
vance its performance on the pretraining objective.
The loss of the pretraining objective is also shown
in Figure 2a.

Scrutinizing the probing results of different lay-
ers (Figure 3 and Appendix D.3), we find that the
behaviors among different layers are slightly dif-
ferent. While the layers closer to output layer per-
form worse than layers closer to input layer at the
beginning of pretraining, their performances rise

6816

0 100 k 200 k 300 k 400 k 500 k
Pretrain steps

0.6

0.7

0.8

0.9

1.0
F1

 sc
or

e

layer 1
layer 12

layer 2
layer 8

Figure 3: The probing results of POS during pretrain-
ing. Layers are indexed from the input layer to the out-
put layer.

0 30k 60k 210k 500k

Figure 4: Attention patterns of head 11 across layer 1
(first row), 2 (second row), and 8 (third row) during pre-
training. Pretrain steps labeled atop the attention map.
We averaged the attention maps of different input sen-
tences to get the attention pattern of a single head.

drastically and eventually surpass the top few lay-
ers; however, they start to decay after they reach
best performances. This implies the last few layers
of ALBERT learn faster than the top few layers.
This phenomenon is also revealed by observing
the attention patterns across different layers dur-
ing pretraining. Figure 4 shows that the diagonal
attention pattern (Kovaleva et al., 2019) of layer
8 emerges earlier than layer 2, with the pattern of
layer 1 looms the last3.

5 Does Expensive and Lengthy
Pretraining Guarantee Exceptional
Results on Downstream Tasks?

While Devlin et al. (2019) and Lan et al. (2019)
have shown that more pretrain steps lead to better

3GIF files are provided in this website: https://
albertembryo.wordpress.com/

4GLUE score of albert-base-v1 and bert-base are obtained
by finetuning ALBERT and BERT models from Hugging-
Face(Wolf et al., 2019)

0 200 k 400 k 600 k 800 k 1 M
Pretrain steps

60

65

70

75

80

85

Ev
al

ua
tio

n
re

su
lt

pretrain process
albert-base-v1
bert-base

(a) GLUE scores over pretraining. GLUE scores of albert-
base-v1 and bert-base are also shown by horizontal lines.4.

0 200 k 400 k 600 k 800 k 1 M
Pretrain steps

20

30

40

50

60

70

80

90

Ev
al

ua
tio

n
re

su
lt

MNLI
MRPC
STS-B

SST-2
CoLA
QNLI

QQP
RTE

(b) Performance of individual tasks in GLUE benchmark. Best
result during pretraining marked with ‘x’. Performances of
albert-base-v1 and bert-base-uncased are marked with ‘+’ and
square respectively.

Figure 5: Downtream evaluation of ALBERT on de-
velopment set every 50k pretrain steps. GLUE score
is averaged among all tasks except WNLI. Evaluation
metrics: MRPC and QQP: F1, STS-B: Spearman corr.,
others: accuracy. The result of MNLI is the average of
matched and mismatched.

GLUE scores, whether the performance gain of
downstream tasks is proportional to the resources
spent on additional pretrain steps is unknown. This
drives us to explore the downstream performance
of the ALBERT model before fully pretrained. We
choose GLUE benchmark (Wang et al., 2018) for
downstream evaluation, while excluding WNLI,
following Devlin et al. (2019).

We illustrate our results of the downstream per-
formance of the ALBERT model during pretraining
in Figure 5. While the GLUE score gradually in-
creases as pretraining proceeds, the performance
after 250k does not pale in comparison with a fully
pretrained model (80.23 v.s. 81.50). From Fig-
ure 5b, we also observe that most GLUE tasks
reach comparable results with their fully pretrained
counterpart over 250k pretrain steps, except for

https://albertembryo.wordpress.com/
https://albertembryo.wordpress.com/

6817

MNLI and QNLI, indicating NLI tasks do benefit
from more pretrain steps when the training set is
large.

We also finetuned BERT and ELECTRA models
as pretraining proceeds, and we observe similar
trends. The GLUE scores of the BERT and ELEC-
TRA model rise drastically in the first 100k pre-
train steps, and then the performance increments
less slowly afterward. We put the detailed result of
these two models in Section E.4.

We conclude that it may not be necessary to
train an ALBERT model until its pretraining loss
converges to obtain exceptional downstream per-
formance. The majority of its capability for down-
stream tasks has already been learned in the early
stage of pretraining. Note that our results do not
contradict previous findings in Devlin et al. (2019),
Liu et al. (2019b), and Clark et al. (2019), all of
which showing that downstream tasks do benefit
from more pretrain steps; we show that the perfor-
mance gain on downstream tasks in latter pretrain
steps might be disproportional to the cost on more
pretrain steps.

6 World Knowledge Development
During Pretraining

Petroni et al. (2019) has reported that language
models contain world knowledge. To examine the
development of world knowledge of a pretrained
language model, we conduct the same experiment
as in Petroni et al. (2019). We use a subset of
T-REx (Elsahar et al., 2018) from the dataset pro-
vided by Petroni et al. (2019) to evaluate AL-
BERT’s world knowledge development.

The results are shown in Figure 6, in which we
observe that world knowledge is indeed built up
during pretraining, while performance fluctuates
occasionally. From Figure 6, it is clear that while
some types of knowledge stay static during pre-
training, some vary drastically over time, and the
result of a fully pretrained model (at 1M steps) may
not contain the most amount of world knowledge.
We infer that world knowledge of a model depends
on the corpus it has seen recently, and it tends to
forget some knowledge that it has seen long ago.
These results imply that it may not be sufficient
to draw a conclusion on ALBERT’s potential as
a knowledge base merely based on the final pre-
trained one’s behavior. We also provide qualitative
results in Appendix F.2.

0 200 k 400 k 600 k 800 k 1 M
Pretrain steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

P140
P103

P176
P138

P407
P159

P1376

Figure 6: World knowledge development during pre-
training evaluated every 50k pretrain steps. Types of
relation, and template are shown in Table 1

Type Query template
P140 [X] is affiliated with the [Y] religion .
P103 The native language of [X] is [Y] .
P176 [X] is produced by [Y] .
P138 [X] is named after [Y] .
P407 [X] was written in [Y] .
P159 The headquarter of [X] is in [Y] .
P1376 [X] is the capital of [Y] .

Table 1: Relations in Figure 6. We fill in [X] with the
subject, [Y] with [MASK] and ask model to predict Y.

7 Conclusion

Although finetuning from pretrained language mod-
els puts in phenomenal downstream performance,
the reason is not fully uncovered. This work aims
to unveil the mystery of the pretrained language
model by looking into how it evolves. Our find-
ings show that the learning speeds for reconstruct-
ing and predicting tokens differ across POS. We
find that the model acquires semantic and syntac-
tic knowledge simultaneously at the early pretrain-
ing stage. We show that the model is already pre-
pared for finetuning on downstream tasks at its
early pretraining stage. Our results also reveal that
the model’s world knowledge does not stay static
even when pretraining loss converges. We hope our
work can bring more insights into what makes a
pretrained language model a pretrained language
model.

Acknowledgements

We thank all the reviewers’ valuable suggestions
and efforts towards improving our manuscript. This
work was supported by Delta Electronics, Inc.

6818

References
Kevin Clark, Minh-Thang Luong, Quoc V Le, and

Christopher D Manning. 2019. Electra: Pre-training
text encoders as discriminators rather than genera-
tors. In International Conference on Learning Rep-
resentations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT (1).

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci,
Christophe Gravier, Jonathon Hare, Frederique
Laforest, and Elena Simperl. 2018. T-rex: A large
scale alignment of natural language with knowledge
base triples. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2018).

Jonathan Frankle, David J Schwab, and Ari S Morcos.
2019. The early phase of neural network training.
In International Conference on Learning Represen-
tations.

Aaron Gokaslan and Vanya Cohen. 2019. Openweb-
text corpus. http://Skylion007.github.io/
OpenWebTextCorpus.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. 2018.
Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733–2743.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4365–4374, Hong Kong, China. Association for
Computational Linguistics.

Shibamouli Lahiri. 2014. Complexity of Word Collo-
cation Networks: A Preliminary Structural Analy-
sis. In Proceedings of the Student Research Work-
shop at the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 96–105, Gothenburg, Sweden. Association for
Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ari Morcos, Maithra Raghu, and Samy Bengio. 2018.
Insights on representational similarity in neural net-
works with canonical correlation. In Advances
in Neural Information Processing Systems, pages
5727–5736.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language mod-
els are unsupervised multitask learners.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and
Jascha Sohl-Dickstein. 2017. Svcca: Singular vec-
tor canonical correlation analysis for deep learning
dynamics and interpretability. In Advances in Neu-
ral Information Processing Systems, pages 6076–
6085.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Naomi Saphra and Adam Lopez. 2018. Language
models learn pos first. In Proceedings of the 2018

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D19-1445
http://www.aclweb.org/anthology/E14-3011
http://www.aclweb.org/anthology/E14-3011
http://www.aclweb.org/anthology/E14-3011

6819

EMNLP Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP, pages 328–
330.

Naomi Saphra and Adam Lopez. 2019. Understanding
learning dynamics of language models with svcca.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3257–
3267.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R Bowman, Dipan-
jan Das, et al. 2018. What do you learn from con-
text? probing for sentence structure in contextual-
ized word representations. In International Confer-
ence on Learning Representations.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. Ontonotes release 5.0
ldc2013t19. Linguistic Data Consortium, Philadel-
phia, PA, 23.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

6820

A Modifications from the Reviewed
Version

We made some modifications in the camera-ready
version, mostly based on the reviewers’ recommen-
dations and for better reproducibility.

• We add the result of BERT and ELECTRA in
Section 3, Section 4, and Section 5.

• We reimplement the source code for Section 4
and renew the experiment results accordingly.
While the exact values are slightly different,
the general trends are the same and do not
affect our observation.

• We add the results of coreference resolution
in our probing experiments, following the re-
viewers’ suggestion.

• We polish our wordings and presentations in
text and figures.

B Pretraining

B.1 ALBERT
As mentioned in the main text, we only
modified a few hyperparameters to fit in out
limited computation resources, listed in Ta-
ble 2. The Wikipedia corpus used in our
pretraining can be download from https:

//dumps.wikimedia.org/enwiki/latest/

enwiki-latest-pages-articles.xml.bz2,
and the Gutenburg dataset can be download
from https://web.eecs.umich.edu/˜lahiri/

gutenberg_dataset.html. The number of
parameters in our ALBERT model is 12M.

Batch size 512
Learning rate 6.222539674E-4

Total steps 1M
Warmup steps 25k

Table 2: Pretraining hyperparemeters for ALBERT.

B.2 BERT
We use the same dataset as we trained AL-
BERT to pretrain BERT. We pretrained a BERT-
base-uncased model using the official imple-
mentation of BERT at https://github.com/

google-research/bert, and we follow all hyper-
parameters of the original implementation. Note
that the Devlin et al. (2019) mentioned they trained
BERT with a maximum sequence length of 128 for

the first 900K steps, and then trained the model
with a maximum sequence length 512 for the rest
100K steps; we follow this training procedure. The
number of parameters in our BERT model is 110M.

B.3 ELECTRA

We use OpenWebTextCorpus (Gokaslan and Co-
hen, 2019) from https://skylion007.github.

io/OpenWebTextCorpus/ to pretrain an Electra-
base model. We pretrained this model using the
official implementation of ELECTRA at https:
//github.com/google-research/electra, and
we follow all hyperparameters of the original im-
plementation. The number of parameters in our
ELECTRA model used for finetuning (the discrim-
inator part) is 110M.

C Mask Predict and Token
Reconstruction

C.1 Dataset

As mentioned in Section 3, we use the POS an-
notations in OntoNotes 5.0, and we only use the
CoNLL-2012 test set for our experiments. While
there are 48 POS labels, we only report the mask
prediction and token reconstruction of a much
smaller subset—those we are more familiar with.
The statistics of these POS are in Table 3.

POS Count
Conjunction 5109
Determiner 14763
Preposition 18059
Adjective 9710
Adverb 7992

Verb (all forms) 21405
Noun 29544

Proper noun 13144

Table 3: Statistics of POS used in experiments.
Verb form Count
Base form 5865
Past tense 5398

Gerund or present participle 2821
Past participle 3388

3rd person singular present 3933

Table 4: Statistics of different verb forms used in exper-
iments.

https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
https://web.eecs.umich.edu/~lahiri/gutenberg_dataset.html
https://web.eecs.umich.edu/~lahiri/gutenberg_dataset.html
https://github.com/google-research/bert
https://github.com/google-research/bert
https://skylion007.github.io/OpenWebTextCorpus/
https://skylion007.github.io/OpenWebTextCorpus/
https://github.com/google-research/electra
https://github.com/google-research/electra

6821

C.2 Mask Predict and Token Reconstruction
of Different Verb Forms

We provide supplementary materials for Section 3.
In Figure 7, we observe that ALBERT learns to
reconstruct and predict verb of different forms at
different times. The average occurrence rate of verb
in different form from high to low is V-es, V-ed,
V, V-en, V-ing, which coincides with the priority
being leaned.

0 5 k 10 k 15 k 20 k 25 k 30 k
pretrain step

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

 (r
es

ca
le

d)

V
V-ed
V-ing
V-en
V-es

(a) Token reconstruction.

0 25 k 50 k 75 k 100 k 125 k
pretrain step

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

 (r
es

ca
le

d)

(b) Mask prediction.

Figure 7: Token reconstruction (7a) and mask predic-
tion (7b) accuracy. We also rescale the accuracy as in
Figure 1.

C.3 How Does Occurrence Frequency Affect
Learning Speed of A Word?

In the main text, we observe that words of different
POS are learned at different times of pretraining.
We also pointed out that the learning speed of dif-
ferent POS roughly corresponds to their occurrence
rate. However, it is not clear to what extent a word’s
occurrence frequency affects how soon it can be
learned to reconstruct or mask-predict by the model.
We provide a deeper analysis of the relationship
between the learning speed of a word and its occur-

0 50 k 100 k 150 k 200 k 250 k
Pretrain steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (r
es

ca
le

d)

50~99
300~349
550~599
800~849

1050~1099
1300~1349
1550~1599
1800~1849

Figure 8: Rescaled mask prediction accuracy for dif-
ferent frequency. 50∼99 means the top 50 to top 99
occurring tokens

rence rate in Figure 8. We observe from Figure 8
that the top 50 to 99 occurring tokens are indeed
learned faster than other words which occur lesser.
However, as for the top 300 to 349 occurring tokens
and the top 1550 to 1599 occurring tokens, it is un-
clear which ones are learned earlier. We can infer
from Figure 8 and Figure 1b that the occurring rate
and POS of a word both contribute to how soon the
model can learn it to some extent.

C.4 Mask Predict and Token Reconstruction
of BERT

We provide the results of BERT’s token reconstruc-
tion and mask prediction in Figure 9. We observe
content words are learned later than function words,
while the learning speed is faster than ALBERT. To
be more specific, we say a word type A is learned
faster than another word type B if either the learn-
ing curve of A rises earlier than B from 0, or if the
rescaled learning curve of A is steeper than that of
B.

D Probing Experiments

D.1 Probing Model Details
As mentioned in the main text, we modified and
reimplemented the edge probing (Tenney et al.,
2018) models in our experiments. The modifica-
tions are detailed as follow:

• We remove the projection layer that projects
representation output from the language
model to the probing model’s input dimen-
sion.

• We use average pooling to obtain span repre-
sentation, instead of self-attention pooling.

6822

Task |L| Examples Tokens Total Targets
POS 48 116K / 16K / 12K 2.2M / 305K / 230K 2.1M / 290K / 212K

Constituent 30 116K / 16K / 12K 2.2M / 305K / 230K 1.9M / 255K / 191K
SRL 66 253K / 35K / 24K 6.6M / 934K / 640K 599K / 83K / 56K

Table 5: Statistics of the number of labels, examples, tokens and targets (split by train/dev/test) we used in probing
experiments. |L| denotes number of target labels.

0 10 k 20 k
pretrain step

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

 (r
es

ca
le

d)

conj.
det.
prep.
adj.
noun

proper noun
pron.
adv.
verb

(a) Token reconstruction of BERT

0 25 k 50 k 75 k 100 k 125 k
pretrain step

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

 (r
es

ca
le

d)

conj.
det.
prep.
adj.
noun
proper noun
pron.
adv.
verb

(b) Mask prediction of BERT

Figure 9: We also rescale the accuracy as in Figure 1b.

• We use linear classifiers instead of 2-layer
MLP classifiers.

• We probe the representation of a single layer,
instead of concatenating or scalar-mixing rep-
resentations across all layers.

Since our probing models are much simpler than
those in Tenney et al. (2018), probing results might
be inferior to the original work. The number of
model’s parameters in our experiments is approxi-
mately 38K for POS tagging, 24K for constituent
tagging, and 100K for SRL.

D.2 Dataset
We use OntoNotes-5.0, which can be down-
load from https://catalog.ldc.upenn.edu/

LDC2013T19. The statistics of this dataset is in
Table 5.

D.3 SRL, Coreference Resolution, and
Constituent Labeling Results

Here in Figure 10, we show supplementary figures
for SRL, coreference resolution, and constituent
tagging over 3 of 12 layers in ALBERT for the first
500K pretrain steps. Together with Figure 3, all
four tasks show similar trends.

0 100 k 200 k 300 k 400 k 500 k
Pretrain steps

0.7

0.8

0.9

F1
 sc

or
e

layer 12
layer 2

layer 6

(a) Semantic role labeling

0 100 k 200 k 300 k 400 k 500 k
Pretrain steps

0.8

0.9

1.0

F1
 sc

or
e

layer 12
layer 2

layer 6

(b) Coreference resolution

0 100 k 200 k 300 k 400 k 500 k
Pretrain steps

0.4

0.5

0.6

0.7

F1
 sc

or
e

layer 12
layer 2

layer 6

(c) Constituent tagging

Figure 10: The probing results of SRL (10a, corefer-
ence resolution (10b) and constituency tagging (10c)
during pretraining . Layers are indexed from the input
layer to the output layer, so layer 2 is the output repre-
sentation from layer 2 of ALBERT. Layers are indexed
from 1 to 12.

https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19

6823

Task Examples
MRPC 3.6K / 0.4K / 1.7K
RTE 2.4K / 0.2K / 3K

STS-B 5.7K / 1.5K / 1.3K
QNLI 104K / 5.4K / 5.4K
QQP 363K / 40.4K / 391.0K
CoLA 8.5K / 1.0K / 1.1K
MNLI 392.7K / 9.8K + 9.8K / 9.8K + 9.8K
SST-2 67.4K / 0.9K / 1.8K

SQuAD2.0 13.3K / 11.9K / 8.9K

Table 6: Statistics of (train / dev/ test) in GLUE tasks
and SQuAD2.0. MNLI contains matched and mis-
matched in dev and test set. We didn’t evaluate our
models’ performance on test set.

D.4 Probing Results of BERT and
ELECTRA

We provide the probing results of BERT and ELEC-
TRA in Figure 11. All the probing experiments of
ALBERT, BERT, and ELECTRA share the same
set of hyperparameters and model architectures.
We observe a similar trend as ALBERT: the prob-
ing performance rises quite quickly and plateaus (or
even slightly decay) afterward. We also found that
performance drop of those layers closer to ELEC-
TRA’s output layers are highly observable, which
may spring from its discriminative pretraining na-
ture.

E Downstream Evaluation

E.1 Dataset Details

We provide detail statistics of downstream tasks’
dataset in Table 6. We download GLUE dataset
using https://gist.github.com/W4ngatang/

60c2bdb54d156a41194446737ce03e2e, and
download SQuAD2.0 dataset from https:

//rajpurkar.github.io/SQuAD-explorer/.

E.2 Finetune Details

We use the code in https://github.com/

huggingface/transformers/tree/master/

examples/text-classification to run GLUE
and use https://github.com/huggingface/

transformers/tree/master/examples/

question-answering to run SQuAD2.0. We
provide detailed hyperparameters when we run
GLUE benchmark and SQuAD2.0 in Table 7. We
follow Liu et al. (2019b) and Lan et al. (2019),
finetuning RTE, STS-B, and MRPC using an
MNLI checkpoint when finetuning ALBERT. The

number of parameters of all downstream tasks is
close to the original ALBERT model, which is
12M.

E.3 Downstream results of ALBERT (with
SQuAD2.0)

Here we provide performance of individual tasks in
GLUE benchmark on development set in Figure 12,
along with performance of SQuAD2.0 (Rajpurkar
et al., 2018).

E.4 Downstream performance of BERT and
ELECTRA

We use the same hyperparamters in Table7 to fine-
tune BERT and ELECTRA models. Except for the
performance of BERT on SQuAD2.0, all the other
results are comparable with those results finetuned
from the official Google pretrained models. We can
observe from Figure 13 and Figure 12 that all three
models’ performance on downstream tasks show
similar trends: Performance skyrocketed during the
initial pretraining stages, and the return gradually
decays later. From Figure 13c, we also find that
among the three models, ALBERT plateaus the ear-
liest, which may result from its parameter-sharing
nature.

F World Knowledge Development

F.1 Dataset Statistics
In our experiment of world knowledge, we only
use 1-1 relations (P1376 and P36) and N-1 rela-
tions (the rest relations in Table 8). Among those
relations, we only ask our model to predict object
([Y] in the template in Table 8) that has only one
token, following Petroni et al. (2019). From those
relations, we report world knowledge that behaves
differently during pretraining in Figure 6: we se-
lect the knowledge that can be learned during pre-
training (e.g., P176), the knowledge that cannot be
learned during the whole pretraining process (e.g.,
P140), the knowledge that was once learned and
then forgotten after pretraining (e.g., P138), and
knowledge that kept oscillating during pretraining
(e.g., P407). The statistics of all world knowledge
evaluated are in listed in Table 8.

F.2 Qualitative Results and Complete World
Knowledge Results

We provide qualitative examples for Section 6 in
Table 9. We also provide the complete results of all
world knowledge we use in Figure 14.

https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e
https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/huggingface/transformers/tree/master/examples/text-classification
https://github.com/huggingface/transformers/tree/master/examples/text-classification
https://github.com/huggingface/transformers/tree/master/examples/text-classification
https://github.com/huggingface/transformers/tree/master/examples/question-answering
https://github.com/huggingface/transformers/tree/master/examples/question-answering
https://github.com/huggingface/transformers/tree/master/examples/question-answering

6824

LR BSZ ALBERT DR Classifier DR TS WS MSL
CoLA 1.00E-05 16 0 0.1 5336 320 512
STS-B 2.00E-05 16 0 0.1 3598 214 512
SST-2 1.00E-05 32 0 0.1 20935 1256 512
MNLI 3.00E-05 128 0 0.1 10000 1000 512
QNLI 1.00E-05 32 0 0.1 33112 1986 512
QQP 5.00E-05 128 0 0.1 14000 1000 512
RTE 3.00E-05 32 0 0.1 800 200 512

MRPC 2.00E-05 32 0 0.1 800 200 512
SQuAD2.0 3.00E-05 48 0 0.1 8144 814 512

Table 7: Hyperparameters for ALBERT in downstream tasks. LR: Learning Rate. BSZ: Batch Size. DR: Dropout
Rate. TS: Training Steps. WS: Warmup Steps. MSL: Maximum Sequence Length

Type Count Template
P140 471 [X] is affiliated with the [Y] religion .
P103 975 The native language of [X] is [Y] .
P276 954 [X] is located in [Y] .
P176 946 [X] is produced by [Y] .
P264 312 [X] is represented by music label [Y] .
P30 975 [X] is located in [Y] .

P138 621 [X] is named after [Y] .
P279 958 [X] is a subclass of [Y] .
P131 880 [X] is located in [Y] .
P407 870 [X] was written in [Y] .
P36 699 The capital of [X] is [Y] .

P159 964 The headquarter of [X] is in [Y] .
P17 930 [X] is located in [Y] .

P495 909 [X] was created in [Y] .
P20 952 [X] died in [Y] .

P136 931 [X] plays [Y] music .
P740 934 [X] was founded in [Y] .
P1376 230 [X] is the capital of [Y] .
P361 861 [X] is part of [Y] .
P364 852 The original language of [X] is [Y] .
P37 952 The official language of [X] is [Y] .

P127 683 [X] is owned by [Y] .
P19 942 [X] was born in [Y] .

P413 952 [X] plays in [Y] position .
P449 874 [X] was originally aired on [Y] .

Table 8: Relations used.

6825

World Knowledge Prediction
Relation P38 P176
Query Nokia Lumia 800 was produced by

[MASK].
Hamburg airport is named after
[MASK].

Answer Nokia Hamburg
100K the lumia 800 is produced by nokia. hamburg airport is named after it.
200K nokia lu nokia 800 is produced by

nokia.
hamburg airport is named after ham-
burg.

500K nokia lumia 800 is produced by nokia. hamburg airport is named after him.
1M nokia lumia 800 is produced by nokia. hamburg airport is named after him.

Table 9: Example results of world knowledge evolution during pretraining. We can observe that model successfully
predict the object in the Nokia example since 100K steps, and doesn’t forget during the rest pretraining process.
On the other hand, the model is only able to correctly predict Hamburg in the second example at 200K steps, and
failed to predict at other pretrain steps.

6826

0 200 k 400 k 600 k 800 k 1 M
Pretrain steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ev
al

ua
tio

n
Re

su
lt

Evaluation result
SRL
POS

Const
Coref

(a) Probing results of ALBERT-base model

0 200 k 400 k 600 k 800 k
Pretrain steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ev
al

ua
tio

n
Re

su
lt

Evaluation result
SRL
POS

Const
Coref

(b) Probing results of BERT-base uncased model

0 150 k 300 k 450 k 600 k 750 k
Pretrain steps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ev
al

ua
tio

n
Re

su
lt

Evaluation result
SRL
POS

Const
Coref

(c) Probing results of ELECTRA-base model

Figure 11: Probing results of POS tagging, constituent
tagging, semantic role labeling, and coreference resolu-
tion, evaluated by micro F1 score.

0 200 k 400 k 600 k 800 k 1 M
Pretrain steps

20

30

40

50

60

70

80

90

Ev
al

ua
tio

n
re

su
lt

MNLI
MRPC
STS-B

SST-2
CoLA
QNLI

QQP
RTE
SQuAD2.0

Figure 12: Performance of individual tasks in GLUE
benchmark, along with SQuAD2.0 result. Best result
durining pretraining marked with ‘x’. Evaluation met-
rics: MRPC and QQP: F1, STS-B: Spearman corr., oth-
ers: accuracy. The result of MNLI is the average of
matched and mismatched. The result of SQuAD2.0
is the average of F1 and EM scores. Performances of
albert-base-v1 and bert-base-uncased are marked with
‘+’ and square, respectively.

6827

0 200 k 400 k 600 k 800 k 1 M
Pretrain steps

20

30

40

50

60

70

80

90

Ev
al

ua
tio

n
re

su
lt

MNLI
MRPC
STS-B

SST-2
CoLA
QNLI

QQP
RTE
SQuAD2.0

(a) GLUE and SQuAD2.0 performances of BERT

0 150 k 300 k 450 k 600 k 750 k
Pretrain steps

20

30

40

50

60

70

80

90

Ev
al

ua
tio

n
re

su
lt

MNLI
MRPC
STS-B

SST-2
CoLA
QNLI

QQP
RTE
SQuAD2.0

(b) GLUE and SQuAD2.0 performances of ELECTRA

0 200 k 400 k 600 k 800 k 1 M
Pretrain steps

50

55

60

65

70

75

80

85

90

Ev
al

ua
tio

n
re

su
lt

ELECTRA BERT ALBERT

(c) GLUE scores of all three models

Figure 13: Performance of individual tasks in GLUE
benchmark, along with SQuAD2.0 result. Best re-
sult durining pretraining marked with circle. Evalu-
ation metrics: MRPC and QQP: F1, STS-B: Spear-
man corr.,others: accuracy. The result of MNLI is
the averageof matched and mismatched. The result of
SQuAD2.0is the average of F1 and EM scores.

6828

0 200 k 400 k 600 k 800 k 1 M
Pretrain steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Figure 14: Prediction of all world knowledge during pretraining.

