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Abstract

Modern NLP defines the task of style transfer
as modifying the style of a given sentence with-
out appreciably changing its semantics, which
implies that the outputs of style transfer sys-
tems should be paraphrases of their inputs.
However, many existing systems purportedly
designed for style transfer inherently warp
the input’s meaning through attribute transfer,
which changes semantic properties such as sen-
timent. In this paper, we reformulate unsuper-
vised style transfer as a paraphrase generation
problem, and present a simple methodology
based on fine-tuning pretrained language mod-
els on automatically generated paraphrase data.
Despite its simplicity, our method significantly
outperforms state-of-the-art style transfer sys-
tems on both human and automatic evalua-
tions. We also survey 23 style transfer papers
and discover that existing automatic metrics
can be easily gamed and propose fixed variants.
Finally, we pivot to a more real-world style
transfer setting by collecting a large dataset of
15M sentences in 11 diverse styles, which we
use for an in-depth analysis of our system.

1 Introduction

The task of style transfer on text data involves
changing the style of a given sentence while pre-
serving its semantics.1 Recent work in this area
conflates style transfer with the related task of
attribute transfer (Subramanian et al., 2019; He
et al., 2020), in which modifications to attribute-
specific content words (e.g., those that carry senti-
ment) warp both stylistic and semantic properties
of a sentence (Preotiuc-Pietro et al., 2016). At-
tribute transfer has been criticized for its limited
real-world applications: Pang (2019) argue that se-

1We use the quasi-paraphrase definition of semantic equiv-
alence from Bhagat and Hovy (2013) throughout this paper.
We loosely define style as patterns in lexical and syntactic
choice within the space of quasi-paraphrases.

Why,  uncle, 
’tis a shame

No lie… I would 
jump in

Why,  uncle, 
’tis a shame

No lie… I would 
jump in

O, wilt thou leave 
me so unsatisfied?

it’s a shame, 
uncle

I’d jump in there, 
no doubt

Oh, you’re gonna leave 
me unsatisfied, right?

Ooh yall will leave 
me unhappy lol

Step 1:  
diverse 

paraphrasing

Step 2:
inverse 

paraphrasing 
(Shakespeare, 

Twitter)

Training time Test time

Figure 1: During training, STRAP applies a diverse
paraphraser to an input sentence and passes the result
through a style-specific inverse paraphraser to recon-
struct the input. At test time, we perform style transfer
by swapping out different inverse paraphrase models
(Shakespeare → Twitter shown here). All generated
sentences shown here are actual outputs from STRAP.

mantic preservation is critical for author obfusca-
tion (Shetty et al., 2018), data augmentation (Xie
et al., 2019; Kaushik et al., 2020), text simplifica-
tion (Xu et al., 2015), writing assistance (Heidorn,
2000). Moreover, semantic preservation (via para-
phrases) has several applications like better transla-
tion evaluation (Sellam et al., 2020; Freitag et al.,
2020) and adversarial defenses (Iyyer et al., 2018).

We propose to improve semantic preservation
in style transfer by modeling the task as a con-
trolled paraphrase generation problem. Our unsu-
pervised method (Style Transfer via Paraphrasing,
or STRAP) requires no parallel data between differ-
ent styles and proceeds in three simple stages:

1. Create pseudo-parallel data by feeding sen-
tences from different styles through a diverse
paraphrase model (Figure 1, left).

2. Train style-specific inverse paraphrase mod-
els that convert these paraphrased sentences
back into the original stylized sentences.

3. Use the inverse paraphraser for a desired
style to perform style transfer (Figure 1, right).

http://style.cs.umass.edu
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Our approach requires none of the finicky2 mod-
eling paradigms popular in style transfer research —
no reinforcement learning (Luo et al., 2019), vari-
ational inference (He et al., 2020), or autoregres-
sive sampling during training (Subramanian et al.,
2019). Instead, we implement the first two stages
of our pipeline by simply fine-tuning a pretrained
GPT-2 language model (Radford et al., 2019).

Despite its simplicity, STRAP significantly out-
performs the state of the art on formality transfer
and Shakespeare author imitation datasets by 2-3x
on automatic evaluations and 4-5x on human evalu-
ations. We further show that only 3 out of 23 prior
style transfer papers properly evaluate their models:
in fact, a naı̈ve baseline that randomly chooses to
either copy its input or retrieve a random sentence
written in the target style outperforms prior work
on poorly-designed metrics.

Finally, we take a step towards real-world style
transfer by collecting a large dataset CDS (Corpus
of Diverse Styles) of 15M English sentences span-
ning 11 diverse styles, including the works of
James Joyce, romantic poetry, tweets, and conver-
sational speech. CDS is orders of magnitude larger
and more complex than prior benchmarks, which
generally focus on transferring between just two
styles. We analyze STRAP’s abilities on CDS, and
will release it as a benchmark for future research.
In summary, our contributions are:
(1) a simple approach to perform lexically and syn-
tactically diverse paraphrasing with pretrained lan-
guage models;
(2) a simple unsupervised style transfer method that
models semantic preservation with our paraphraser
and significantly outperforms prior work;
(3) a critique of existing style transfer evaluation
based on a naı̈ve baseline that performs on par with
prior work on poorly designed metrics;
(4) a new benchmark dataset that contains 15M
sentences from 11 diverse styles.

2 Style Transfer via Paraphrasing

We loosely define style as common patterns of
lexical choice and syntactic constructions that are
distinct from the content of a sentence, following
prior work (Hovy, 1987; DiMarco and Hirst, 1993;
Green and DiMarco, 1993; Kabbara and Cheung,
2016). While we acknowledge this distinction is

2For example, reproducing deep RL methods is challeng-
ing (Henderson et al., 2018), vanilla adversarial training is
unstable (Arjovsky et al., 2017), and VAEs suffer from poste-
rior collapse (Bowman et al., 2016).

Original Sentences Diverse Paraphrases

Bible
1890-1910
AAE Tweets

Lyrics
Switchboard
Tweets

1810-1830
James Joyce
Poetry

Shakespeare
1990-2010

Figure 2: Diverse paraphrasing normalizes sen-
tences by removing stylistic identifiers. We cluster
validation sentences from our CDS dataset by applying
t-SNE to [CLS] vectors from a RoBERTa style classi-
fier. The original sentences (left) form distinct clusters,
while the paraphrased sentences (right) do not, showing
the stylized text has been normalized.

not universally accepted,3 this treatment is criti-
cal to unlock several real-world applications of
style transfer (as argued in Section 1). Unfortu-
nately, many modern style transfer systems do not
respect this definition: a human evaluation (Table 2)
shows that fewer than 25% of style-transferred
sentences from two state-of-the-art systems (Sub-
ramanian et al., 2019; He et al., 2020) on formality
transfer were rated as paraphrases of their inputs.

Motivated by this result, we reformulate style
transfer as a controlled paraphrase generation task.
We call our method STRAP, or Style Transfer via
Paraphrasing. STRAP operates within an unsu-
pervised setting: we have raw text from distinct
target styles, but no access to parallel sentences
paraphrased into different styles. To get around
this lack of data, we create pseudo-parallel sen-
tence pairs using a paraphrase model (Section 2.1)
trained to maximize output diversity (Section 2.4).
Intuitively, this paraphrasing step normalizes the in-
put sentence by stripping away information that is
predictive of its original style (Figure 2). The nor-
malization effect allows us to train an inverse para-
phrase model specific to the original style, which
attempts to generate the original sentence given
its normalized version (Section 2.2). Through this
process, the model learns to identify and produce
salient features of the original style without unduly
warping the input semantics.

2.1 Creating pseudo-parallel training data

The first stage of our approach involves normal-
izing input sentences by feeding them through a

3For example, Eckert (2008) considers style and semantics
to be inseparable; while Meyerhoff (2015) considers style to
be intra-speaker variation in different social contexts
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diverse paraphrase model. Consider a corpus of
sentences from multiple styles, where the set of all
sentences from style i is denoted by Xi. We first
generate a paraphrase z for every sentence x ∈ Xi

using a pretrained paraphrase model fpara,

z = fpara(x) where x ∈ Xi.

This process results in a dataset Zi of normalized
sentences and allows us to form a pseudo-parallel
corpus (Xi,Zi) between each original sentence
and its paraphrased version. Figure 2 shows that
this paraphrasing process has a powerful style nor-
malization effect for our instantiation of fpara.

2.2 Style transfer via inverse paraphrasing
We use this pseudo-parallel corpus to train a style-
specific model that attempts to reconstruct the orig-
inal sentence x given its paraphrase z. Since fpara
removes style identifiers from its input, the intu-
ition behind this inverse paraphrase model is that
it learns to insert stylistic features through the re-
construction process. Formally, the inverse para-
phrase model f iinv for style i learns to reconstruct4

the original corpus Xi using the standard language
modeling objective with cross-entropy loss LCE,

x̄ = f iinv(z) where z ∈ Zi

loss =
∑
x∈Xi

LCE(x, x̄)

During inference, given an arbitrary sentence s (in
any particular style), we convert it to a sentence s̄j

in target style j using a two-step process of style
normalization with fpara followed by stylization
with the inverse paraphraser f jinv, as in

s̄j = f jinv(fpara(s)).

2.3 Paraphraser implementation with GPT-2
We fine-tune the large-scale pretrained GPT2-large
language model (Radford et al., 2019) to implement
both the paraphraser fpara and inverse paraphrasers
f iinv for each style.5 Starting from a pretrained LM
improves both output fluency and generalization
to small style-specific datasets (Section 5). We
use the encoder-free seq2seq modeling approach

4This process resembles denoising autoencoders (Vin-
cent et al., 2008; Lample et al., 2018, DAE): fpara acts as a
semantic preserving noise function; f i

inv reconstructs the input.
5We fine-tune a separate GPT-2 model f i

inv per style. Sec-
tion 5 shows that this outperforms a single inverse paraphraser
shared across all styles with style input.

described in Wolf et al. (2018), where input and
output sequences are concatenated together with
a separator token. We use Hugging Face’s Trans-
formers library (Wolf et al., 2019) to implement our
models; see Appendix A.2 for more details about
the architecture & hyperparameters.

2.4 Promoting diversity by filtering data

The final piece to our approach is how we choose
training data for the paraphrase model fpara. We
discover that maximizing lexical and syntactic di-
versity of the output paraphrases is crucial for effec-
tive style normalization (Section 5, 6). We promote
output diversity by training fpara on an aggressively-
filtered subset of PARANMT-50M (Wieting and
Gimpel, 2018), a large corpus of backtranslated
text. Specifically, we apply three filters: (1) remov-
ing sentence pairs with more than 50% trigram or
unigram overlap to maximize lexical diversity and
discourage copying; (2) removing pairs with lower
than 50% reordering of shared words, measured
by Kendall’s tau (Kendall, 1938), to promote syn-
tactic diversity; and (3) removing pairs with low
semantic similarity, measured by the SIM model
from Wieting et al. (2019).6 After applying these
filters, our training data size shrinks from 50M to
75K sentence pairs, which are used to fine-tune
GPT-2; see Appendix A.1 for more details about
the filtering process and its effect on corpus size.

3 Evaluating style transfer

Providing a meaningful comparison of our ap-
proach to existing style transfer systems is difficult
because of (1) poorly-defined automatic and human
methods for measuring style transfer quality (Pang,
2019; Mir et al., 2019; Tikhonov et al., 2019), and
(2) misleading (or absent) methods of aggregating
three individual metrics (transfer accuracy, seman-
tic similarity and fluency) into a single number.
In this section, we describe the flaws in existing
metrics and their aggregation (the latter illustrated
through a naı̈ve baseline), and we propose a new
evaluation methodology to fix these issues.

3.1 Current state of style transfer evaluation

We conduct a survey of 23 previously-published
style transfer papers (more details in Ap-
pendix A.9), which reveals three common

6This model achieves strong performance on semantic
textual similarity (STS) SemEval benchmarks (Agirre et al.,
2016). We remove all pairs with a score lower than 0.7.



740

properties on which style transfer systems are
evaluated. Here, we discuss how prior work
implements evaluations for each of these properties
and propose improved implementations to address
some of their downsides.

Transfer accuracy (ACC): Given an output
sentence s̄j and a target style j, a common way of
measuring transfer success is to train a classifier
to identify the style of a transferred sentence and
report its accuracy ACC on generated sentences
(i.e., whether s̄j has a predicted style of j). 14 of
23 surveyed papers implement this style classifier
with a 1-layer CNN (Kim, 2014). However, recent
large Transformers like BERT (Devlin et al., 2019)
significantly outperform CNNs on most NLP tasks,
including style classification. Thus, we build our
style classifier by fine-tuning RoBERTa-large (Liu
et al., 2019) on all our datasets, leading to
significantly more reliable ACC evaluation.7

Semantic similarity (SIM): A style transfer
system can achieve high ACC scores without
maintaining the semantics of the input sentence,
which motivates also measuring how much a
transferred sentence deviates in meaning from the
input. 15 / 23 surveyed papers use n-gram metrics
like BLEU (Papineni et al., 2002) against reference
sentences, often along with self-BLEU with the
input, to evaluate semantic similarity. Using BLEU
in this way has many problems, including (1)
unreliable correlations between n-gram overlap
and human evaluations of semantic similar-
ity (Callison-Burch et al., 2006), (2) discouraging
output diversity (Wieting et al., 2019), and (3) not
upweighting important semantic words over other
words (Wieting et al., 2019; Wang et al., 2020).
These issues motivate us to measure semantic
similarity using the subword embedding-based SIM

model of Wieting et al. (2019), which performs
well on semantic textual similarity (STS) bench-
marks in SemEval workshops (Agirre et al., 2016).8

Fluency (FL): A system that produces ungrammat-
ical outputs can still achieve high scores on both
ACC and SIM, motivating a separate measure for
fluency. Only 10 out of 23 surveyed papers did
a fluency evaluation; 9 of which used language
model perplexity, which is a poor measure because

7The RoBERTa style classifier, built with fairseq (Ott
et al., 2019), achieves a test accuracy of 90.4% on the Shake-
speare data(vs 83.5% for CNN) and 94.8% on the Formality
data (vs 92.4%). The datasets are introduced in Section 4.1.

8For reference, we evaluate with BLEU in Appendix A.5.

(1) it is unbounded and (2) unnatural sentences with
common words tend to have low perplexity (Mir
et al., 2019; Pang, 2019). To tackle this we replace
perplexity with the accuracy of a RoBERTa-large
classifier trained on the CoLA corpus (Warstadt
et al., 2019), which contains sentences paired with
grammatical acceptability judgments. In Table 1,
we show that our classifier marks most reference
sentences as fluent, confirming its validity.9

Human evaluation: As automatic evaluations are
insufficient for evaluating text generation (Liu et al.,
2016; Novikova et al., 2017), 17 out of 23 surveyed
style transfer papers also conduct human evaluation.
In our work, we evaluate SIM and FL using human
evaluations.10 As we treat style transfer as a para-
phrase generation task, we borrow the three-point
scale used previously to evaluate paraphrases (Kok
and Brockett, 2010; Iyyer et al., 2018), which
jointly captures SIM and FL. Given the original
sentence and the transferred sentence, annotators
on Amazon Mechanical Turk can choose one of
three options: 0 for no paraphrase relationship; 1
for an ungrammatical paraphrase; and 2 for a gram-
matical paraphrase. A total of 150 sentence pairs
were annotated per model, with three annotators
per pair. More details on our setup, payment &
agreement are provided in Appendix A.10.

3.2 Aggregation of Metrics

So far, we have focused on individual implemen-
tations of ACC, SIM, and FL. After computing
these metrics, it is useful to aggregate them into a
single number to compare the overall style transfer
quality across systems (Pang, 2019). However,
only 5 out of the 23 papers aggregate these metrics,
either at the corpus level (Xu et al., 2018; Pang
and Gimpel, 2019) or sentence level (Li et al.,
2018). Even worse, the corpus-level aggregation
scheme can be easily gamed. Here, we describe a
naı̈ve system that outperforms state-of-the-art style
transfer systems when evaluated using corpus-level
aggregation, and we present a new sentence-level
aggregation metric that fixes the issue.

The issue with corpus-level aggregation: Aggre-
gating ACC, SIM, and FL is inherently difficult

9Mir et al. (2019) also recommended a similar method
to evaluate fluency instead of perplexity, where they train
classifiers to distinguish between machine / human sentences.

10We do not conduct human evaluations for ACC since style
classification is difficult for an untrained crowdsourced worker
unfamiliar with the set of target styles.
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because they are inversely correlated with each
other (Pang, 2019). Prior work has combined
these three scores into a single number using
geometric averaging (Xu et al., 2018) or learned
weights (Pang and Gimpel, 2019). However, the
aggregation is computed after averaging each met-
ric independently across the test set (corpus-level
aggregation), which is problematic since systems
might generate sentences that optimize only a
subset of metrics. For example, a Shakespeare style
transfer system could output Wherefore art thou
Romeo? regardless of its input and score high on
ACC and FL, while a model that always copies its
input would score well on SIM and FL (Pang, 2019).

A Naı̈ve Style Transfer System: To concretely
illustrate the problem, we design a naı̈ve baseline
that exactly copies its input with probability p and
chooses a random sentence from the target style
corpus for the remaining inputs, where p is tuned
on the validation set.11 When evaluated using
geometric mean corpus-level aggregation (GM

column of Table 1) this system outperforms state
of the art methods (UNMT, DSLM) on the Formality
dataset despite not doing any style transfer at all!

Proposed Metric: A good style transfer system
should jointly optimize all metrics. The strong per-
formance of the naı̈ve baseline with corpus-level
aggregation indicates that metrics should be com-
bined at the sentence level before averaging them
across the test set (sentence aggregation). Unfortu-
nately, only 3 out of 23 surveyed papers measure
absolute performance after sentence-level aggrega-
tion, and all of them use the setup of Li et al. (2018),
which is specific to human evaluation with Likert
scales. We propose a more general alternative,

J(ACC, SIM, FL) =
∑
x∈X

ACC(x) · SIM(x) · FL(x)

|X|

where x is a sentence from a test corpus X. We
treat ACC and FL at a sentence level as a binary
judgement, ensuring incorrectly classified or disflu-
ent sentences are automatically assigned a score of
0. As a sanity check, our naı̈ve system performs
extremely poorly on this new metric (Table 1), as
input copying will almost always yield an ACC of
zero, while random retrieval results in low SIM.

11p = 0.4 / 0.5 for Formality / Shakespeare datasets.

4 Experiments & Results

We evaluate our method (STRAP) on two existing
style transfer datasets, using the evaluation method-
ology proposed in Section 3. Our system signifi-
cantly outperforms state of the art methods and the
naı̈ve baseline discussed in Section 3.2.

4.1 Datasets

We focus exclusively on semantics-preserving style
transfer tasks, which means that we do not evalu-
ate on attribute transfer datasets such as sentiment,
gender, and political transfer. Specifically, we use
two standard benchmark datasets for Shakespeare
author imitation and formality transfer to compare
STRAP against prior work. While both datasets
contain parallel data, we only use it to automati-
cally evaluate our model outputs; for training, we
follow prior work by using the non-parallel train-
validation-test splits from He et al. (2020).

The Shakespeare author imitation dataset (Xu
et al., 2012) contains 37k training sentences from
two styles — William Shakespeare’s original plays,
and their modernized versions. Shakespeare’s plays
are written in Early Modern English, which has a
significantly different lexical (e.g., thou instead of
you) and syntactic distribution compared to modern
English. Our second dataset is Formality trans-
fer (Rao and Tetreault, 2018), which contains 105k
sentences, also from two styles. Sentences are writ-
ten either in formal or informal modern English.
Unlike formal sentences, informal sentences tend
to have more misspellings, short forms (u instead
of you), and non-standard usage of punctuation.

4.2 Comparisons against prior work

We compare STRAP on the Shakespeare / Formality
datasets against the following baselines:

• COPY: a lower bound that simply copies its
input, which has been previously used in prior
work (Subramanian et al., 2019; Pang, 2019)

• NAÏVE: our method from Section 3.2 that ran-
domly either copies its input or retrieves a
sentence from the target style

• REF: an upper bound computed by evaluating
reference sentences using our metrics

• UNMT: unsupervised neural machine transla-
tion from Subramanian et al. (2019)

• DLSM: the deep latent sequence model from
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Model Formality (GYAFC) Shakespeare
ACC SIM FL GM(A,S,F) J(A,S,F) ACC SIM FL GM(A,S,F) J(A,S,F)

COPY 5.2 80.1 88.4 33.3 4.2 9.6 67.1 79.1 37.1 7.2
NAÏVE 58.9 38.9 89.1 58.9 7.3 49.9 34.9 78.9 51.6 4.1
REF 93.3 100 89.7 94.2 83.8 90.4 100 79.1 89.4 70.5

UNMT (2019) 78.5 49.1 52.5 58.7 20.0 70.5 37.5 49.6 50.8 14.6
DLSM (2020) 78.0 47.7 53.7 58.5 18.6 71.1 43.5 49.4 53.5 16.3

STRAP (p = 0.0) 67.7 72.5 90.4 76.3 45.5 71.7 56.4 85.2 70.1 34.7
STRAP (p = 0.6) 70.7 69.9 88.5 75.9 44.5 75.7 53.7 82.7 69.5 33.5
STRAP (p = 0.9) 76.8 62.9 77.4 72.0 38.3 79.8 47.6 71.7 64.8 27.5

Table 1: Automatic evaluation of our method STRAP (using different p values for nucleus sampling) against prior
state-of-the-art methods (UNMT, DLSM), lower bound baselines (COPY, NAÏVE) and reference sentences (REF).
STRAP significantly outperforms prior work, especially on our proposed J(·) metric. GM is the geometric mean.

Dataset Model ACC SIM J(A,S) J(A,S,F)

Form. UNMT 77.3 22.7 14.7 7.3
DLSM 78.0 24.0 15.3 10.0

p = 0.0 71.3 76.0 54.7 41.3
p = 0.9 79.3 56.7 46.0 28.0

Shak. UNMT 69.3 20.7 10.0 7.3
DLSM 65.3 37.3 21.3 9.3

p = 0.0 70.7 79.3 56.0 47.3
p = 0.9 74.7 54.0 38.0 24.7

Table 2: Human evaluation of STRAP with greedy de-
coding (p = 0.0) and nucleus sampling (p = 0.9)
shows large improvements (4-5x) on both the Formal-
ity (Form.) and Shakespeare (Shak.) datasets. Details
on metric calculations are provided in Appendix A.10.

He et al. (2020), which is currently state-of-
the-art on both datasets.12

STRAP significantly outperforms the prior state
of the art (DLSM) on automatic metrics (Table 1)
with a J(·) score of 45.5 (vs 18.6) on Formality
and 34.7 (vs 16.3) on Shakespeare. The improve-
ments are even larger when SIM and FL are mea-
sured through human evaluations (Table 2): in this
setting, STRAP achieves 41.3 (vs 10.0) on Formal-
ity and 47.3 (vs 9.3) on Shakespeare. Across the
board, STRAP significantly improves in SIM and FL

while maintaining similar ACC. Finally, the large
gap between REF and STRAP on automatic metrics
provides exciting avenues for future research.13

12We use the implementations of both UNMT and DLSM
made publicly available by He et al. (2020), and we verify that
their UNMT model performs on par with reported sentiment
transfer numbers in Subramanian et al. (2019). The original
code of Subramanian et al. (2019) has not been open-sourced.

13Results with other metrics such as BLEU, as well as
comparisons against several other baselines like Li et al.
(2018); Prabhumoye et al. (2018); Luo et al. (2019); Dai et al.
(2019); Sudhakar et al. (2019) are provided in Appendix A.5.
STRAP significantly outperforms all prior work.

Dataset Model ACC SIM FL J(A,S,F)

Form. STRAP 67.7 72.5 90.4 45.5
– Inf. PP 27.5 78.5 88.2 20.7
– Mult. PP 63.1 72.0 90.8 42.3
– Div. PP 61.2 79.5 88.7 43.8
– GPT2 84.6 43.8 61.7 23.1
GPT2-md 71.0 70.7 88.6 45.8
GPT2-sm 69.1 68.6 87.6 42.9

Shak. STRAP 71.7 56.4 85.2 34.7
– Inf. PP 40.1 66.1 76.3 23.3
– Mult. PP 45.9 56.5 91.1 24.8
– Div. PP 49.7 64.4 82.9 28.2
– GPT2 75.6 26.7 66.9 13.6
GPT2-md 73.4 54.0 86.4 34.3
GPT2-sm 68.0 53.2 84.6 31.5

Table 3: Ablation study using automatic metrics on the
Formality (Form.) and Shakespeare (Shak.) datasets.

5 Ablation studies

In this section, we perform several ablations on
STRAP to understand which of its components
contribute most to its improvements over baselines.
Overall, these ablations validate the importance of
both paraphrasing and pretraining for style transfer.

Paraphrase diversity improves ACC: How
critical is diversity in the paraphrase generation
step? While our implementation of fpara is trained
on data that is heavily-filtered to promote diversity,
we also build a non-diverse paraphrase model by
removing this diversity filtering of PARANMT-
50M but keeping all other experimental settings
identical. In Table 3, the –Div. PP rows show a
drop in ACC across both datasets as well as higher
SIM, which in both cases results in a lower J(·)
score. A qualitative inspection reveals that the
decreased ACC and increased SIM are both due to a
greater degree of input copying, which motivates
the importance of diversity.

Paraphrasing during inference improves ACC:
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The diverse paraphraser fpara is obviously crucial
to train our model, as it creates pseudo-parallel
data for training f iinv, but is it necessary during
inference? We try directly feeding in the original
sentence (without the initial paraphrasing step) to
the inverse paraphrase model f iinv during inference,
shown in the –Inf. PP row of Table 3. While
SIM and FL are largely unaffected, there is a large
drop in ACC, bringing down the overall score (45.5
to 20.7 in Formality, 34.7 to 23.3 in Shakespeare).
This supports our hypothesis that the paraphrasing
step is useful for normalizing the input.

LM pretraining is crucial for SIM and FL: As
we mainly observe improvements on FL and SIM

compared to prior work, a natural question is how
well does STRAP perform without large-scale
LM pretraining? We run an ablation study by
replacing the GPT-2 implementations of fpara and
f iinv with LSTM seq2seq models, which are trained
with global attention (Luong et al., 2015) using
OpenNMT (Klein et al., 2017) with mostly default
hyperparameters.14 As seen in the – GPT2 row of
Table 3, this model performs competitively with
the UNMT / DLSM models on J(ACC,SIM,FL),
which obtain 20.0 / 18.6 on Formality (Table 1),
respectively. However, it is significantly worse
than STRAP, with large drops in SIM and FL.15

This result shows the merit of both our algo-
rithm and the boost that LM pretraining provides.16

Nucleus sampling trades off ACC for SIM:
While our best performing system uses a greedy
decoding strategy, we experiment with nucleus
sampling (Holtzman et al., 2020) by varying the
nucleus p value in both Table 1 and Table 2. As
expected, higher p improves diversity and trades
off increased ACC for lowered SIM. We find that
p = 0.6 is similar to greedy decoding on J(·)
metrics, but higher p values degrade performance.

Multiple inverse paraphrasers perform better
than a single style-conditional model: Finally,
we explore a more parameter-efficient alternative
to training a separate inverse paraphrase model per
style. Prior work in conditioned language models

14The only hyperparameter we tune is the learning rate
schedule. More details in Appendix A.4.

15A qualitative inspection of outputs confirms the LSTM
struggles to maintain semantics. We suspect this is due to lack
of training data (< 75K pairs) to learn a powerful paraphraser.

16Additionally, we note that weaker pretrained language
models like GPT2-medium (GPT2-md) perform similarly to
GPT2-large, while GPT2-small (GPT2-sm) is notably worse.
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Figure 3: Classifier confusion after style transfer.
Every row shows the classifier label distribution on sen-
tences transferred to the target style (the row label).
The off-diagonal elements show mis-classifications
with intuitive domain similarities, such as (Lyrics, Po-
etry); (AAE, Tweets); (Joyce, Shakespeare).

feed style-specific tokens as input to a single model
to control the output style (Johnson et al., 2017;
Keskar et al., 2019). We adopt this strategy by feed-
ing in the average RoBERTa-large [CLS] vectors
(by running the pretrained classifier on the training
data) as style indicators to a single f iinv. We present
results in Table 3 as –Mult. PP. This strategy is not
as effective as training a different paraphrase model
per style, primarily due to drop in ACC. We hypoth-
esize this is due to a conflict between different style
distributions in a single model.

6 Towards Real-World Style Transfer

All of our experiments and ablations thus far have
been on the Shakespeare and Formality datasets,
which contain just two styles each. To explore
the ability of our system to perform style transfer
between many diverse styles, we create the Corpus
of Diverse Styles (CDS), a new non-parallel style
transfer benchmark dataset with 11 diverse styles
(15M tokens), and use it to evaluate STRAP.

Corpus of Diverse Styles: To create CDS, we
obtain data (Table 5) from existing academic
research datasets (Godfrey et al., 1992; Blodgett
et al., 2016) and public APIs or online collections
like Project Gutenberg (Hart, 1992). We choose
styles that are easy for human readers to identify at
a sentence level (e.g., Tweets or Biblical text), and
the left side of Figure 2 confirms that machines
also cluster CDS into eleven distinct styles. While
prior benchmarks involve a transfer between two
styles, CDS has 110 potential transfer directions.
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Direction Input Output

Tweet → Shak. yall kissing before marriage? And you kiss’d before your nuptial?
Lyrics → AAE It’s a good thing you don’t have bus fare It’s a good thing u aint gettin no ticket
Tweet → Poetry Its so disrespectful I hate itttttt For ’tis so rude, I have a sick regard,
Shak. → Tweet Need you my help? Are yall okay? Like do you need my help??
AAE → Shak. Aint got nooooo holiday spirit frfr No spirit of this holiday, gentle man.
Poetry → Bible For the foul thief is just at your gate. the wicked thief art at thy door.
1990. → Tweet Now I can’t talk to him about it. I dont wanna talk to him abt that
1990. → Poetry I don’t know why, but I sensed there was some-

thing wrong.
Something felt wrong; I knew not why,

Tweet → Bible when ur going thru an episode and cant cope
anymore

when thou art in an episode, and cannot stand it any
more;

1890. → AAE I was just thinking the same thing that you have
expressed.

u said the same thing i thought lol

1990. → 1810. He was being terrorized into making a state-
ment by the same means as the other so-called
“witnesses.”

Terror had been employed in the same manner with the
other witnesses, to compel him to make a declaration.

AAE → Shak. If I got a dollar every time one of my friends
told me they hate me, I’d be rich

I would have been rich, had I but a dollar for every
friend that hath said they hate me.

Joyce → Bible I appeal for clemency in the name of the most
sacred word our vocal organs have ever been
called upon

I beseech thee in the name of the most holy word which
is in our lips, forgive us our trespasses.

Table 4: Example outputs from STRAP trained on our CDS dataset (more generations in Appendix A.11).

Style Size Style Size

Shakespeare 27.5K Lyrics 5.1M
James Joyce 41.2K 1810-1830 216.0K
English Tweets 5.2M 1890-1910 1.3M
AAE Tweets 732.3K 1990-2010 2.0M
Romantic Poetry 29.8K Bible 34.8K
Switchboard 148.8K

Table 5: List of styles in our dataset along with the their
total sizes. The year periods (like “1810-1830”) refer to
sentences from the Corpus of Historical American En-
glish (Davies, 2012). “AAE Tweets” refers to African
American English Tweets corpus from Blodgett et al.
(2016). “Switchboard” is a collection of conversational
speech transcripts from Godfrey et al. (1992). Details
of the collection and examples are in Appendix A.6.

We present dataset examples, details on collection
and style similarity analysis in Appendix A.6.

Diverse paraphrasing normalizes stylized text
With eleven styles, we can better validate the
effectiveness of our diverse paraphraser at normal-
izing input sentences. After training an 11-way
style classifier on CDS using RoBERTa-large,
we observe an accuracy of 88.9% on the original
validation set. After paraphrasing the validation set
with fpara, this classifier only correctly classifies
42.5% sentences, indicating a significant decrease
in recognizable stylistic features. Figure 2 further
demonstrates this normalization effect. Finally,
the magnitude of normalization is lower with the
non-diverse paraphraser (from Section 5), with a
smaller accuracy drop to 51.5% after paraphras-

Shakespeare ↔ English Tweets, CDS

Model ACC SIM FL J(A,S,F)

COPY 0.1 100.0 69.2 0.0
UNMT (2019) 76.7 20.6 37.7 4.4
DLSM (2020) 64.2 19.6 33.1 2.0

STRAP (p = 0.0) 20.3 65.0 81.1 8.7
STRAP (p = 0.6) 31.1 58.1 75.0 10.8
STRAP (p = 0.9) 43.2 54.5 68.3 13.9

Table 6: A controlled comparison between models on
2 styles from CDS using automatic evaluation. ACC is
calculated using our 11-way CDS classifier and SIM is
with input. STRAP greatly outperforms prior work.

ing;17 qualitatively, the diverse model exhibits
more lexical swaps and syntactic diversity.18

Style Transfer on CDS: We measure STRAP’s
performance on CDS using Section 3’s evaluation
methodology. We sample 1K sentences from each
style and use STRAP to transfer these sentences to
each of the 10 other styles. Despite having to deal
with many more styles than before, our system
achieves 48.4% transfer accuracy (on a 11-way
RoBERTa-large classifier), a paraphrase similarity
score of 63.5, and 71.1% fluent generations,
yielding a J(ACC,SIM,FL) score of 20.7. A break-

17Even if we retrain the classifiers on a paraphrased version
of the training set (to model the distribution better), the perfor-
mance is only 65.8% for the diverse model and 72.3% for the
non-diverse model, indicating a loss in style signal.

18On average, the diverse model has 51% unigram F1 word
overlap and 27% word shuffling measured by Kendall’s τB,
compared to 28% unigram F1 and 6% shuffling for the non-
diverse model; Appendix A.7 has a style-wise breakdown.
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Direction Input → Paraphrase → Output Analysis

Shak. → Bible Have you importuned him by any means? →
did you ever try to import him? →
hast thou ever tried to import him?

Misunderstanding the word “importune” —
the model believes it refers to import rather
than harass / bother.

1990. → Tweet. The machine itself is made of little straws of carbon. →
the machine is made of straw. →
Machine made of straw.

Dropping of important semantic words dur-
ing diverse paraphrasing (“carbon”) signif-
icantly warps the meaning of sentences

Swit. → Shak. well they offer classes out at uh Ray Hubbard →
they’re offering a course at Ray Hubbard’s. →
They do offer a course at the house of the Dukedom.

Hallucination of tokens irrelevant to the
input (“house of the dukedom”) to better
reflect style distribution.

Tweet → Swit. Knoxville aint for me → I’m not in Knoxville. →
i don’t know Knoxville

Subtle modifications in semantics since the
models fail to understand their inputs.

Table 7: Representative examples showing the common failure modes of STRAP when evaluated on CDS.

down of style-specific performance is provided in
Appendix A.8. An error analysis shows that the
classifier misclassifies some generations as styles
sharing properties with the target style (Figure 3).

Controlled comparisons: To ground our CDS re-
sults in prior work, we compare STRAP with
baselines from Section 4.2. We sample equal
number of training sentences from two challenging
styles in CDS (Shakespeare, English Tweets) and
train all three models (UNMT, DLSM, STRAP)
on this subset of CDS.19 As seen in Table 6,
STRAP greatly outperforms prior work, especially
in SIM and FL. Qualitative inspection shows
that baseline models often output arbitrary
style-specific features, completely ignoring input
semantics (explaining poor SIM but high ACC).

Qualitative Examples: Table 4 contains several
outputs from STRAP; see Appendix A.11 for more
examples. We also add more qualitative analysis of
the common failures of our system in Table 7. Our
model makes mistakes similar to contemporary text
generation systems — poor understanding of rare
words, dropping / modification of semantic content,
hallucination to better reflect training distribution.

7 Related Work

Unsupervised style transfer is often modeled by
disentangling style & content using attribute clas-
sifiers (Hu et al., 2017; Shen et al., 2017), policy
gradient training (Xu et al., 2018; Luo et al., 2019)
or retrieval-based approaches (Li et al., 2018). Re-
cently, backtranslation has emerged as a method to
model semantic preservation (Prabhumoye et al.,

19We could not find an easy way to perform 11-way style
transfer in the baseline models without significantly modify-
ing their codebase / model due to the complex probabilistic
formulation beyond 2 styles and separate modeling for each
of the 110 directions.

2018), but this method can also warp semantics
as seen in Subramanian et al. (2019); as such, we
only use it to build our paraphraser’s training data
after heavy filtering. Our work relates to recent
efforts that use Transformers in style transfer (Sud-
hakar et al., 2019; Dai et al., 2019). Closely related
to our work is Gröndahl and Asokan (2019), who
over-generate paraphrases using a complex hand-
crafted pipeline and filter them using proximity to
a target style corpus. Instead, we automatically
learn style-specific paraphrasers and do not need
over-generation at inference. Relatedly, Preotiuc-
Pietro et al. (2016) present qualitative style transfer
results with statistical MT paraphrasers. Other, less
closely related work on control & diversity in text
generation is discussed in Appendix A.12.

8 Conclusion

In this work we model style transfer as a controlled
paraphrase generation task and present a simple
unsupervised style transfer method using diverse
paraphrasing. We critique current style transfer
evaluation using a survey of 23 papers and propose
fixes to common shortcomings. Finally, we collect
a new dataset containing 15M sentences from 11
diverse styles. Possible future work includes (1) ex-
ploring other applications of diverse paraphrasing,
such as data augmentation; (2) performing style
transfer at a paragraph level; (3) performing style
transfer for styles unseen during training, using few
exemplars provided during inference.
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A Appendices for “Reformulating
Unsupervised Style Transfer as
Paraphrase Generation”

A.1 PARANMT-50M Filtering Details

We train our paraphrase model in a seq2seq fashion
using the PARANMT-50M corpus (Wieting and
Gimpel, 2018), which was constructed by back-
translating (Sennrich et al., 2016) the Czech side of
the CzEng parallel corpus (Bojar et al., 2016). This
corpus is large and noisy and we aggressively filter
it to encourage content preservation and diversity
maximization. We use the following filtering,

Content Filtering: We remove all sentence pairs
which score lower than 0.5 on a strong paraphrase
similarity model from Wieting et al. (2019).20 We
filter sentence pairs by length, allowing a maxi-
mum length difference of 5 words between paired
sentences. Finally, we remove very short and long
sentences by only keeping sentence pairs with an
average token length between 7 and 25.
Lexical Diversity Filtering: We only preserve
backtranslated pairs with sufficient unigram dis-
tribution difference. We filter all pairs where more
than 50% of words in the backtranslated sentence
can be found in the source sentence. This is com-
puted using the SQuAD evaluation scripts (Ra-
jpurkar et al., 2016). Additionally, we remove sen-
tences with more than 70% trigram overlap.
Syntactic Diversity Filtering: We discard all para-
phrases which have a similar word ordering. We
compare the relative ordering of the words shared
between the input and backtranslated sentence by
measuring the Kendall tau distance (Kendall, 1938)
or the “bubble-sort” distance. We keep all back-
translated pairs which are at least 50% shuffled.21

LangID Filtering: Finally, we discard all sen-
tences where both the input and backtranslated
sentence are classified as non-English using
langdetect.22

Effect of each filter: We adopt a pipelined ap-
proach to filtering. The PARANMT-50M corpus
size after each stage of filtering is shown in Table 8.

20We use the SIM model from Wieting et al. (2019), which
achieves a strong performance on the SemEval semantic text
similarity (STS) benchmarks (Agirre et al., 2016)

21An identical ordering of words is 0% shuffled whereas a
reverse ordering is 100% shuffled.

22This is using the Python port of Nakatani (2010), https:
//github.com/Mimino666/langdetect.

Filter Stage Corpus Size

0. Original 51.41M
1. Content Similarity 30.49M
2. Trigram Diversity 9.03M
3. Unigram Diversity 1.96M
4. Kendall-Tau Diversity 112.01K
5. Length Difference 82.64K
6. LangID 74.55K

Table 8: Steps of filtering conducted on PARANMT-
50M along with its effect on corpus size.

A.2 Generative Model Details

This section provides details of our seq2seq model
used for both paraphrase model and style-specific
inverse paraphrase model. Recent work (Radford
et al., 2019) has shown that GPT2, a massive
transformer trained on a large corpus of unlabeled
text using the language modeling objective, is
very effective in performing more human-like text
generation. We leverage the publicly available
GPT2-large checkpoints by finetuning it on our
custom datasets with a small learning rate. How-
ever, GPT2 is an unconditional language model
having only a decoder network, and traditional
seq2seq setups use separate encoder and decoder
neural network (Sutskever et al., 2014) with
attention (Bahdanau et al., 2014). To avoid training
an encoder network from scratch, we use the
encoder-free seq2seq modeling approach described
in Wolf et al. (2018). where both input and output
sequences are fed to the decoder network separated
with a special token, and use separate segment
embeddings. Our model is implemented using
the transformers library23 (Wolf et al., 2019).
We use encoder-free seq2seq modeling (Wolf et al.,
2018) which feeds the input into the decoder neural
network, separating it with segment embeddings.
We fine-tune GPT2-large to perform encoder-free
seq2seq modeling.

Architecture: Let x = (x1, ..., xn) represent
the tokens in the input sequence and let y =
(ybos, y1, ..., ym, yeos) represent the tokens of the
output sequence, where ybos and yeos corresponds
to special beginning and end of sentence tokens.
We feed the sequence (x1, ..., xn, ybos, y1, ..., ym)
as input to GPT2 and train it on the next-word
prediction objective for the tokens y1, ..., ym, yeos

23https://github.com/huggingface/
transformers

https://github.com/Mimino666/langdetect
https://github.com/Mimino666/langdetect
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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using the cross-entropy loss. During inference,
the sequence (x1, ..., xn, ybos) is fed as input and
the tokens are generated in an autoregressive man-
ner (Vaswani et al., 2017) until yeos is generated.

Every token in x and y is passed through
a shared input embedding layer to obtain a
vector representation of every token. To encode
positional and segment information, learnable
positional and segment embeddings are added to
the input embedding consistent with the GPT2
architecture. Segment embeddings are used to
denote whether a token belongs to sequence x or y.

Other seq2seq alternatives: Note that our
unsupervised style transfer algorithm is agnostic
to the specific choice of seq2seq modeling. We
wanted to perform transfer learning from massive
left-to-right language models like GPT2, and
found the encoder-free seq2seq approach simple
and effective. Future work includes finetuning
more recent models like T5 (Raffel et al., 2019)
or BART (Lewis et al., 2019). These models use
the standard seq2seq setup of separate encoder
/ decoder networks and pretrain them jointly
using denoising autoencoding objectives based on
language modeling.

Hyperparameter Details: We finetune GPT2-
large using NVIDIA TESLA M40 GPUs for 2
epochs using early stopping based on validation set
perplexity. The models are finetuned using a small
learning rate of 5e-5 and converge to a good solu-
tion fairly quickly as noticed by recent work (Li
et al., 2020; Kaplan et al., 2020). Specifically, each
experiment completed within a day of training on
a single GPU, and many experiments with small
datasets took a lot less time. We use a minibatch
size of 10 sentence pairs and truncate sequences
which are longer than 50 subwords in the input or
output space. We use the Adam optimizer (Kingma
and Ba, 2015) with the weight decay fix and using a
linear learning rate decay schedule, as implemented
in the transformers library. Finally, we left-
pad the input sequence to get a total input length of
50 subwords and right-pad output sequence to get
a total output length of 50 subwords. This special
batching is necessary to use minibatches during
inference time. Special symbols are used to pad
the sequences and they are not considered in the
cross-entropy loss. Our model has 774M trainable
parameters, identical to the original GPT2-large.

A.3 Classifier Model Details

We fine-tune RoBERTa-large to build our classifier,
using the official implementation in fairseq. We
use a learning rate of 1e-5 for all experiments with
a minibatch size of 32. All models were trained on
a single NVIDIA RTX 2080ti GPU, with gradient
accumulation to allow larger batch sizes. We train
models for 10 epochs and use early stopping on the
validation split accuracy. We use the Adam opti-
mizer (Kingma and Ba, 2015) with modifications
suggested in the RoBERTa paper (Liu et al., 2019).
Consistent with the suggested hyperparameters, we
use a learning rate warm-up for the first 6% of the
updates and then decay the learning rate.

A.4 OpenNMT Model Details

We train sequence-to-sequence models with atten-
tion based on LSTMs using OpenNMT (Klein
et al., 2017) using their PyTorch port.24 We
mostly used the default hyperparameter settings
of OpenNMT-py. The only hyperparameter we
modified was the learning rate schedule, since our
datasets were small and overfit quickly. For the
paraphrase model, we started decay after 11000
steps and halved the learning rate every 1000 steps.
For Shakespeare, we started the decay after 3000
steps and halved the learning rate every 500 steps.
For Formality, we started the decay after 6000
steps and halved the learning rate every 1000 steps.
These modifications only slightly improved valida-
tion perplexity (by 3-4 points in each case).

We used early stopping on validation perplexity
and checkpoint the model every 500 optimization
steps. The other hyperparameters are the default
OpenNMT-py settings — SGD optimization using
learning rate 1.0, LSTM seq2seq model with global
attention (Luong et al., 2015), 500 hidden units and
embedding dimensions and 2 layers each in the
encoder and decoder.

A.5 More Comparisons with Prior Work

Please refer to Table 12 for an equivalent of Table 1
using BLEU scores.

We present more comparisons with prior work
in Table 13. We use the generated outputs for
the Formality test set available in the public
repository of Luo et al. (2019) (including outputs
from the algorithms described in Prabhumoye
et al., 2018 and Li et al., 2018) and run them on
our evaluation pipeline. We compare the results

24https://github.com/OpenNMT/OpenNMT-py

https://github.com/OpenNMT/OpenNMT-py
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with our formality transfer model used in Table 1
and Table 2. We note significant performance
improvements, especially in the fluency of the
generated text. Note that there is a domain
shift for our model, since we trained our model
using the splits of He et al. (2020) which use the
Entertainment & Music splits of the Formality
corpus. The outputs in the repository of Luo
et al. (2019) use the Family & Relationships split.
It is unclear in the paper of Luo et al. (2019)
whether the models were trained on the Family &
Relationships training split or not.

Other Comparisons: We tried to compare against
other recent work in style transfer based on Trans-
formers, such as Dai et al. (2019) and Sudhakar
et al. (2019). Both papers do not evaluate their
models on the datasets we use (Shakespeare and
Formality), where parallel sentences preserve se-
mantics.

The only datasets used in Dai et al. (2019) were
sentiment transfer benchmarks, which modify se-
mantic properties of the sentence. We attempted
to train the models in Dai et al. (2019) using their
codebase on the Shakespeare dataset, but faced
three major issues 1) missing number of epochs
/ iterations. The early stopping criteria is not im-
plemented or specified, and metrics were being
computed on the test set every 25 training itera-
tions, which is invalid practice for choosing the
optimal checkpoint; 2) specificity of the codebase
to the Yelp sentiment transfer dataset in terms of
maximum sequence length and evaluation, making
it non-trivial to use for any other dataset; 3) de-
spite our best efforts we could not get the model to
converge to a good minima which would produce
fluent text (besides word-by-word copying) when
trained on the Shakespeare dataset.

Similarly, the datasets used in Sudhakar et al.
(2019) modify semantic properties (sentiment, po-
litical slant etc.). On running their codebase on the
Shakespeare dataset using the default hyperparam-
eters, we achieved a poor performance of 53.1%
ACC, 55.2 SIM and 56.5% FL, aggregating to a
J(A,S,F) score of 18.4. Similarly on the Formal-
ity dataset, performance was poor with 41.7% ACC,
67.8 SIM and 67.7% FL, aggregating to J(A,S,F)
score of 18.1. A qualitatively inspection showed
very little abstraction and nearly word-by-word
copying from the input (due to the delete & gen-
erate nature of the approach), which explains the

higher SIM score but lower ACC score (just like
COPY baseline in Table 1). Fluency was low de-
spite GPT pretraining, perhaps due to the token
deletion step in the algorithm.

A.6 Details of our Dataset, CDS
We provide details of our sources, the sizes of
individual style corpora and examples from our
new benchmark dataset CDS in Table 14. We
individually preprocessed each corpus to remove
very short and long sentences, boilerplate text
(common in Project Gutenberg articles) and section
headings. We have added some representative
examples from each style in Table 14. More
representative examples (along with our entire
dataset) will be provided in the project page
http://style.cs.umass.edu.

Style Similarity: In Figure 4 we plot the co-
sine similarity between styles using the averaged
[CLS] vector of the trained RoBERTa-large clas-
sifier (inference over validation set). The off-
diagonal elements show intuitive domain similar-
ities, such as (Lyrics, Poetry); (AAE, Tweets);
(Joyce, Shakespeare) or among classes from the
Corpus of Historical American English.

A.7 Diverse Paraphrasing on CDS
We compare the quality and diversity of the para-
phrases generated by our diverse and non-diverse
paraphrasers on our dataset CDS in Table 16. Note
that this is the pseudo parallel training data for
the inverse paraphrase model (described in Sec-
tion 2.1 and Section 2.4) and not the actual style
transferred sentences. Overall, the diverse para-
phraser achieves high diversity, with 51% unigram
change and 27% word shuffling,25 compared to
28% unigram and 6% shuffling for non-diverse
paraphraser, while maintaining good semantic sim-
ilarity (SIM= 72.5 vs 83.9 for non-diverse) even in
complex stylistic settings.

A.8 Style Transfer Performance on CDS
We provide a detailed breakdown of performance
in different styles of CDS in Table 15. For each of
the 11 target styles, we style transferred 1,000 sen-
tences from every other style and jointly evaluated
the 10,000 generations. Some styles are more suc-
cessfully transferred than others, such as Switch-
board, Lyrics and James Joyce. While wearing the

25The “unigram change” and “word shuffling” refer to the
unigram F1 word overlap and Kendall’s τB scores.

http://style.cs.umass.edu
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Figure 4: Cosine similarities between styles in CDS us-
ing the [CLS] vectors of the RoBERTa-large classi-
fier (normalized to [0, 20]). The off-diagonal elements
show intuitive domain similarities, such as (Lyrics, Po-
etry); (AAE, Tweets); (Joyce, Shakespeare) or among
classes from the COHA corpus.

p value for nucleus sampling, we notice a trend sim-
ilar to the Nucleus sampling trades off ACC for
SIM experiment in Section 5. Increasing the p
value improves ACC at the cost of SIM. However
unlike the Shakespeare and Formality dataset, we
find p = 0.6 the optimal value for the best ACC-
SIM tradeoff.

Note that Fluency scores on this dataset could
be misleading since even the original sentences
from some styles are often classified as disfluent
(Orig. FL). Qualitatively, this seems to happen for
styles with rich lexical and syntactic diversity (like
Romantic Poetry, James Joyce). These styles tend
to be out-of-distribution for the fluency classifier
trained on the CoLA dataset (Warstadt et al., 2019).

A.9 A Survey of Evaluation Methods

We present a detailed breakdown of evaluation
metrics used in prior work in Table 10 and the
implementations of the metrics in Table 11. No-
tably, only 3 out of 23 prior works use an absolute
sentence-level aggregation evaluation. Other works
either perform “overall A/B” testing, flawed corpus-
level aggregation or don’t perform any aggregation
at all. Note that while “overall A/B” testing cannot
be gamed like corpus-aggregation, it has a few is-
sues — (1) it is a relative evaluation and does not
provided an absolute performance score for future
reference; (2) “A/B” testing requires human evalu-

ation, which is expensive and noisy; (3) evaluating
overall performance will require human annotators
to be familiar with the styles and style transfer task
setup; (4) Kahneman (2011) has shown that ask-
ing humans to give a single number for “overall
score” is biased when compared to an aggregation
of independent scores on different metrics. Luckily,
the sentence-level aggregation in Li et al. (2018)
does the latter and is the closest equivalent to our
proposed J(·) metric.

A.10 Details on Human Evaluation

We conduct experiments of Amazon Mechanical
Turk, annotating the paraphrase similarity of 150
sentences with 3 annotators each. We report
the label chosen by two or more annotators,
and collect additional annotations in the case of
total disagreement. We pay workers 5 cents per
sentence pair ($10-15 / hr). We only hire workers
from USA, UK and Australia with a 95% or higher
approval rating and at least 1000 approved HITs.
Sentences where the input was exactly copied
(after lower-casing and removing punctuation) are
automatically assigned the option 2 paraphrase
and grammatical. Even though these sentences
are clearly not style transferred, we expect them
to be penalized in J(ACC,SIM,FL) by poor ACC.
We found that every experiment had a Fleiss
kappa (Fleiss, 1971) of at least 0.13 and up to 0.45
(slight to moderate agreement according to (Landis
and Koch, 1977)). A qualitative inspection showed
that crowdworkers found it easier to judge sentence
pairs in the Formality dataset than Shakespeare,
presumably due to greater familiarity with modern
English. We also note that crowdworkers had
higher agreement for sentences which were
clearly not paraphrases (like the UNMT / DLSM
generations on the Formality dataset).

Calculating Metrics in Table 2: To calculate
SIM, we count the percentage of sentences which
humans assigned a label 1 (ungrammatical para-
phrase) or 2 (grammatical paraphrase). This is
used as a binary value to calculate J(ACC, SIM).
To calculate J(ACC, SIM, FL), we count sentences
which are correctly classified as well as humans
assigned a label of 2 (grammatical paraphrase). We
cannot calculate FL alone using the popular 3-way
evaluation, since the fluent sentences which are not
paraphrases are not recorded.
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A.11 More Example Generations
More examples are provided in Table 9. All
of our style transferred outputs on CDS will
be available in the project page of this work,
http://style.cs.umass.edu.

A.12 More Related Work
Our inverse paraphrase model is a style-controlled
text generator which automatically learns lexical
and syntactic properties prevalent in the style’s
corpus. Explicit syntactically-controlled text
generation has been studied previously using
labels such as constituency parse templates (Iyyer
et al., 2018; Akoury et al., 2019) or learned
discrete latent templates (Wiseman et al., 2018).
Syntax can also be controlled using an exemplar
sentence (Chen et al., 2019; Guu et al., 2018;
Peng et al., 2019). While style transfer requires
the underlying content to be provided as input,
another direction explores attribute-controlled
unconditional text generation (Dathathri et al.,
2020; Keskar et al., 2019; Zeng et al., 2020;
Ziegler et al., 2019).

Diversity in text generation is often encouraged
during inference time via heuristic modifications
to beam search (Li et al., 2016; Vijayakumar et al.,
2018), nucleus sampling (Holtzman et al., 2020)
or submodular optimization (Kumar et al., 2019);
in contrast, we simply filter our training data to
increase diversity. Other algorithms learn to con-
dition generation on latent variables during train-
ing (Bowman et al., 2016), which are sampled from
at inference time to encourage diversity (Jain et al.,
2017; Gupta et al., 2018; Park et al., 2019). Relat-
edly, Goyal and Durrett (2020) promote syntactic
diversity of paraphrases by conditioning over pos-
sible syntactic rearrangements of the input.

http://style.cs.umass.edu
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Direction Input Output

1810. → Swit. She forgot her gold pieces lying on the table in
front of her.

and uh she forgot the gold pieces on the desk

1810. → AAE This story is not well devised, my lord. Lord this story ain’t no good
Poetry → Swit. Why should our young Endymion pine away! i don’t know why we should have such a letdown for

our young Endymion
Tweet → Shak. This is an insult to the Munster’s. Tis an affront to the Munster.
Swit. → 1810. and my lawn is very green and my flowers are

still blooming
I have plenty of green turf and flowers here.

1890. → AAE I want no pursuit when I do my work. I dont wanna chase when im at work
1990. → Joyce “You’re scaring me,” Clara says . ’Tis scare me, says Clara.
Tweet → Bible Can we build AI without losing control over

it?
Can a man build a computer without losing his power?

AAE → 1810. I Use To Think They Were Ugly. I thought them odious–and hateful.
Bible → 1990. hath thy soul lothed Zion? Is Zion a place where you have your soul?
Bible → Tweet This persuasion cometh not of him that calleth

you.
Its not him who comes from. Its who you call

Swit. → AAE um yeah just a second yea just a lil bit
Joyce → Shak. Smell of burn. This is the smoke of a burning.
1990. → Joyce The Second World War, son, ” he answered. SECOND WORLD WAR, son, says he.
1990. → AAE no, I implore you not to consider this option. Naw I asked u not to think bout that option
Tweet → Joyce i wanted to sleep but now i cant sleep is my preferred repose.
1990. → 1810. She ninety-three and she can’t hear too good. She is 93 years of age and cannot hear well yet.
AAE → Poetry y’all play? we spray And weel weel, we’ll spray a’ that.
Joyce → Poetry Now, don’t tell a big fib! And say not so big a lie!
1810. → Bible without first veiling that, I could not sin. And I could not sin without veil.
1890. → Shak. When did we ever find Gaston de Marignac

objectionable?
When was ’t that we found Gaston de Marignac’s foul
faults?

Shak. → 1990. O, much I fear some ill unlucky thing. I was afraid of a lot of misadventures.
Shak. → 1810. By Jesu, a very good blade! The very knife of heaven, Jesu!
Lyrics → 1890 For a thing to explode Oh, oh, oh, for something to blow up!
Lyrics → Bible You are the sun that lights my world Thou art the sun that lighteth mine earth: thou art my

righteousness.
Lyrics → Joyce But now it shouldn’t have to be this way But oughtn’t to be like that.
Swit. → 1810. oh that poor child (sighing) the poor dear little thing.
Swit. → Lyrics you know Karen i wonder if we are recording Karen, I wonder if we’re tapein’
Tweet → Bible Ok will get back to you ASAP! And he said, All right; I will return.
Tweet → Shak. Movies are always funnier in the cinema. It always is more humorous in the theatre.
Lyrics → Poetry You know I still fear the bomb I was yet a-fear’d at the bomb,
Joyce → 1890. Just missed that by a hair. It was a hair-spitting thing I missed.
Joyce → 1810. Me seemeth a dragon man. Hark ye, I’m a dragon man, Me.
Poetry → Bible Of deities or mortals, or of both, Of the gods, and of the people, or of the both of them

together.
Poetry → Lyrics Makes countless thousands mourn! Gonna be a lot of people mourning!
Poetry → Bible My helpless lambs, I trust them wi’ him. Surely he will feed my lambs in safety.
1890. → Poetry Stark was sentenced to ten years’ imprison-

ment, Gibbon to five.
Stark was sentence’d ten yeares, Gibbon five;

1890. → Swit. I want no pursuit when I do my work. i don’t want to chase after when i’m at work
Tweet → Bible The way this is set up has me dying This death cometh because of this.
Tweet → Swit. Yay! Ill order them then! I dont have patience

to wait on them!
now i’m gonna order those

Lyrics → Joyce And all the guns is in Kesha’s name All your gunsees belong to Kesha.
AAE → 1810. boredom gonna be the death of me one day I shall die, one day, of the insupportable want of amuse-

ment.
AAE → 1890. That’s just what I needed to see.... Thank Ya

Lord
Thank you, Lord; that is just what I was expecting.

AAE → Swit. okay ii will see you later yeah see you later bye
Poetry → Tweet Fam’d heroes! had their royal home: royal bloods heroes:
Tweet → Bible Check out this new painting that I uploaded to! Look upon my new picture that I have set before thee!
Swit. → Shak. so uh what do you wear to work And what dost thou wear for thy work?
Tweet → Poetry Now I gotta delete it O now, must I part? And can I now erase
Tweet → 1810. #India is now producing the worlds cheapest

solar power #energy
Now is India’s solar power cheapest of all the world.

Poetry → Joyce Away, away, or I shall dearly rue O offside, away, or do I am rather sad.
Tweet → Swit. Oh shit ima be a senior so uh i got to the senior level of the business

Table 9: More example outputs from our model STRAP trained on our dataset CDS. Our project page will provide
all 110k style transferred outputs generated by STRAP on CDS.
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Paper Automatic Human

ACC SIM FL CA SA ACC SIM FL CA SA

Hu et al. (2017) X
Shen et al. (2017) X X X A/B
Shetty et al. (2018) X A/B
Fu et al. (2018) X X X
Li et al. (2018) X X X X X X
Zhang et al. (2018) X X X X X X
Nogueira dos Santos et al. (2018) X X X
Prabhumoye et al. (2018) X A/B X
Xu et al. (2018) X X X X X X
Logeswaran et al. (2018) X X X X X X
Yang et al. (2018) X X X
Subramanian et al. (2019) X X X X X X A/B
Luo et al. (2019) X X X X X X X X
Pang and Gimpel (2019) X X X X A/B A/B A/B A/B
Ma et al. (2019) X X X X X X
Dai et al. (2019) X X X A/B A/B A/B
Sudhakar et al. (2019) X X X A/B A/B A/B A/B
Mir et al. (2019) X X X X X X
Gröndahl and Asokan (2019) X X X
Tikhonov et al. (2019) X X
Syed et al. (2020) X X
Madaan et al. (2020) X X X X X
He et al. (2020) X X X

Ours X X X X X X X X

Table 10: Survey of evaluation methods used in 23 prior papers. We check whether prior work evaluate their
algorithm on transfer accuracy (ACC), semantic similarity (SIM), fluency (FL), corpus-level aggregation (CA) and
sentence-level aggregation (SA). We use the “A/B” to denote relative comparisons via A/B testing between genera-
tions from the baseline and the proposed system, rather than absolute performance numbers. Specific implementa-
tions of the metrics have been provided in Table 11. We do not include Pang (2019) since it’s a survey of existing
evaluation methods.
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Paper Automatic Human

ACC SIM FL ACC SIM FL

Hu et al. (2017) L-CNN
Shen et al. (2017) CNN Likert-4 Likert-4
Shetty et al. (2018) RNN/CNN METEOR A/B
Fu et al. (2018) LSTM GloVE Likert-3
Li et al. (2018) LSTM BLEU Likert-5 Likert-5 Likert-5
Zhang et al. (2018) GRU BLEU Likert-5 Likert-5 Likert-5
Nogueira dos Santos et al. (2018) SVM GloVE PPL
Prabhumoye et al. (2018) CNN A/B Likert-4
Xu et al. (2018) CNN BLEU Likert-10 Likert-10
Logeswaran et al. (2018) CNN BLEU PPL Likert-5 Likert-5 Likert-5
Yang et al. (2018) CNN BLEU PPL
Subramanian et al. (2019) fastText BLEU PPL Binary Likert-5 Likert-5
Luo et al. (2019) CNN BLEU Likert-5 Likert-5 Likert-5
Pang and Gimpel (2019) CNN GloVE PPL A/B A/B A/B
Ma et al. (2019) CNN BLEU PPL Likert-5 Likert-5 Likert-5
Dai et al. (2019) fastText BLEU PPL A/B A/B A/B
Sudhakar et al. (2019) fastText GLEU PPL A/B A/B A/B
Mir et al. (2019) EMD GloVE* Classify Likert-5* Likert-5* Binary*
Gröndahl and Asokan (2019) LSTM/CNN METEOR
Tikhonov et al. (2019) CNN BLEU
Syed et al. (2020) FineGrain BLEU
Madaan et al. (2020) AWD-LSTM METEOR Likert-5 Likert-5 Likert-5
He et al. (2020) CNN BLEU PPL

Ours RoBERTa-L SIM-PP Classify Binary Binary

Table 11: Survey of implementations of evaluation metrics to measure Accuracy (ACC), Similarity (SIM) and
Fluency (FL) used in 23 prior papers. For a cleaner version of this table with aggregation information, see Table 10.
The * marks in Mir et al. (2019) denote a carefully designed unique implementation. We do not include Pang
(2019) since it’s a survey of existing evaluation methods.

Model Formality Shakespeare
ACC SIM FL GM(A,S,F) J(A,S,F) ACC SIM FL GM(A,S,F) J(A,S,F)

COPY 5.2 41.8 88.4 26.8 0.2 9.6 20.1 79.1 24.8 0.1
NAÏVE 49.7 22.1 89.4 44.4 2.4 49.9 10.5 78.9 34.6 1.1
REF 93.3 100 89.7 94.2 88.2 90.4 100 79.1 89.4 67.2

UNMT 78.5 15.1 52.5 39.7 11.7 70.5 7.9 49.6 30.2 1.7
DLSM 78.0 18.5 53.7 42.6 9.5 71.1 12.5 49.4 35.2 2.0

STRAP (p = 0.0) 67.7 28.8 90.4 56.1 19.3 71.7 10.3 85.2 39.8 5.9
STRAP (p = 0.6) 70.7 25.3 88.5 54.1 17.2 75.7 8.8 82.7 38.1 5.4
STRAP (p = 0.9) 76.8 17.0 77.4 46.6 12.2 79.8 6.1 71.7 32.7 3.4

Table 12: A table equivalent to Table 1 but using BLEU scores for SIM instead of the paraphrase similarity model
from Wieting et al. (2019). The Formality dataset had 4 available reference sentences whereas the Shakespeare
dataset had only 1 available reference sentence. Our system STRAP significantly beats prior work (UNMT, DLSM)
on J(·) metrics even with BLEU scores.
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Model ACC (A) SIM (S) FL (F) J(A,S) J(A,S,F)

BL PP BL PP BL PP

COPY 8.0 32.6 80.9 90.1 0.4 7.1 0.3 6.4
REF 87.8 100 100 90.1 91.1 87.8 83.5 78.9
NAÏVE 67.9 10.7 32.0 91.5 1.7 9.3 1.5 8.5

BT (Prabhumoye et al., 2018) 47.4 1.3 21.1 8.0 0.7 11.4 0.0 1.3
MultiDec (Fu et al., 2018) 26.0 12.0 36.9 15.1 1.4 8.9 0.0 1.5
Del. (Li et al., 2018) 24.2 30.1 53.5 20.8 3.1 10.2 0.0 1.6
Unpaired (Xu et al., 2018) 53.9 1.6 16.3 34.9 0.4 10.9 0.0 2.2
DelRetri. (Li et al., 2018) 52.8 21.9 47.6 16.3 11.9 23.4 0.2 4.2
CrossAlign. (Shen et al., 2017) 59.0 3.3 25.0 31.7 2.0 14.9 0.3 5.2
Retri. (Li et al., 2018) 90.0 0.5 9.0 62.1 0.5 8.3 0.3 5.5
Templ. (Li et al., 2018) 37.1 36.4 67.8 32.3 11.9 23.7 1.3 7.8
DualRL (Luo et al., 2019) 51.8 45.0 65.1 59.0 14.6 29.9 8.1 21.7
UNMT (Zhang et al., 2018) 64.5 34.4 64.8 45.9 28.2 41.2 14.7 22.1

STRAP (p = 0.0)* 57.7 31.1 69.7 93.8 19.5 40.8 18.3 38.7
STRAP (p = 0.6)* 63.4 26.5 66.7 91.4 18.3 43.0 17.1 40.0
STRAP (p = 0.9)* 70.3 17.3 59.0 81.4 13.6 41.6 11.8 34.3

Table 13: More comparisons against prior work on the Formality dataset (Rao and Tetreault, 2018) using the
outputs provided in the publicly available codebase of Luo et al. (2019) using both BLEU score (BL) and paraphrase
similarity (PP). This model uses the Family & Relationships split of the Formality dataset whereas (He et al., 2020)
used the Entertainment & Music split. Hence, we have retrained our RoBERTa-large classifiers to reflect the new
distribution. *Note: While our system significantly outperforms prior work, we re-use the formality system used
in Table 1 and Table 2 for these results, which was trained on Entertainment & Music (consistent with He et al.
(2020)). There could be a training dataset mismatch between our model and the models from Luo et al. (2019),
since the Formality dataset has two domains. This is not clarified in Luo et al. (2019) to the best of our knowledge.
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Style Train Dev Test Source Examples

Shakespeare 24,852 1,313 1,293 Shakespeare split of Xu et al.
(2012).

1. Why, Romeo, art thou mad?
2. I beseech you, follow straight.

English Tweets 5,164,874 39,662 39,690 A random sample of English
tweets collected on 8th-9th July,
2019 using Twitter APIs.

1. Lol figures why I dont wanna
talk to anyone rn
2. omg no problem i felt bad
holding it! i love youuuu

Bible 31,404 1,714 1,714 The English Bible collected
from Project Gutenberg (Hart,
1992) (link).

1. Jesus saith unto her, Woman,
what have I to do with thee?
2. Wherefore it is lawful to do
well on the sabbath days.

Romantic
Poetry

26,880 1,464 1,470 The Romantic section of the Po-
etry bookshelf on Project Guten-
berg (link).

1. There in that forest did his
great love cease;
2. But, oh! for Hogarth’s magic
pow’r!

Switchboard 145,823 1,487 1,488 Conversational speech tran-
scripts (link) from the Switch-
board speech recognition
corpus (Godfrey et al., 1992).

1. uh-huh well we’re not all like
that um
2. well yes i i well i- i don’t think
i have the time to really become
a student in every article

AAE (African
American
English) Tweets

717,634 7,316 7,315 Using the geo-located tweet cor-
pus collected by Blodgett et al.
(2016).

1. ay yall everything good we
did dat...
2. I know data right, it don’t get
more real than that.

James Joyce 37,082 2,054 2,043 Two novels (Ulysses,
Finnegans) of James Joyce from
Project Gutenberg (link) and the
Internet Archive (link).

1. At last she spotted a weeny
weeshy one miles away.
2. chees of all chades at the
same time as he wags an an-
tomine art of being rude like the
boor.

Lyrics 4,588,522 252,368 252,397 Music lyrics dataset from
MetroLyrics, used in a Kaggle
competition (link).

1. I gotta get my mind off you,
2. This is it, we are, baby, we
are one of a kind

1810-1830 his-
torical English

205,286 5,340 5,338 1810-1830 in the Corpus
of Historical American En-
glish (Davies, 2012) using
fiction, non-fiction and maga-
zine domains (link).

1. The fulness of my fancy ren-
ders my eye vacant and inactive.
2. What then do you come hither
for at such an hour?

1890-1910 his-
torical English

1,210,687 32,024 32,018 1890-1910 in the Corpus of His-
torical American English using
fiction, non-fiction and maga-
zine domains (link).

1. Nor shall I reveal the name
of my friend; I do not wish to
expose him to a torrent of abuse.
2. You know olive oil don’t give
the brightest illumination.

1990-2010 his-
torical English

1,865,687 48,985 48,982 1990-2010 in the Corpus of His-
torical American English using
fiction, non-fiction and maga-
zine domains (link).

1. They were, in fact, tears of
genuine relief.
2. I don’t know why, but I sensed
there was something wrong.

Total 14,018,731 393,727 393,748

Table 14: Details of our new benchmark dataset CDS along with representative examples. Our dataset contains
eleven lexically and syntactically diverse styles and has a total of nearly 15M sentences, an order of magnitude
larger than previous datasets. We will provide more representative examples along with our entire dataset in the
project page http://style.cs.umass.edu.

http://www.gutenberg.org/cache/epub/10/pg10.txt
https://www.gutenberg.org/wiki/Poetry_(Bookshelf)#Romantic
https://www.isip.piconepress.com/projects/switchboard/
http://www.gutenberg.org/ebooks/4300
https://archive.org/stream/finneganswake00joycuoft/finneganswake00joycuoft_djvu.txt
https://www.kaggle.com/gyani95/380000-lyrics-from-metrolyrics
https://www.english-corpora.org/coha
https://www.english-corpora.org/coha
https://www.english-corpora.org/coha
http://style.cs.umass.edu
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Split Orig. ACC Orig. FL Model ACC (A) SIM (S) FL (F) J(A,S) J(A,S,F)

AAE Tweets 87.6 56.4 Ours (p = 0.0) 21.0 70.1 71.6 12.6 8.3
Ours (p = 0.6) 32.5 65.7 63.5 18.3 10.2
Ours (p = 0.9) 46.1 57.8 45.9 23.6 9.8

Bible 98.3 87.5 Ours (p = 0.0) 48.0 58.4 81.2 24.7 20.9
Ours (p = 0.6) 52.5 55.1 79.8 25.7 21.3
Ours (p = 0.9) 56.9 49.4 74.0 25.3 19.3

COHA 1810s-1820s 83.0 89.1 Ours (p = 0.0) 25.9 66.5 84.5 16.4 13.7
Ours (p = 0.6) 34.0 63.0 81.5 20.1 16.0
Ours (p = 0.9) 42.7 57.3 73.6 22.9 16.5

COHA 1890s-1900s 76.5 91.2 Ours (p = 0.0) 36.1 68.9 86.7 23.7 21.2
Ours (p = 0.6) 41.1 65.7 83.8 25.5 22.1
Ours (p = 0.9) 44.3 59.4 72.0 25.0 19.2

COHA 1990s-2000s 86.9 96.8 Ours (p = 0.0) 40.4 69.0 87.7 26.6 24.4
Ours (p = 0.6) 46.1 65.6 86.0 28.9 26.3
Ours (p = 0.9) 46.1 59.4 76.1 26.1 21.7

English Tweets 80.7 79.9 Ours (p = 0.0) 20.0 71.0 79.1 13.5 11.0
Ours (p = 0.6) 28.9 67.5 72.2 18.1 13.7
Ours (p = 0.9) 40.8 60.0 55.5 22.7 13.4

James Joyce 87.1 48.2 Ours (p = 0.0) 43.0 69.6 79.8 28.7 22.0
Ours (p = 0.6) 52.2 63.7 62.8 32.0 29.6
Ours (p = 0.9) 63.6 54.8 40.5 33.5 11.3

Lyrics 88.7 78.9 Ours (p = 0.0) 51.9 71.6 79.4 35.6 29.0
Ours (p = 0.6) 53.4 68.6 71.4 34.8 26.0
Ours (p = 0.9) 53.3 62.1 51.9 31.4 18.1

Romantic Poetry 93.8 40.2 Ours (p = 0.0) 55.0 63.8 58.9 33.5 17.2
Ours (p = 0.6) 62.4 60.3 51.8 35.6 16.2
Ours (p = 0.9) 69.8 55.3 40.3 36.8 13.0

Shakespeare 86.1 59.9 Ours (p = 0.0) 36.8 65.5 76.9 21.7 15.4
Ours (p = 0.6) 52.1 58.6 65.4 28.2 16.6
Ours (p = 0.9) 63.7 48.9 44.2 29.3 11.3

Switchboard 99.7 63.1 Ours (p = 0.0) 62.9 67.4 77.0 40.8 32.0
Ours (p = 0.6) 77.2 63.7 64.2 47.5 30.2
Ours (p = 0.9) 84.9 56.6 44.0 46.8 20.1

Overall 88.0 71.9 Ours (p = 0.0) 40.1 67.4 78.4 25.3 19.6
Ours (p = 0.6) 48.4 63.4 71.1 28.6 20.7
Ours (p = 0.9) 55.7 56.5 56.2 29.4 15.8

Table 15: A detailed performance breakup when transferring to each style in CDS from the other 10 styles. We test
three nucleus sampling (Holtzman et al., 2020) strategies with our trained model by varying the p value between
0.0 (greedy) and 1.0 (full sampling). For reference, the classification accuracy (Orig. ACC) and fluency (Orig. FL)
of original sentences in the target style corpus are provided.
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Diverse Paraphraser Non-Diverse Paraphraser
Split Similarity (↑) Lexical (↓) Syntactic (↓) Similarity (↑) Lexical (↓) Syntactic (↓)

AAE Tweets 65.1 44.7 0.43 74.3 66.4 0.82
Bible 74.6 48.5 0.55 88.3 73.5 0.92
COHA 1810s-1820s 74.0 50.6 0.51 86.3 71.8 0.92
COHA 1890s-1900s 75.3 52.0 0.50 88.2 75.3 0.93
COHA 1990s-2000s 77.6 57.4 0.53 89.9 80.7 0.95
English Tweets 73.1 52.4 0.50 82.8 75.7 0.91
James Joyce 71.5 47.8 0.35 82.4 69.8 0.82
Lyrics 74.5 52.8 0.52 86.7 78.6 0.92
Romantic Poetry 72.3 46.3 0.44 81.3 67.1 0.86
Shakespeare 67.9 38.7 0.23 81.4 63.4 0.75
Switchboard 71.6 50.1 0.55 81.1 72.4 0.90

Overall 72.5 49.2 0.46 83.9 72.3 0.88

Table 16: A detailed style-wise breakup of the diverse paraphrase quality in CDS (the training data for the
inverse paraphrase model, described in Section 2.1 and Section 2.4). The ideal paraphraser should score lower on
“Lexical” and “Syntactic” overlap and high on “Similiarity”. Overall, our method achieves high diversity (51%
unigram change and 27% word shuffling, compared to 28% unigram and 6% shuffling for non-diverse), while
maintaining good semantic similarity (SIM= 72.5 vs 83.9 for non-diverse) even in complex stylistic settings. We
measure lexical overlap in terms of unigram F1 overlap using the evaluation scripts from Rajpurkar et al. (2016).
Syntactic overlap is measured using Kendall’s τB (Kendall, 1938) of shared vocabulary. A τB = 1.0 indicates
no shuffling whereas a value of τB = −1.0 indicates 100% shuffling (complete reversal). Finally, the SIM model
from Wieting et al. (2019) is used for measuring similarity.


