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Abstract

Emojis are able to express various linguistic
components, including emotions, sentiments,
events, etc. Predicting the proper emojis as-
sociated with text provides a way to summa-
rize the text accurately, and it has been proven
to be a good auxiliary task to many Natural
Language Understanding (NLU) tasks. La-
bels in existing emoji prediction datasets are
all passage-based and are usually under the
multi-class classification setting. However, in
many cases, one single emoji cannot fully
cover the theme of a piece of text. It is thus
useful to infer the part of text related to each
emoji. The lack of multi-label and aspect-
level emoji prediction datasets is one of the
bottlenecks for this task. This paper annotates
an emoji prediction dataset with passage-level
multi-class/multi-label, and aspect-level multi-
class annotations. We also present a novel an-
notation method with which we generate the
aspect-level annotations. The annotations are
generated heuristically, taking advantage of
the self-attention mechanism in Transformer
networks. We validate the annotations both au-
tomatically and manually to ensure their qual-
ity. We also benchmark the dataset with a pre-
trained BERT model.

1 Introduction

Emojis have become crucial components of writ-
ten language. Emojis were initially designed to
express emotions or feelings, e.g., for a smiley
face, and they have grown to be a large family of
over 2,000 icons over the years which can express
not only emotions but a wide range of objects or
actions, e.g., for a gift and for celebrations.
Compared to words, emojis have the merit of pre-
serving information more densely. For example,
carries the same meaning as the phrase “laughing
with tears in eyes”. Additionally, the byte-level
encoding of subtle linguistic expressions makes it

easier to discriminate complicated feelings, e.g.,
the bond between and is clearly weaker than
their phrasal explanations “laughing with tears in
eyes” and “crying loudly” due to the similarity be-
tween “tear” and “crying”. These characteristics of
emojis aid in accurate summarization of text, thus
benefiting natural language understanding (NLU)
tasks.

Felbo et al. (2017) define the emoji prediction
task by finding the most appropriate emoji(s) sum-
marizing a piece of text. They also show with
experiments that language representations learned
on the emoji prediction task can boost the perfor-
mance of emotion recognition, sentiment analysis,
and sarcasm detection tasks. Consequently, using
emoji prediction as a bridge to solve other natu-
ral language processing (NLP) tasks appears to
be effective and promising. However, the emoji
prediction task is yet far from being well estab-
lished. First and foremost, as a classification task,
there is not a set of labels agreed upon by previ-
ous research. To the best of our knowledge, all
the existing papers on emoji prediction use either
a handcrafted emoji set (Felbo et al., 2017) or the
most frequent emojis in their individual datasets
(Barbieri et al., 2018c,b). Handcrafted emoji sets
are usually limited in size and topics (usually lim-
ited to emotional emojis), while frequency-based
emoji sets are dataset-specific. The lack of a stan-
dard label set makes it difficult to evaluate and
compare emoji prediction models, hampering the
research on emoji prediction and its interactions
with other NLP tasks. To solve this problem, we
use an emoji list from the unicode office 1 as the
label set for the emoji prediction task. This emoji
list includes 1,467 emojis in total, ordered by the
median frequency of their use from multiple re-
sources. We believe using this emoji list is good

1https://home.unicode.org/emoji/emoji-frequency/
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for standardizing the task since it is open to all re-
searchers and is not influenced by how we sample
the data.

The second problem with emoji prediction is
that existing labeled datasets are either too small in
scale or not publicly available. This often results
from the policy of social media platforms on using
their data and the constantly changing nature of
posts on these platforms, e.g., post deletion and
edits. To address the problem of data unavailability
or expiration, we annotate the PAN-19 Celebrity
Profiling corpus (Wiegmann et al., 2019), a tweet-
based corpus, which is large and available to all
researchers. We provide three types of annotations
in this paper. Existing emoji prediction datasets are
almost all annotated on the passage-level under the
multi-class classification setting, which means each
record contains exactly one tweet and one emoji.
While we also release this type of annotation, we
additionally provide passage-level multi-label and
aspect-level multi-class classification annotations.
Annotations for the passage-level multi-label classi-
fication setting are similar to the multi-class setting,
but with possibly multiple emojis in each record
(i.e., a tweet could be associated with multiple emo-
jis). We introduce aspect-level labels to the emoji
prediction task to enable a finer-grained analysis
of the functions of emojis in tweets. Each emoji in
these annotations points to a span of its correspond-
ing text instead of the entire tweet. Text fractions
associated with different emojis in the same tweet
may overlap with each other.

Given the large size of our dataset, all three types
of annotations are generated automatically using
heuristics or with the help of a Transformer-based
model. The assumption underlying the passage-
level annotations is that the text fully covers the
meanings of emojis in a tweet. Thus we extract
the emojis appearing in the text as passage-level
labels, as (Felbo et al., 2017) do. Under the multi-
class classification setting, a record is duplicated
and assigned different emojis if it contains multiple
emojis. The aspect-level annotations are created
based on passage-level multi-class classification
labels. Since the attention maps in a Transformer-
based model reflect the interrelations of each word
pair, we are able to evaluate the contribution of each
word to a predicted emoji under the multi-class
classification setting. We then combine the labels
based on tweets to form the aspect-level multi-class
annotations for the dataset. We will introduce the

annotation methods in more detail in Section 3.2.
The contributions of this paper are three-fold.

First, we provide a large emoji list to be used as
a label set for the emoji prediction task. These
emojis are all frequently-used and meaningful,
benefiting further research on the emoji prediction
task and its connections to other NLP tasks.
Second, we introduce a data annotation method
based on the self-attention mechanism in Trans-
former networks (Vaswani et al., 2017). The
method is designed specifically for annotating
aspect-based labels and can potentially be used on
any NLP task.
Third, we provide three types of annotations for
emoji prediction based on a publicly available
tweet dataset. Besides the commonly used
tweet-level2 multi-class classification labels, our
annotations include passage-level multi-label and
aspect-level multi-class classification labels for
better understanding of the linguistic roles of
emojis.

We release a carefully curated (both manually
and automatically) emoji prediction dataset based
on the 64 top-ranked emojis in our emoji list. 3

2 Related Work

The study of emoji usage in textual data has seen
a rise in recent years. Most related research are
done over Twitter, Gab, or Microblog data since
the use of emojis is more common on social me-
dia. Mahajan and Shaikh (2019) compared the way
emojis were used in Twitter and Gab posts, and
they claimed that emojis with negative sentiment
scores were more frequently used on Gab than the
other. The use of emojis on Twitter also appeared
to be more balanced compared to Gab in posts
related to the same event, i.e., the most frequent
emoji counts for 19.79% of total emoji usage on
Gab and 6.28% on Twitter. We base our research
on a Twitter dataset for the balanced emoji usage
and more neutral points of view.

Since the amount of unique emojis was large,
early research treated emojis as special word-level
tokens and examined the linguistic roles with
coarse-grained classification objectives, for exam-
ple, predicting whether an emoji was used redun-
dantly in its context (Donato and Paggio, 2018)

2In this paper, we use tweet-level and passage-based anno-
tations interchangeably.

3Available upon request.
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or classifying the linguistic purposes of emojis
(Na’aman et al., 2017). With the help of Recur-
rent Neural Networks (RNNs), Felbo et al. (2017)
and Barbieri et al. (2018c) could predict proper
emojis from tweet posts. Going one step further,
Barbieri et al. (2018a) combined image and text fea-
tures for predicting emojis. Due to the overly large
amount of data required to train neural-network-
based classifiers with tens or even hundreds of la-
bels, most emoji prediction datasets were labeled
automatically, using heuristics or pre-defined rules.
The logic previous researchers used to label these
datasets were simple, assuming that every emoji
appearing in a social media post qualified as a label
of the text. Our work also relies on this assumption
since the data we use consists of tweets posted by
authorized accounts, who are not likely to often
use emojis arbitrarily or randomly. We also extend
the annotation method to be able to generate more
complex, aspect-level annotations automatically.

Additionally, it is commonly agreed that emo-
jis are closely related to emotions, sentiments, sar-
casm, irony, etc. Felbo et al. (2017) showed that the
language representations learned from the emoji
prediction task were useful in emotion recogni-
tion, sentiment analysis, and sarcasm detection
tasks. Hayati et al. (2019) designed experiments
to show the interconnections between emoji usage
and ironic expressions. Singh et al. (2019) also
evaluated the influence of emojis on irony detec-
tion and sentiment analysis tasks, but they replaced
emojis with descriptive text in this process. Based
on previous knowledge about emojis and the emoji
prediction task, we also use sentiment analysis,
emotion recognition, and formality classification
tasks to validate the quality of our annotations in
this paper.

3 Annotation Method

We annotate tweets for the emoji prediction task in
this paper. For clarity, we refer to each tweet in the
dataset by t = {w1, w2, ..., wn} of length n and an
emoji set E = {e1, e2, ..., em} of size m, where
wi is the i− th word in t and ej is the j− th emoji
in E. The three settings of this task are formally
defined as follows.
Passage-level multi-class classification: Predict
the best ej most closely related to t.
Passage-level multi-label classification: Predict
whether each ej ∈ E is associated with t closely
enough.

Figure 1: Interpretation of a self-attention head. Q, K,
and V are query, key, and value matrices, respectively.
The figure is cited from Vaswani et al. (2017).

Aspect-level multi-class classification: Given
t and p subsets of t, each denoted as sq =
{w′

1, w
′
2, ..., w

′
k} where w′

l ∈ t for all 1 ≤ l ≤ k
and 1 ≤ q ≤ p, predict the best ej mostly closely
related to sq.
This is an extension to our earlier work (Ma et al.,
2020) in which tweets are labeled on passage-level
only, and no official emoji list is used to standardize
the annotations. The passage-level classification
datasets are annotated directly using the emojis ap-
pearing in each tweet. Under the multi-class classi-
fication setting, we duplicate the tweets if they are
bond to multiple emojis and use one emoji to label
each copy. For the aspect-level annotations, each
record is identified by a tweet and an aspect text
piece. We generate the aspect-level annotations
with the help of a Transformer-based model. Emo-
jis are removed from the text in all three settings
in case that neural models trained on our datasets
directly copy and paste the emojis from text into
predictions.

3.1 Transformer Networks

The core of Transformer networks is the self-
attention mechanism. Figure 1 displays the struc-
ture of a self-attention head. In an attention head,
each word gets its query, key, and value vectors
by multiplying the Q, K, and V matrices with its
representation vector. The attention score vector
of a word is generated with the dot product be-
tween its query vector and the key vector of all
the words in the same tweet. We get the atten-
tion map by stacking the attention vectors together.
In a Transformer-based model, there are usually
multiple attention heads on each layer (16 in the
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bert-large-cased model we use). According to past
studies about Transformer networks, the highest
layers of a Transformer model encode mainly task-
specific features for predictions (Kovaleva et al.,
2019), while shallower layers extract fundamental
and low-level linguistic features (e.g., the middle
Transformer layers attend mostly to syntactic fea-
tures (Vig and Belinkov, 2019; Hewitt and Man-
ning, 2019)). Thus we rely on the mean of all the
attention maps on the last layer of a Transformer-
based model to represent the token-level interrela-
tions corresponding to each emoji label.

BERT (Devlin et al., 2019) is a family of pre-
trained Transformer-based models. In BERT archi-
tecture, predictions are conditioned on the represen-
tation of the “[CLS]” token on its last layer. Thus,
we are able to evaluate the contribution of each
word to the final prediction by looking at how heav-
ily the “[CLS]” token attends on the other words.
To be specific, we use the pre-trained bert-large-
cased model in all our experiments. It is worth
noting that any self-attention-based neural model
potentially fits our annotation framework. We pick
the bert-large-cased model in our experiments be-
cause it performs the best on the 64-label single-
and multi-label emoji prediction tasks, beating the
bert-base models and two XLNet models.

3.2 Attention-based Automatic Annotation
Method

Based on the observation that important tokens to a
prediction made by BERT are heavily attended by
the “[CLS]” token, we design the following steps
in sequence, to annotate an aspect-level multi-class
emoji prediction dataset.

3.2.1 Data Preparation
We use the 64 top-ranked emojis in our emoji list
to annotate an aspect-level dataset. The selected
emojis are shown in Table 1. We limit to the
64 emojis to allow for manual quality inspections
of the annotations. As the first step, we remove
tweets not containing any of the 64 emojis. Tweets
shorter than five words are also discarded since
most short tweets are formed only by mentions,
retweets, URLs, and hashtags. This may unavoid-
ably remove some meaningful short tweets, e.g.,
“Good night.”. But generally, these tweets form
one aspect as a whole, reducing the aspect-level
annotations to tweet-level annotations. URLs and
hashtags are replaced with #URL# and #HASH-
TAG# tokens as well to reduce noise. To avoid
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Figure 2: Attention score distribution in an example
sentence regarding one specific emoji (the loudly cry-
ing face).
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Figure 3: An example of aspect-level annotation results.
Bold words connected to the emoji are annotated as the
aspect for the given emoji.

dominating classes in the dataset, we balance the
number of records in each class by reducing the
number of tweets associated with frequent emojis.
We set the threshold to be 10,000 records. Tweets
having labels in the classes with less than 10,000
instances are all preserved, while the rest are ran-
domly pruned. Table 1 also displays the number of
times each emoji appears in the balanced dataset.
Duplicated emojis in the same tweet do not count
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45,846 76,301 17,369 16,260

28,854 31,765 9,935 13,164

23,436 34,739 20,049 20,651

14,127 9,975 23,349 9,938

9,939 15,670 9,937 19,471

9,936 9,936 18,544 33,299

18,924 27,593 9,941 9,940

9,935 14,134 9,943 12,378

9,935 17,066 9,953 9,936

16,554 12,021 12,297 9,999

9,938 9,945 31,797 9,936

9,934 9,935 9,977 9,936

9,941 9,934 8,145 14,127

9,936 9,939 9,936 11,433

9,934 9,934 9,935 10,006

4,807 6,780 9,024 11,496

Table 1: The emoji list we use to annotate our dataset in
this paper. The number of records related to each emoji
is also noted.

for multiple occurrences.
The bert-large-cased model achieves 41.44% in

F-1 score when evaluated on the entire dataset un-
der the multi-class classification setting, which is
too low to generate proper aspect-level annotations.
To enable the model to learn better representations
of the tweets in this dataset, we split our dataset
into 64 binary classification subsets. In each subset,
we choose all the tweets labeled with one specific
emoji as positive examples. We generate equal
numbers of negative examples by randomly sam-
pling the same amount of tweets from the other
emoji groups. For example, as there are 76,301
tweets labeled with the emoji in our dataset, we

81.63 97.14 88.91 90.06

80.92 86.44 86.94 93.16

89.12 81.44 83.02 90.58

96.13 87.20 91.37 82.04

88.12 86.39 87.18 84.57

93.81 85.03 83.81 95.38

92.05 89.74 91.46 88.15

81.94 83.40 91.66 83.99

88.65 94.78 86.42 84.06

80.30 85.23 86.83 93.80

95.20 81.29 88.38 94.18

91.61 90.40 83.10 89.34

91.64 91.79 88.64 89.71

88.49 90.56 97.32 95.43

92.43 95.13 93.46 87.36

80.59 88.52 87.10 94.69

Table 2: The evaluation scores of a bert-large-cased
model on 64 binary classification datasets we construct.
The scores are in terms of F-1 score. The emojis are
sorted by frequency.

sample 1,211 tweets randomly from tweets labeled
with every of the rest 63 emojis to form the nega-
tive examples. This results in a binary classification
dataset for with 152,594 records. The same pro-
cess is repeated to generate 64 binary classification
datasets.

3.2.2 Model Fine-tuning
The bert-large-cased model is pre-trained on large
text corpora. We fine-tune and evaluate the model
on each binary classification dataset. The entire
datasets are used as both the training and test data
since the positive and negative instances in these
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datasets are perfectly balanced, and because we ex-
pect the model to overfit on the datasets. The exper-
iments are done on one RTX Titan GPU for an aver-
age of 3 hours per experiment. As is shown in Table
2, the evaluation scores of the BERT model range
from 80.30% to 97.32% in F-1 score in our exper-
iments. The scores show that the BERT model is
good enough for annotating a high-quality aspect-
level emoji prediction dataset.

3.2.3 Word Scoring
After the model is fine-tuned on each binary classifi-
cation dataset, we evaluate the model on the dataset
again and use the attention map on the last layer of
the model on positive instances to annotate them.
Recall that for BERT models, the attention score
between the “[CLS]” token and each other token
reflects the token’s contribution to the prediction.
It is worth noting that BERT tokenizes words into
tokens using Byte Pair Encoding (BPE) in its pre-
processing step. For readability, we re-combine the
subword tokens into words and average their scores
to generate word-level attention scores. Assuming
the model always makes correct predictions, the
attention weights can model the relatedness of each
word to the labeled emoji. Though our model can-
not always generate correct predictions, we discard
the annotations generated from wrong predictions
in the final release of the dataset as the majority of
data is annotated correctly.

3.2.4 Thresholding
As the last step of annotating the dataset, we gener-
ate the annotations from the attention scores. Fig-
ure 2 shows one example sentence with attention
scores to an emoji attached to the words. We first
set the scores of stopwords and punctuation marks
to 0 to avoid including them in the annotations.
After that, we use the mean attention score on the
remaining words in each tweet as the threshold to
select important words from the text. The tweet in
Figure 2 is annotated as in Figure 3 after threshold-
ing, for example. After the annotations are gener-
ated, we group the records based on tweets to form
the aspect-level multi-class classification dataset.

4 Emoji Prediction Dataset

One of the goals of this paper is to annotate the
PAN-19 Celebrity Profiling dataset for emoji pre-
diction. We refer to the newly-annotated dataset
as Multi-Resolution Emoji Prediction (MREP)
Dataset since it contains both passage-level and

aspect-level annotations. When releasing the data,
we randomly split the dataset into train, dev, and
test datasets with 80%, 10%, and 10% of the data
amount, respectively. The random seed we use for
this separation is 29936.

Table 3 displays one record in our dataset with
its three sets of labels. The label set of our dataset is
constructed by the 64 emojis in Table 1. Sentences
are labeled by single emojis under the tweet-based
multi-class classification setting. The tweet-based
multi-label classification annotations are emojis
separated by semicolons. An annotation under
the aspect-level multi-class classification setting
is formed by a list of emoji indices and their corre-
sponding text spans in the tweet. The final anno-
tated dataset contains 1,036,131 multi-class classi-
fication records and 500,114 multi-label or aspect-
level records. We benchmark our dataset using a
pre-trained bert-large-cased model and show the re-
sults in Table 4. We do not benchmark our dataset
with other models since no existing emoji predic-
tion model is designed for multi-label or aspect-
based predictions.

5 Annotation Quality Validation

5.1 Automatic Validation

We validate the quality of our annotations in two
ways. Since it is supported by (Felbo et al., 2017)
that neural models trained on a high-quality emoji
prediction dataset can help improve the perfor-
mances of some NLU tasks, we train a BERT
model jointly on our dataset and four other datasets
to automatically validate our annotations. The four
datasets we use are the Stanford Sentiment Tree-
bank (SST) (Socher et al., 2013) for sentiment anal-
ysis, GYAFC (Rao and Tetreault, 2018) for formal-
ity classification, and MELD and MELD-Dyadic
(Poria et al., 2019) for emotion recognition. In the
experiments, we use the MT-DNN (Liu et al., 2019)
codes with a batch size of 32. The pre-trained
model we use is bert-large-cased with 24 layers and
16 attention heads on each layer. We fine-tune the
model for seven epochs in each experiment, with
a learning rate of 0.00005. The GYAFC, MELD,
and MELD-Dyadic datasets are also partitioned
into train/dev/test datasets by 80%/10%/10% of
the entire data using a random seed of 29936, for
consistency.

The evaluation results are displayed in Table 5.
Our dataset brings noticeable improvements to all
the tasks we choose. This is a strong validation
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Tweet
Catch all the feels with me LIVE tonight on Instagram at 8p PT when
@AmericanIdol is back for Hollywood Week solos I’ll take YOUR questions
at the commercial breaks! #HASHTAG# #URL#

Multi-Class
Multi-Label ;

Aspect-Level
Emoji Aspect Text Span

(catch, all, feels, LIVE, Instagram)
(live, tonight, Hollywood, Week)

Table 3: An example record in our labeld dataset. Multi-Class, Multi-Label and Aspect-Level corresponds to the
three types of annotations, respectively. We replace all the hashtags and URLs with #HASHTAG# and #URL#
tokens at the preprocessing step.

Q1:

Q2:

Figure 4: A preview of our Amazon Mechanical Turk questionnaire. We ask three annotators to answer the
questionnaire for each annotated record.

Task ACC ACC@5 F-1 ACCsub
PBMC 41.88 61.95 41.44 -
PBML 99.41 - - 27.16
ABMC 82.16 96.07 79.91 -

Table 4: Benchmark results on our dataset under three
different settings. PBMC, PBML, and ABMC cor-
respond to passage-based multi-class, passage-based
multi-label, and aspect-based multi-class classification
settings, respectively. ACC denotes accuracy and
ACC@5 refers to accuracy of the top-5 predictions. For
multi-label classification, ACC refers to the average ac-
curacy of predicting every single emoji while ACCsub
counts only exact matches.

of the high quality of our annotations. Among the
three types of annotations, the aspect-level classi-
fication setting helps the most. This is probably
because the emojis are better associated with the
aspects, not all the words in a tweet.

Additionally, we run experiments to explore
the subjectivity and randomness using similar but
nuanced emojis, e.g., the ten heart-shaped emo-

jis with different colors in our emoji list. To be
specific, we construct a multi-label classification
dataset using the tweets associated with the heart-
shaped emojis from our PBMC dataset. We then
fine-tune a bert-large-cased model on the subsam-
pled dataset. The model achieves an F-1 score of
43.47% in this experiment, indicating that these
heart-shaped emojis are as distinguishable as the
other emojis. Furthermore, we cluster the heart-
shaped emojis in the PBMC dataset into one class
and evaluate its influence on our four downstream
tasks. The fine-tuned model produces 93.69%,
85.07%, 44.05%, and 44.82% F-1 scores on the
SST, GYAFC, MELD, and MELD-Dyadic datasets,
respectively, slightly lower than the original PBMC
dataset without emoji clustering. These experi-
ments make it clear that similar emojis are, though
sometimes unconsciously, used in differently de-
pending on the context. Since emoji clustering does
not provide additional help to downstream tasks,
and because clustering the emojis increases sub-
jectivity in creating the datasets, we do not apply
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SST GYAFC MELD MELD-Dyadic
ACC F-1 ACC F-1 ACC F-1 ACC F-1

Single-task 93.12 93.38 88.98 88.06 65.29 44.03 63.06 44.71
+ PBMC 93.46 93.74 87.02 86.59 65.80 44.08 64.18 44.97
+ PBML 94.88 94.05 89.27 88.94 72.48 46.70 70.22 46.03
+ ABMC 95.02 94.73 89.60 89.13 72.63 46.81 71.50 46.74
+ PBMC, PBML 94.63 94.57 89.11 88.37 69.05 45.50 68.25 45.86
+ PBMC, ABMC 94.50 94.46 88.60 88.44 70.22 45.86 69.41 46.01
+ PBML, ABMC 95.44 95.28 90.77 89.62 73.91 47.14 71.95 46.77
+ ALL 94.91 95.01 89.51 89.25 73.11 47.07 71.87 46.75
+ Emotional 95.18 95.19 89.94 89.31 73.98 47.20 72.19 46.93
+ Other 94.36 93.73 89.23 88.99 66.39 44.63 68.96 45.90

Table 5: Evaluation results on SST, MELD, MELD-Dyadic, and GYAFC datasets, and by jointly training these
tasks with our emoji prediction datasets. PBMC, PBML, and ABMC refer to passage-based multi-class, passage-
based multi-label, and aspect-based multi-class classification settings, respectively. For the “emotional” setting,
we use the records bound to emojis not representing concrete items under all three settings for jointly training with
the main tasks, while in “other” we use the emojis not expressing emotions only. ACC refers to Accuracy. Scores
in bold are the best scores.

ID Tweet Emoji

1
Find someone who looks at you like @hashtagcatie looks @zachdonofrio
#HASHTAG#

2
On my second year as an Inquirer Read Along ambassador I always look forward
to these interactive. . . #URL#

3 travel... work mode #URL#
4 Just an alround perfect summers day...! #URL#

Table 6: Examples of imperfect aspect-level annotations in our dataset. The words in bold are labeled aspects
corresponding to the emoji.

Table 7: The list of emojis expressing abstract mean-
ings in the top 64 emojis of our emoji set.

emoji clustering in our annotation framework or
the annotated datasets.

We also run experiments by choosing the records
labeled with “abstract” (e.g., emojis showing emo-
tions) and “concrete” emojis (e.g., emojis represent-
ing objects) respectively. We arrange the “abstract”
emojis in Table 7 and “concrete” emojis in Table
8. Results show that “abstract” emojis bring more
improvements to the aforementioned tasks. This

Table 8: The list of emojis expressing concrete mean-
ings in the top 64 emojis of our emoji set.

implies that sentiments, metaphors, and emotions
may be abstract concepts, thus agreeing better with
the predictions of “abstract” emojis.

5.2 Manual Validation

Since the use of emojis is very subjective in many
cases, we sample 700 aspect-level annotations ran-
domly for manual validation as well. Other than a
few exceptions, the vast majority of the annotations
(around 85%) look appropriate. We list four exam-
ple imperfect annotations in Table 6. The most
common problem with these annotations is that,
since we removed stopwords from the annotations,
some aspect-level labels are not complete and the
meanings may change. In Tweets 1 and 2 in Table
6, for example, the words “at” and “off” are not
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chosen as parts of the labels. This does not affect
Tweet 1 much, but for Tweet 2, the words “look
forward” do not explain the usage of the emoji.
We cannot leave all the stopwords as they are since
they are usually heavily attended in attention maps
of Transformer-based models. Being a language
model, BERT unavoidably scores stopwords and
punctuation marks high in attention maps due to
their frequent co-occurrence with almost all the
other words. Without removing the stopwords, the
mean attention score will increase significantly, and
useful words may not be correctly labeled without
filtering them out. This can probably be avoided
by using a list of phrases whose meanings change
without all their component words. A postprocess-
ing step removing only the stopwords outside the
dependency path of any other aspect word may also
be helpful. The annotation of Tweet 3 is not appro-
priate either since the text is too short to include
any useful information associated with the emoji. It
is possible that the user loves traveling or working,
but the emotion cannot be inferred from this piece
of text. Luckily, this does not happen often in our
dataset (only 2 out of 700 in the sampled data fall
under this category). The wise monkey emoji in
Tweet 4 appears to be used randomly. This is the
only instance in the sample that we do not know
why it is used. The top-ranked emojis are mostly
related to emotions or sentiments, the meanings
of which are usually contained in the text. How-
ever, “concrete” emojis might pose more difficulty
for annotation as they are sometimes used in place
of words or phrases. This may cause annotation
problems in the future if we expand our research
to a broader range of emojis. A preprocessing step
substituting all the “concrete” emojis with their
descriptive texts can compensate for this problem.

To avoid bias, we also send the sampled aspect-
level annotations for validation on Amazon Me-
chanical Turk. The questionnaire we design is
shown in Figure 4. Each time a worker is given one
tweet, one emoji associated with the tweet, and the
text span annotated in our dataset corresponding
to the emoji. We require the workers to answer
two questions for each data point, namely, how
well the emoji relates to the tweet and whether the
selected span of text properly expresses the given
emoji. Both questions are scored using a Likert
scale (Joshi et al., 2015), in the range {1 (worst), 2,
3 (acceptable), 4, 5 (perfect)}. Each record is vali-
dated by three different workers. The answers are

aggregated together by averaging them. Question 1
mainly validates the quality of tweet-level annota-
tions in our dataset. The average score for Question
1 is 2.9 (mainly acceptable), showing that the way
emojis are used in our dataset is understandable,
but does not perfectly reflect how our validators use
emojis in their daily lives. The results also teach us
that the patterns of emojis usage differ from person
to person, as the unanimous agreement rate of our
validators is 26.4% for Question 1. By categoriz-
ing the scores into Poor (1, 2), Acceptable (3), and
High (4, 5), however, we get a unanimous agree-
ment rate of 93.4% for Question 1. Question 2 is
designed to validate the quality of our aspect-level
annotations. The average scores are 2.9 on all the
records and 3.5 on the tweets having an average
score greater than or equal to 3 in Question 1 (i.e.,
for tweets where the emoji is deemed acceptable
or higher). This shows that our aspect-level annota-
tions for tweets where the emoji is appropriate are
of acceptable quality, despite the issue discussed
above.

6 Conclusion and Future Work

Emoji prediction has become a popular task in the
NLP community, but the lack of publicly available
large-scale datasets with high-quality annotations
remains a bottleneck for this task. In this paper, we
annotated a publicly available Twitter dataset for
the emoji prediction task. We designed an annota-
tion method for aspect-level annotations using the
self-attention mechanism in Transformer networks.
This method showed great performance in labeling
our dataset, and can potentially be used in other
tasks as well. Our dataset contains three types of
annotations, namely the passage-level multi-class
and multi-label classification labels, and the aspect-
level multi-class classification annotations. We
validated our annotations both automatically and
manually to ensure their quality. We also bench-
marked our dataset using a pre-trained bert-large-
cased model. Our labeled datasets are available
upon request. There are two main paths for extend-
ing this work. First, the aspect-level annotation
method can be applied to other NLP tasks. Second,
our annotations in the emoji prediction dataset can
be enhanced by including an enriched label set.
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