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Abstract

Most previous event extraction studies assume
a set of target event types and corresponding
event annotations are given, which could be
very expensive. In this paper, we work on a
new task of semi-supervised event type induc-
tion, aiming to automatically discover a set of
unseen types from a given corpus by leverag-
ing annotations available for a few seen types.
We design a Semi-Supervised Vector Quan-
tized Variational Autoencoder framework to
automatically learn a discrete latent type rep-
resentation for each seen and unseen type and
optimize them using seen type event annota-
tions. A variational autoencoder is further in-
troduced to enforce the reconstruction of each
event mention conditioned on its latent type
distribution. Experiments show that our ap-
proach can not only achieve state-of-the-art
performance on supervised event detection but
also discover high-quality new event types. 1

1 Introduction

Event extraction is a task of automatically identi-
fying and typing event trigger words (Event Detec-
tion), and extracting participants for each trigger
(Argument Extraction) from natural language text.
Traditional event extraction studies (Ji and Grish-
man, 2008; McClosky et al., 2011; Li et al., 2013;
Chen et al., 2015; Yang and Mitchell, 2016; Liu
et al., 2018; Nguyen and Nguyen, 2019; Lin et al.,
2020; Li et al., 2020) usually assume there exists a
set of predefined event types and argument roles, so
that supervised machine learning models, e.g., deep
neural networks, can be employed to extract events
for each type based on human annotations. How-
ever, in practice, it is usually very expensive and
time-consuming to manually craft an event schema,
which defines the types and complex templates of

1The programs are publicly available for research purpose
at https://github.com/wilburOne/SSVQVAE
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Figure 1: Semi-supervised new event type induction:
discovering a set of new event types and their event
mentions given the annotations for a few seen types.

the expected events. Moreover, the coverage of
manually crafted schemas is often very low, mak-
ing them fail to generalize to new scenarios.

Recent studies have shown that it’s possible to
automatically induce an event schema from raw
text. Some researchers explore probabilistic gen-
erative methods (Chambers, 2013; Nguyen et al.,
2015; Yuan et al., 2018; Liu et al., 2019) or ad-hoc
clustering-based algorithms (Huang et al., 2016)
to discover a set of event types and argument
roles. Several studies (Huang et al., 2018; Lai and
Nguyen, 2019) also explore zero-shot and few-shot
learning approaches to leverage available resources
and extend event extraction to new types. Gener-
ally, event schema induction can be divided into
two steps: event type induction, aiming to discover
a set of new event types for the given scenario, and
argument role induction which discovers a set of ar-
gument roles for each type. In this work, we focus
on tackling the first problem only.

We propose a task of semi-supervised event type
induction, which is shown in Figure 1 and aims to
leverage available event annotations for a few types,
which are called as seen types, and automatically
discover a set of new unseen types, as well as their
corresponding event mentions. As a solution, we
design a new Semi-supervised Vector Quantized
Variational Autoeocoder framework (short as SS-
VQ-VAE) which first assigns a discrete latent type

https://github.com/wilburOne/SSVQVAE
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representation for each seen and unseen type, and
optimizes them during the process of projecting
each candidate trigger into a particular seen or un-
seen type. The candidate triggers are discovered
with a heuristic approach.

Experiments under the setting of both super-
vised event detection and new event type induction
demonstrate that our approach can not only detect
event mentions for seen types with high precision,
but also discover high-quality new unseen types.

2 Approach
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Figure 2: Architecture Overview.

As Figure 2 shows, given an input sentence, we
first automatically discover all candidate triggers
and encode each trigger with a contextual vector
using a pre-trained BERT (Devlin et al., 2019) en-
coder. Then, we predict the type of each candidate
trigger by looking up a dictionary of discrete latent
representations of all seen and unseen types. Mean-
while, to avoid the type prediction to be over-fitted
to seen types, we apply a variational autoencoder
(VAE) as a regularizer to first project each trig-
ger into a latent variational embedding and then
reconstruct the trigger conditioned on its type dis-
tribution.

2.1 Event Trigger Identification
Similar to (Huang et al., 2016), we identify all
candidate triggers based on word sense induction.
Specifically, for each word, we disambiguate its
senses and link each sense to OntoNotes (Hovy
et al., 2006) using a word sense disambiguation
system — IMS (Zhong and Ng, 2010) 2. We con-
sider all noun and verb concepts that can be mapped
to OntoNotes senses as candidate triggers. In addi-
tion, the concepts that can be matched with verbs

2We use the OntoNotes based IMS word sense disambigua-
tor (https://github.com/c-amr/camr)

or nominal lexical units in FrameNet (Baker et al.,
1998) are also considered as candidate triggers.

2.2 Trigger Representation Learning
Given a sentence s = [w1, ..., wn], where we as-
sume wi is identified as a candidate trigger, we use
a pre-trained BERT encoder to encode the whole
sentence and get a contextual representation for wi.
If wi can be split into multiple subwords or words,
we use the average of all subword vectors as the
final trigger representation.

2.3 Event Type Prediction with Vector
Quantization

To predict a type for a candidate trigger, an intu-
itive approach is to learn a classifier using the event
annotations of seen types. However, as we also aim
to discover a set of unseen types, without any an-
notations, the classifier for the unseen types cannot
be optimized.

To solve this problem, we employ a Vector Quan-
tization (Gersho and Gray, 2012) strategy. We first
define a discrete latent event type embedding space
E ∈ Rk×d, where k is the number of candidate
event types, and d is the dimensionality of each
type embedding ei. Each ei can be viewed as the
centroid of the triggers belonging to the correspond-
ing event type. For each seen type, we initialize
e with the contextual vector of a trigger which is
randomly selected from the corresponding annota-
tions. For each unseen type, we initialize ewith the
contextual vector of another trigger which is ran-
domly picked from all unannotated event mentions.
Assuming there are m seen types, we arbitrarily
assign E[1:m] as their type representations.

Given a candidate trigger t and its contextual vec-
tor vt, we first apply a linear encoder fc(vt) ∈ Rd

to extract type-specific features. Then, we compute
a type distribution y based on fc(vt) by looking up
all the discrete latent event type embeddings with
inner-product operation

yt = Softmax(E[1:k] · fc(vt)) (1)

The feature encoder fc(.) is optimized using all
event annotations for seen types (the cross-entropy
term in Equation 2) and event mentions for unseen
types (the second term in Equation 2 3). The intu-
ition of the second term in Equation 2 is that, for
each new event mention, we don’t know the cor-
rect type but we know that the type must be from

3We only apply this term when we know the new event
mentions do not belong to any seen types

https://github.com/c-amr/camr
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a set of unseen types, so we maximize the margin
between the probability of the most likely unseen
type and the highest probability of the incorrect
seen type.

Lc =
∑

(t,ỹt)∈Ds

−ỹt log(yt) +
∑
t∈Du

max(y
[1:m]
t )−max(y

[m:k]
t )

(2)

where −ỹt is the ground truth label. Ds and Du

denote the set of annotated event mentions for seen
types and new event mentions for unseen types.
y
[1:m]
t and y[m:k]

t are the type prediction scores for
seen and unseen types respectively.

To optimize the type embeddings E, we follow
the VQ objective (van den Oord et al., 2017) and
use l2 error to move the type vector ei towards
the type-specific feature fc(vt) (the first term in
Equation 3) while ei of t is determined by yt . To
make sure fc(.) commits to an embedding, we add
a commitment loss (the second term in Equation 3)

Lvq = ||sg(fc(vt))− ei||2 + ||fc(vt)− sg(ei)||2 (3)

where sg stands for the stop gradient operator to
make its operand to be a non-updated constant. The
output of sg is the same as the input in the forward
pass, and it is zero when computing gradients in
the training process.

2.4 Variational Autoencoder as Regularizer
To avoid the type prediction to be over-fitted to
the seen types, we employ a semi-supervised varia-
tional autoencoder as a regularizer. The intuition
is that each event mention can be generated con-
ditioned on a latent variational embedding z and
its corresponding type distribution y, which is pre-
dicted by the approach described in Section 2.3.

We first describe the semi-supervised variational
inference process. It consists of an inference net-
work q(z|t) which is a posterior of the learning of
a latent variable z given the trigger t, and a genera-
tive network p(t|z, y) to reconstruct the candidate
trigger t from the latent variable z and type infor-
mation y. For each candidate trigger t with human
annotated label y, the likelihood p(t, y) can be ap-
proximated to a variational lower bound

log p(t, y) ≥ log p(t|y, z)−KL(q(z|t)||p(z)) = −L(t, y)

where log p(t|z, y) is the expectation of reconstruc-
tion of t conditioned on z and y, p(z) is the prior
Gaussian distribution. For each unlabeled candi-
date trigger t, the likelihood p(t) approximates to

another variational lower bound

log p(t) ≥
∑
y

q(y|t)(−L(t, y))− q(y|t) log q(y|t) = −L(t)

where q(y|t) is obtained from Equation 1.
As for model implementation, given a candi-

date trigger t and its contextual embedding vt,
we first pass it through an encoder fe(vt) to ex-
tract features. As we assume the latent varia-
tonal embedding zt follows Gaussian distribution
zt ∼ N(µt,σt), we apply two linear functions
to obtain the mean vector µt = fµ(fe(vt)) and
a variance vector σt = fσ(fe(vt)). For decod-
ing, we employ another linear function to recon-
struct vt from the concatenation of zt and yt:
v

′
t = fr([zt : yt]). We optimize the following

objective for the semi-supervised VAE

Lv =
∑
t∈Du

L(t) +
∑

(t,y)∈Ds

L(t, y) (4)

The overall loss function for optimizing the
whole SS-VQ-VAE framework is

L = αLc + βLvq + γLv (5)

where α, β and γ are hyper-parameters to balance
these three objectives.

3 Experiments and Results

3.1 Dataset
We perform experiments on Automatic Content
Extraction (ACE) 2005 dataset and evaluate our
approach under two settings: (1) supervised event
extraction, where the target types include 33 ACE
predefined types and other, thus k is set as 34. Giv-
ing all candidate triggers, the goal is to correctly
identify all ACE event mentions and classify them
into corresponding types. We follow the same data
split with prior work (Li et al., 2013; Nguyen et al.,
2016) in which 529/30/40 newswire documents are
used for training/dev/test set. (2) new event type in-
duction, where we follow a previous study (Huang
et al., 2018) and use top-10 most popular event
types from ACE05 data as seen and the remaining
23 types as unseen. Given all ACE annotated event
mentions, the goal of this task is to test whether the
approach can automatically discover the remaining
23 unseen ACE types and categorize each candi-
date trigger into a particular seen or unseen type.
In this experiment, k is set as 500.

In terms of implementation details, we use the
pre-trained bert-large-cased 4 model for fine-tuning,

4https://github.com/google-research/bert
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Methods Encoder Trigger Identification Trigger Detection
P R F P R F

DMCNN (Chen et al., 2015) CNN 80.4 67.7 73.5 75.6 63.6 69.1
JRNN (Nguyen et al., 2016) RNN 68.5 75.7 71.9 66.0 73.0 69.3

JMEE (Liu et al., 2018) GCN 80.2 72.1 75.9 76.3 71.3 73.7
Joint3EE (Nguyen and Nguyen, 2019) GRU 70.5 74.5 72.5 68.0 71.8 69.8

MOGANED (Yan et al., 2019) GAN - - - 79.5 72.3 75.7
BERT-CRF BERT 73.8 76.9 75.3 70.4 73.3 71.8

DMBERT (Wang et al., 2019) BERT - - - 77.6 71.8 74.6

SS-VQ-VAE w/o VQ-VAE BERT 78.2 77.8 78.0 73.2 72.9 73.0
SS-VQ-VAE w/o VAE BERT 80.8 80.2 80.5 76.2 75.7 75.9

SS-VQ-VAE BERT 79.1 81.4 80.2 75.7 77.8 76.7

Table 1: Supervised Event Detection Performance on ACE 2005 (F-score %).

Metrics Normalized Mutual Info Fowlkes Mallows Completeness Homogeneity V-Measure

BERT C-Kmeans 8.93 6.04 8.64 9.22 8.92
SS-VQ-VAE w/o VAE 33.45 25.54 42.76 26.17 32.47

SS-VQ-VAE 40.88 31.46 53.57 31.19 39.43

Table 2: Evaluation of New Event Type Induction on 23 Unseen Types of ACE 2005 (%).

and optimize our model with BertAdam. we
optimize the parameters with grid search: train-
ing epoch 15, learning rate l ∈ {1e − 5, 2e −
5, 3e−5, 5e−5}, gradient accumulation steps g ∈
{1, 2, 3}, training batch size b ∈ {5g, 8g, 10g},
the hyper-parameters for the overall loss func-
tion α ∈ {1.0, 5.0, 10.0}, β ∈ {0.1, 0.5, 1.0},
γ ∈ {0.1, 0.5, 1.0}. The dimensionality of type
embedding as well as latent variational embedding,
and the hidden states of fc(.) are all 500 while the
hidden states of fe(.), fµ(.), fσ(.) are all 1024.

3.2 Supervised Event Detection
Table 1 compares our approach with several base-
lines. We conduct ablation study to testify the
impact of the VQ and VAE components: SS-VQ-
VAE w/o VQ-VAE is only optimized with the clas-
sification loss (Equation 2) while SS-VQ-VAE w/o
VAE is optimized with the classification loss (Equa-
tion 2) and the VQ objective (Equation 3).

As we can see, BERT based approaches gen-
erally outperform the methods using CNN, RNN
or GRU. Our approach achieves the state-of-the-
art among all methods. In particular, the recall of
our approach is much higher than other methods,
which demonstrate the effectiveness of the trigger
identification step. It can narrow the learning space
of the model. The ablation studies also prove the
effectiveness of the VQ and VAE components.

3.3 New Event Type Induction
For new event type induction, we compare our ap-
proach with another intuitive baseline, BERT-C-
Kmeans, which takes in the BERT based trigger

representations and group all candidate triggers
into clusters with a Constrained K-means (Wagstaff
et al., 2001), a semi-supervised clustering algo-
rithm which enforces all trigger candidates anno-
tated with the same seen type to belong to the same
cluster. Table 2 shows the performance with sev-
eral clustering metrics (Chen and Ji, 2010), which
measure the agreement between the ground truth
class assignment and system based unseen type
prediction.

Normalized Mutual Info is a normalization of
the Mutual Information (MI) score and scales the
MI score to be between 0 and 1.

NMI(Y,C) =
2× I(Y ;C)

[H(Y ) +H(C)]

where Y denotes the ground truth class labels, C
denotes the cluster labels, H(.) denotes the entropy
function and I(Y ;C) is the mutual information
between Y and C.

Fowlkes Mallows (Fowlkes and Mallows, 1983)
is to evaluate the similarity between the clusters
obtained from our approach and ground-truth labels
of the data.

FM(Y,C) =
TP√

((TP + FP )× (TP + FN))

where TP means True Positive, which is calculated
as the number of data point pairs that are in the
same cluster in Y and in C. FP refers to False
Positive and it is calculated as the number of data
point pairs that are in the same cluster in Y but not
in C. FN is False Negative and it is calculated as
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the number of pair of data points that are not in the
same cluster in Y but are in the same cluster in C.

Completeness : A clustering result satisfies com-
pleteness if all members of a given class are as-
signed to the same cluster.

C(Y,C) = 1− H(C|Y )

H(C)

where H(C|Y ) is the conditional entropy of the
clustering output given the class labels.

Homogeneity : A clustering result satisfies com-
pleteness if all of its clusters contain only data
points which are members of a single class.

C(Y,C) = 1− H(Y |C)

H(Y )

V-Measure (Rosenberg and Hirschberg, 2007)
is the weighted harmonic mean between homogene-
ity score and completeness score.

V (Y,C) =
(1 + β) · h · c)
(β · h) + c

where h denotes the homogeneity score and c refers
to the completeness score.

As qualitative analysis, we further pick 6 unseen
ACE types and randomly select at most 100 event
mentions for each type. We visualize their type
distribution y using TSNE 5. As Figure 3 shows,
most of the event mentions that are annotated with
the same ACE type tends to be predicted to the
same new unseen type.

Figure 3: Type Distribution of 6 Unseen Types of Event
Mentions.

4 Related Work

Traditional event extraction studies (Ji and Grish-
man, 2008; McClosky et al., 2011; Li et al., 2013;
Chen et al., 2015; Yang and Mitchell, 2016; Feng

5https://scikit-learn.org/stable/modules/
generated/sklearn.manifold.TSNE.html

et al., 2016; Liu et al., 2018; Nguyen and Nguyen,
2019; Lin et al., 2020; Li et al., 2020) assume all
the target event types and annotations are given.
They can extract high-quality event mentions for
the given types, but cannot extract mentions for
any new types. Recent studies (Huang et al., 2018;
Chan et al., 2019; Ferguson et al., 2018) leverage
annotations for a few seen event types or several
keywords provided for the new types to extract
mentions for new types. However, all these studies
assume all the target types are given, which is very
costly when moving to a new scenario.

Recent studies have explored probabilistic gen-
erative methods (Chambers, 2013; Nguyen et al.,
2015; Yuan et al., 2018; Liu et al., 2019) or ad-hoc
clustering based algorithms (Huang et al., 2016) to
automatically discover a set of event types as well
as argument roles. Most of these studies are com-
pletely unsupervised and mainly rely on statistical
patterns or semantic matching, while our work tries
to leverage the knowledge learned from available
annotations to discover new event types.

5 Conclusion and Future Work

We have designed a semi-supervised vector quan-
tized variational autoencoder approach which auto-
matically learns a discrete representations for each
seen and unseen type and predict a type for each
candidate trigger. Experiments show that our ap-
proach achieves the state-of-the-art on supervised
event extraction and discovers a set of high-quality
unseen types. In the future, we will extend this
approach to argument role induction to discover
complete event schemas.
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