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Abstract

We present ELQ, a fast end-to-end entity link-
ing model for questions, which uses a bien-
coder to jointly perform mention detection and
linking in one pass. Evaluated on WebQSP
and GraphQuestions with extended annota-
tions that cover multiple entities per question,
ELQ outperforms the previous state of the art
by a large margin of +12.7% and +19.6% F1,
respectively. With a very fast inference time
(1.57 examples/s on a single CPU), ELQ can
be useful for downstream question answering
systems. In a proof-of-concept experiment,
we demonstrate that using ELQ significantly
improves the downstream QA performance of
GraphRetriever (Min et al., 2019).1

1 Introduction

Entity linking (EL), the task of identifying enti-
ties and mapping them to the correct entries in
a database, is crucial for analyzing factoid ques-
tions and for building robust question answering
(QA) systems. For instance, the question “when
did shaq come to the nba?” can be answered by ex-
amining Shaquille O’Neal’s Wikipedia article (Min
et al., 2019), or its properties in a knowledge
graph (Yih et al., 2015; Yu et al., 2017). How-
ever, real-world user questions are invariably noisy
and ill-formed, lacking cues provided by casing
and punctuation, which prove challenging to cur-
rent end-to-end entity linking systems (Yang and
Chang, 2015; Sorokin and Gurevych, 2018). While
recent pre-trained models have proven highly ef-
fective for entity linking (Logeswaran et al., 2019;
Wu et al., 2020), they are only designed for entity
disambiguation and require mention boundaries to
be given in the input. Additionally, such systems

∗Work done while at Facebook AI.
1Code and data available at https://github.com/

facebookresearch/BLINK/tree/master/elq

Figure 1: Overview of our end-to-end entity linking
system. We separately encode the question and entity.
We use the question representations to jointly detect
mentions and score candidate entities through inner-
product with the entity vector.

have only been evaluated on long, well-formed doc-
uments like news articles (Ji et al., 2010), but not
on short, noisy text. Also, most prior works have
focused mainly on improving model prediction ac-
curacy, largely overlooking efficiency.

In this work, we propose ELQ, a fast and accu-
rate entity linking system that specifically targets
questions. Following the Wikification setup (Rati-
nov et al., 2011), ELQ aims to identify the mention
boundaries of entities in a given question and their
corresponding Wikipedia entity. We employ a bi-
encoder based on BERT (Devlin et al., 2019) as
shown in Figure 1. The entity encoder computes en-
tity embeddings for all entities in Wikipedia, using
their short descriptions. Then, the question encoder
derives token-level embeddings for the input ques-
tion. We detect mention boundaries using these
embeddings, and disambiguate each entity mention
based on an inner product between the mention
embeddings (averaged embedding over mention
tokens) and the entity embeddings. Our model ex-

https://github.com/facebookresearch/BLINK/tree/master/elq
https://github.com/facebookresearch/BLINK/tree/master/elq
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tends the work of Wu et al. (2020) but with one
major difference: our system does not require pre-
specified mention boundaries in the input, and is
able to jointly perform mention detection and en-
tity disambiguation in just one pass of BERT. Thus,
at inference time, we are able to identify multiple
entities in the input question efficiently.

We extend entity disambiguation annotations
from Sorokin and Gurevych (2018) to create an end-
to-end question entity linking benchmark. Evalu-
ated on this benchmark, we are able to outperform
previous methods in both accuracy and run-time.
ELQ has much faster end-to-end inference time
than any other neural baseline (by 2×), while being
more accurate than all previous models we evaluate
against, suggesting that it is practically useful for
downstream QA systems. We verify the applica-
bility of ELQ to practical QA models in a proof-
of-concept experiment, by augmenting GraphRe-
triever (Min et al., 2019) to use our model, im-
proving its downstream QA performance on three
open-domain QA datasets (by up to 6%).

2 Related Work

Much prior work on entity linking has focused
on long, grammatically coherent documents that
contain many entities. This setting does not accu-
rately reflect the difficulties of entity linking on
questions. While there has been some previous
work on entity linking for questions (Sorokin and
Gurevych, 2018; Blanco et al., 2015; Chen et al.,
2018; Tan et al., 2017), such works (mostly from
the pre-BERT era) utilize complex models with
many interworking modules. For example, Sorokin
and Gurevych (2018) proposes a variable-context
granularity (VCG) model to address the noise and
lack of context in questions, which incorporates
signals from various levels of granularity by using
character-level, token-level, and knowledge-base-
level modules. They also rely on external systems
as a part of the modeling pipeline.

In this work, we take a much simpler approach
that uses a biencoder. Biencoder models have been
used in a wide range of tasks (Seo et al., 2019;
Karpukhin et al., 2020; Wu et al., 2020). They en-
able fast inference time through maximum inner
product search. Moreover, as we find, biencoders
can be decomposed into reusable question and en-
tity encoders, and we can greatly expedite training
by training one component independently of the
other.

3 Problem Definition & ELQ Model

We formally define our entity linking task as fol-
lows. Given a question q and a set of entities
E = {ei} from Wikipedia, each with titles t(ei)
and text descriptions d(ei), our goal is to output a
list of tuples, (e, [ms,me]), whereby e ∈ E is the
entity corresponding to the mention span from the
ms-th to me-th token in q. In practice, we take the
title and first 128 tokens of the entity’s Wikipedia
article as its title t(ei) and description d(ei).

We propose an end-to-end entity linking system
that performs both mention detection and entity
disambiguation on questions in one pass of BERT.

Given an input question q = q1 ··· qn of length
n, we first obtain question token representations
based on BERT (Devlin et al., 2019):

[q1 ···qn]
ᵀ = BERT([CLS] q1 ··· qn[SEP]) ∈ Rn×h,

where each qi is a h-dimensional vector. We then
obtain entity representations xe for every ei ∈ E .

xe = BERT
[CLS]

([CLS]t(ei)[ENT]d(ei)[SEP]) ∈ Rh,

where [CLS] indicates that we select the represen-
tation of the [CLS] token. We consider candidate
mentions as all spans [i, j] (i-th to j-th tokens of q)
in the text up to length L.

Mention Detection To compute the likelihood
score of a candidate span [i, j] being an entity men-
tion, we first obtain scores for each token being the
start or the end of a mention:

sstart(i) = wᵀ
startqi, send(j) = wᵀ

endqj ,

where wstart,wend ∈ Rh are learnable vectors. We
additionally compute scores for each token t being
part of a mention:

smention(t) = wᵀ
mentionqt,

where wmention ∈ Rh is a learnable vector. We
finally compute mention probabilities as:

p([i, j]) = σ(sstart(i) + send(j) +

j∑
t=i

smention(t)).

Entity Disambiguation We obtain a mention
representation for each mention candidate [i, j] by
averaging qi ···qj, and compute a similarity score
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s between the mention candidate and an entity can-
didate e ∈ E :

yi,j =
1

(j − i+ 1)

j∑
t=i

qt ∈ Rh,

s(e, [i, j]) = xᵀ
eyi,j .

We then compute a likelihood distribution over
all entities, conditioned on the mention [i, j]:

p(e|[i, j]) = exp(s(e, [i, j]))∑
e′∈E exp(s(e′, [i, j]))

.

Training We jointly train the mention detection
and entity disambiguation components by optimiz-
ing the sum of their losses. We use a binary cross-
entropy loss across all mention candidates:

LMD = − 1

N

∑
1≤i≤j≤

min(i+L−1,n)

(
y[i,j] log p([i, j])

+(1− y[i,j]) log (1− p([i, j]))
)
,

whereby y[i,j] = 1 if [i, j] is a gold mention span,
and 0 otherwise. N is the total number of candi-
dates we consider.2

The entity disambiguation loss is given by

LED = − log p(eg|[i, j]),

where eg is the gold entity corresponding to men-
tion [i, j].

To expedite training, we use a simple transfer
learning technique: we take the entity encoder
trained on Wikipedia by Wu et al. (2020) and freeze
its weights, training only the question encoder on
QA data. In addition, we mine hard negatives. As
entity encodings are fixed, a fast search of hard
negatives in real time is possible.

Inference Figure 1 shows our inference process.
Given an input question q, we use our mention
detection model to obtain our mention setM =
{[i, j] : 1 ≤ i ≤ j ≤ min(i+L−1, n), p([i, j]) >
γ}, where γ is our threshold (a hyperparameter).
We then compute p(e, [i, j]) = p(e|[i, j])p([i, j])
for each mention [i, j] ∈ M, and threshold ac-
cording to γ. In contrast to a two-stage pipeline
which first extracts mentions, then disambiguates
entities (Févry et al., 2020), a joint approach grants

2If n ≥ L, N = L(L + 1)/2 + (n − L)L. Otherwise,
N = n(n+ 1)/2.

Data Train Test

#Q #E #Q #E

WebQSPEL 2974 3242 1603 1806
GraphQEL 2089 2253 2075 2229

Table 1: Dataset statistics of WebQSPEL and GraphQEL.
#Q and #E indicate the number of questions and enti-
ties, respectively.

us the flexibility to consider multiple possible can-
didate mentions for entity linking. This can be
crucial in questions as it can be difficult to extract
mentions from short, noisy text in a single step.

More implementation details can be found in
Appendix D.

4 Experiments

4.1 Data

We evaluate our approach on two QA datasets, We-
bQSP (Yih et al., 2016) and GraphQuestions (Su
et al., 2016), with additional entity annotations pro-
vided by Sorokin and Gurevych (2018). The origi-
nal datasets do not have all mention boundary la-
bels annotated. Therefore, in order to evaluate both
mention detection and entity disambiguation, we
extend previous labels and create new end-to-end
question entity-linking datasets, WebQSPEL and
GraphQEL.3 In line with our task definition, all
entities presented in each question are labeled with
(e, [ms,me]), whereby e ∈ E is the entity corre-
sponding to the mention span from the ms-th to
me-th token in q. We ask four in-house annota-
tors to identify corresponding mention boundaries,
given gold entities in the questions. We exclude
examples that link to null or no entities, that are
not in Wikipedia, or are incorrect or overly generic
(e.g. linking a concept like marry). To check inter-
annotation agreement amongst the 4 annotators, we
set aside a shared set of documents (comprised of
documents from both datasets) that all 4 annotators
annotated. We found exact-match inter-annotator
agreement to be 95% (39/41) on this shared set.

Table 1 reports the statistics of the resulting
datasets, WebQSPEL and GraphQEL. Following
Sorokin and Gurevych (2018), we use WebQSPEL
for training and GraphQEL for zero-shot evaluation.

Evaluation Metrics Using the rule defined by
Carmel et al. (2014), a prediction is correct only

3Data available at http://dl.fbaipublicfiles.
com/elq/EL4QA_data.tar.gz

http://dl.fbaipublicfiles.com/elq/EL4QA_data.tar.gz
http://dl.fbaipublicfiles.com/elq/EL4QA_data.tar.gz
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Training Data Model WebQSPEL GraphQEL (zero-shot)

Prec Recall F1 #Q/s Prec Recall F1 #Q/s

WebQSPEL
VCG† 82.4 68.3 74.7 0.45 54.1 30.6 39.0 0.26

ELQ 90.0 85.0 87.4 1.56 60.1 57.2 58.6 1.57

Wikipedia
TAGME 53.1 27.3 36.1 2.39 49.6 36.5 42.0 3.16
BLINK 82.2 79.4 80.8 0.80 65.3 61.2 63.2 0.78

ELQ 86.1 81.8 83.9 1.56 69.8 69.8 69.8 1.57

Wikipedia + WebQSPEL ELQ 91.0 87.0 89.0 1.56 74.7 66.4 70.3 1.57

Table 2: Results on WebQSPEL and GraphQEL test data, under 3 training settings. ‘#Q/s’ (number of questions per
second) indicates inference speed on 1 CPU. Models trained in comparable settings are clustered together. Overall
highest scores are bolded, while highest scores per setting are underlined.
†VCG results are different from numbers in the original paper as the evaluation sets are slightly different.

if the groundtruth entity is identified and the
predicted mention boundaries overlap with the
groundtruth boundaries. (This is sometimes known
as “weak matching”.) Specifically, let T be a set
of gold entity-mention tuples and T̂ be a set of pre-
dicted entity-mention tuples, we define precision
(p), recall (r) and F1-score (F1) as follows:

C =
{
e ∈ E|[ms,me] ∩ [m̂s, m̂e] 6= ∅,

(e, [ms,me]) ∈ T , (e, [m̂s, m̂e]) ∈ T̂
}
,

p =
|C|
|T̂ |

, r =
|C|
|T |

, F1 =
2pr

p+ r
.

Baselines We use the following baselines: (1)
TAGME (Ferragina and Scaiella, 2012), a
lightweight, on-the-fly entity linking system that
is popular for many downstream QA tasks, be-
ing much faster than most neural models (Joshi
et al., 2017; Sun et al., 2018; Min et al., 2019), (2)
VCG (Sorokin and Gurevych, 2018), the current
state-of-the-art entity linking system on WebQSP,
and (3) biencoder from BLINK (Wu et al., 2020).
As BLINK requires pre-specified mention bound-
aries as input, we train a separate, BERT-based
span extraction model on WebQSP in order to pre-
dict mention boundaries (details in Appendix B).

4.2 Results
Table 2 show our main results. We find that BERT-
based biencoder models far outperform the state-
of-the-art (VCG) on both datasets, in performance
and in runtime. Moreover, ELQ outperforms all
other models trained in a comparable setting, and
is much more efficient than every other neural base-
line (VCG and BLINK). ELQ is also up to 2.3×
better than TAGME — in the case of WebQSPEL.

Performance ELQ outperforms BLINK, sug-
gesting that it is possible to train representations

WQ NQ TQA

TF-IDF† 20.8 28.7 54.0
TAGME + GRetriever† 31.8 33.5 55.0

ELQWiki + GRetriever 37.4 37.4 55.4
ELQQA + GRetriever 37.7 37.0 54.7

Table 3: QA result (Exact Match) on the test set of We-
bQuestions (WQ), Natural Questions (NQ) and Trivi-
aQA (TQA). ELQWiki represents our model trained on
Wikipedia data, while ELQQA represents our model
trained on Wikipedia+WebQSPEL data.
†Result taken from (Min et al., 2019).

from a single model to resolve both entity refer-
ences as well as mention boundaries of all entities
in text, without restricting the model to focusing
on a single marked entity as in BLINK.

Runtime We record the inference speed on CPUs
in number of questions processed per second for
all models (Table 2). For BLINK, we report
the combined speed of our span extraction model
and the BLINK entity linker, in order to com-
pare the end-to-end speeds. ELQ, which performs
both detection and disambiguation in one pass of
BERT, is approximately 2× faster than BLINK,
which performs multiple passes, while also outper-
forming BLINK in F1 score. Moreover, against
TAGME (Ferragina and Scaiella, 2012), ELQ is
only 1.5× slower on WebQSPEL and 2.0× slower
on GraphQEL, despite TAGME being a completely
non-neural model (with much lower accuracy).

5 QA Experiments

To demonstrate the impact of improved entity link-
ing on the end QA accuracy, we experiment with
the task of textual open-domain question answer-
ing, using GraphRetriever (GRetriever) (Min et al.,
2019). GRetriever uses entity linking to construct a
graph of passages in the retrieval step and deploys
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Experiment ELQ (Wiki) BLINK

MD + EL 87.3 82.2
MD only 94.6 92.9
EL only 90.2 86.6

Table 4: Analyzing the performance of the mention
detector and entity linker respectively on WebQSPEL
(dev). We compare our Wikipedia-trained model to
BLINK. MD + EL refers to the end-to-end F1 score
(the normal setup).

a reader model to answer the question. The original
model uses TAGME for entity linking; we replace
TAGME with ELQ and keep the other components
the same, in order to isolate the impact of entity
linking.4 As an additional baseline, we also add
the result of TF-IDF, implemented by Chen et al.
(2017), a widely used retrieval system.

Results are shown in Table 3. Following lit-
erature in open-domain QA, we evaluate our ap-
proach on three datasets, WebQuestions (Berant
et al., 2013), Natural Questions (Kwiatkowski et al.,
2019) and TriviaQA (Joshi et al., 2017). In par-
ticular, WebQuestions (WQ) and Natural Ques-
tions (NQ) consist of short, noisy questions from
Web queries, in line with the motivation of our
work. We observe that simply replacing TAGME
with ELQ significantly improves performance, in-
cluding 5.9% and 3.9% absolute improvements on
WQ and NQ, respectively. While ELQ trained on
Wikipedia achieves good results overall, further
fine-tuning on WebQSPEL gives extra gains on WQ.
This indicates that, if entity linking annotations in
the same domain are available, using them to fine-
tune ELQ can bring further gains.

6 Analysis

Mention Detector vs. Entity Linker We set up
experiments to disentangle the capability of ELQ’s
entity linker and mention detector. First, to test just
the mention detector (MD only), we measure just
the mention boundary overlap between predicted
and groundtruth mentions, ignoring the entity label.
Next, to test just the entity linker (EL only), we
give the entity linking component gold mention
boundaries, and compute the resulting F1 score.
We do this for both ELQ and BLINK. For com-
parability, we use the version of ELQ trained on
Wikipedia. Results are reported in Table 4. Sur-
prisingly, we find that both components of ELQ

4Min et al. (2019) used two reader models, ParReader++
and GraphReader; for simplicity, we only use ParReader++

Error Type WebQSPEL GraphQEL

Technically Correct 49.2 23.3
Not Enough Entities 13.1 51.8

Wrong Entities 26.2 20
Insufficient Context 11.5 5

Table 5: Breakdown of frequency of each error type on
each dev set (in terms of % of all errors on that dataset).
We use ELQ trained on Wikipedia + WebQSPEL here.

outperform BLINK, suggesting that the two tasks
might mutually benefit from being trained jointly.

Runtime To confirm that our biencoder’s main
bottleneck is the BERT forward pass — and thus,
investing in decreasing the number of BERT for-
ward passes is valuable — we separately time each
component of ELQ during inference. We run exam-
ples from WebQSPEL test set one at a time through
ELQ, on 1 CPU, and average runtimes across all
examples. Indeed, we find that the BERT forward
pass to be the slowest component of the model,
taking 0.683s, over 6× slower than the next slow-
est component of the model, inner-product search
(taking 0.107s). Everything else takes a combined
total of 5.08× 10−3s.

Qualitative We manually examine all our
model’s errors on the WebQSPEL and GraphQEL
dev sets. We identify four broad error categories:
(1) technically correct — where our model was
technically correct but limitations in evaluation
falsely penalized our model (i.e., we found a more
or less precise version of the same entity), (2) not
enough entities — where the model did not fully
identify all entities in the question, (3) wrong enti-
ties — where our model linked to the wrong entity,
(4) insufficient context — where the model made
reasonable mistakes due to the lack of context (that
even reasonable humans would make). Error type
breakdowns can be found in Table 5.

7 Conclusion

We proposed an end-to-end model for entity link-
ing on questions that jointly performs mention de-
tection and disambiguation with one pass through
BERT. We showed that it is highly efficient, and
that it outperforms previous state-of-the-art models
on two benchmarks. Furthermore, when applied
to a QA model, ELQ improves that model’s end
QA accuracy. Despite being originally designed
with questions in mind, we believe ELQ could also
generalize to longer, well-formed documents.
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A Annotation Statistics

We show annotators a question and a gold entity
in the question, and instruct them to annotate (i.e.,
put brackets around) the appropriate mention span.

For quality control, we created a shared annota-
tion set by pulling a subset of examples from each
dataset, and having all four annotators label that set.
Inter-annotator agreement statistics on our shared
set are shown in Table 6. Note that only 2 out of 41
shared examples did not have unanimous mention
boundary agreement. The two conflicting exam-
ples, with the respective annotations, are shown
below:

Question: ‘who are the two state senators of georgia?’
Entity: ‘United States Senate’

A1: ‘who are the two state [senators] of georgia?’
A2: ‘who are the two [state senators] of georgia?’
A3: Entity not in question

Question: ‘who was michael jackson in the wiz?’
Entity: ‘The Wiz (film)’

A1: ‘who was michael jackson in [the wiz]?’
A2: ‘who was michael jackson in the [wiz]?’

B Span-Extraction Model for Mention
Boundary Detection

The BLINK Entity Linker requires mention bound-
aries to be marked in the input. In order to evaluate
against BLINK for end-to-end Entity Linking, we
train a span-extraction model to first obtain can-
didate mention boundaries, and subsequently use
BLINK on these candidate mentions. Our span
extraction model first represents every token qi in
question q = q1, ··· , qn of length n using a dense
representation using BERTbase:

q1, ··· ,qn = BERT(q1, ··· , qn) (1)

The model then computes a start span probability
ps(qi|q) and an end span probability pe(qi|q) for
every token qi using learnable vectors ws and wt

respectively:

ps(qi|q) =
exp(ws

ᵀqi)∑
j exp(ws

ᵀqj)
(2)

pe(qi|q) =
exp(we

ᵀqi)∑
j exp(we

ᵀqj)
(3)

The model is trained to maximize the likelihood
of ps(qs|q) × pe(qe|q) for each correct mention
[qs, qe] in the training set of WebQSP, and simi-
larly during inference, outputs the top-K scoring
spans. These spans are used as mention boundary
candidates, to evaluate BLINK in an end-to-end
setting.

Dataset #Examples #Agreement

WebQSP train 9 8
WebQSP dev 6 5
WebQSP test 10 10
GraphQs train 8 8
GraphQs test 8 8

Table 6: Statistics on the shared dataset annotated by
all 4 annotators. We count exact-match, unanimous
agreements, i.e., both mention boundaries must exactly
match, and all 4 annotators must agree.

Training method F1

Adversarial + Pre-trained candidate encoder 87.7
Pre-trained candidate encoder 46.1

None (entirely from scratch) 17.2

Table 7: Ablations on our training scheme after 20
epochs. Both transfer learning from the pre-trained can-
didate encoder and adversarially training on hard nega-
tives expedite convergence.

C Analysis

Training Ablations Table 7 presents the contri-
butions of each component of our training scheme
to our final result. We record model performance
on WebQSPEL (valid) after 20 (of 100) epochs of
training on Wikipedia, having seen just 20% of the
data. We note that both our transfer learning tech-
nique and our adversarial hard-negatives training
expedites convergence.

Qualitative Error Analysis We record spe-
cific examples for each of our four error cate-
gories (technically correct, not enough entities,
wrong entities, and insufficient context), detailed
in Section 6. Note there were 61 total mis-
takes for WebQSPEL dev and 158 total mistakes
for GraphQEL dev. Specific examples can be found
in Table 9.

D Implementation Details and
Hyperparameters

Following Wu et al. (2020), we use BERTLarge
(∼340M parameters) for the question and entity
encoder. The span extraction model detailed in
Appendix B, used for our BLINK baselines, is a
BERTBase model (∼110M parameters).

We lowercase all inputs to ELQ, during both
training and inference time, to make it case-
insensitive. For both training and inference, the
mention scorer considers all spans up to length
L = 10.
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Training During training, we use FAISS (John-
son et al., 2019) for fast inner product search
when mining hard negatives. We do this in real
time, inside the training loop. As we do not up-
date the entity encoder, we were able to train the
model with a single FAISS index, greatly increas-
ing the training speed. For further speedup, we
use a hierarchical index (IndexHNSWFlat), with
efConstruction = 200 and efSearch = 256.

For LED at each iteration, computing s(e, [i, j])
for every e ∈ E is intractable. We thus approximate
LED by replacing E with E ′ for the softmax, where
E ′ is a set of hard negative entities, specifically,
negative entities that have the highest 10 similarity
scores with the mention representation.

For our WebQSPEL-trained model, we train for
up to 100 epochs on WebQSPEL data, using batch
size 128 and context window size of 20 tokens.
For our Wikipedia-trained model, we split the
data evenly into 100 chunks and train on each
(thus, making one pass through Wikipedia over-
all). For Wikipedia, we use batch size 32 and a
context window size of 128 tokens. For Wikipedia
+ WebQSPEL model, we take our Wikipedia-trained
model and further fine-tune it on WebQSPEL for
up to 100 epochs (using the WebQSPEL training
settings). For all three training settings, we use the
AdamW optimizer with learning rate 1e-5, coupled
with a linear schedule with 10% warmup. We clip
gradients to max norm 1.0.

Inference During inference, we consider all
mention candidates [i, j] with mention score
log p([i, j]) ≥ γ. If no mention candidate has men-
tion score ≥ γ, we simply take the top-50-scoring
mentions. γ is a threshold we tune on each dataset’s
dev data.

The linker then retrieves the 10 closest entity
candidates per mention boundary. We use the same
hierarchical FAISS index as during training to expe-
dite retrieval. Since the search is approximate, we
expect some performance degradation. However,
in practice, we found minimal performance degra-
dation for significant speedup. On WebQSPEL dev
set, F1 score decreased from 92.5 → 91.9, but
run-time decreased from 127.0s→ 24.3s (for the
entire dataset, with batch size 64).

As computing the softmax over all entities for
log p(e|[i, j]) is intractable, we simply softmax
over our 10 retrieved candidates. At the end,
we threshold the final joint score log p([i, j]) +
log p(e|[i, j]) based on γ.

Model WebQSPEL GraphQEL

ELQ, Wikipedia −2.9 −3.5
ELQ, Wikipedia + WebQSPEL −1.5 −0.9

Table 8: Best threshold hyperparameter value γ, based
on the respective development sets.

We use manual tuning and binary search to
find the best-performing hyper-parameters for the
threshold γ. We optimize for F1-score on the de-
velopment sets of WebQSPEL and GraphQEL. Best
settings are reported in Table 8.

As mention overlaps are not allowed in the ques-
tions data, we have an additional global step of
removing overlapping mention boundaries — in
the case of multiple entities, we greedily choose
the highest-scoring entity each time, and remove
all entities which overlap with it.

E Infrastructure Details

We ran all training distributed across 8 NVIDIA
TESLA V100 GPUs, each with 32 GB of memory.
For 80-CPU inference, we run on 2 chips of In-
tel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz with
20 cores (40 threads) each. For 1-CPU inference
(reported in Table 2), we run only on a single core.
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Dataset Example Error

Technically Correct (WebQSPEL 49.2%; GraphQEL 23.3%)
WebQSPEL what type of guitar does john mayer play?

GOLD: john mayer → “John Mayer”

PRED: guitar → “Guitar”; john mayer → “John Mayer”

WebQSPEL what countries make up continental europe ?

GOLD: continental europe → “Europe”

PRED: continental europe → “Continental Europe”

Not Enough Entities (WebQSPEL 13.1%; GraphQEL 51.8%)
WebQSPEL what country is the grand bahama island in?

GOLD: grand bahama island → “Grand Bahama”
PRED:

WebQSPEL what children’s books did suzanne collins wrote?
GOLD: children’s books → “Children’s literature”; suzanne collins → “Suzanne Collins”
PRED: suzanne collins → “Suzanne Collins”

GraphQEL how many people found o together?
GOLD: o → “Oxygen”
PRED:

GraphQEL the rockets ares i and saturn 5 are made by who?
GOLD: ares i → “Ares I”; saturn 5 → “Saturn V”
PRED: ares i → “Ares I”

GraphQEL where does spirit and opportunity aim to land?

GOLD: spirit and opportunity → “Mars Exploration Rover”
PRED:

Wrong Entities (WebQSPEL 26.2%; GraphQEL 20%)
WebQSPEL which kennedy died first?

GOLD: kennedy → “Kennedy family”

PRED: kennedy → “John F. Kennedy”

WebQSPEL what team did shaq play for first?

GOLD: shaq → “Shaquille O’Neal”

PRED: shaq → “Tupac Shakur”

GraphQEL myuutsu is what kind of pokemon?
GOLD: myuutsu → “Mewtwo”
PRED: myuutsu → “Kyjutsu”

GraphQEL in the bart what kind of trains are used?
GOLD: bart → “Bay Area Rapid Transit”
PRED: bart → “Bart Simpson”

Insufficient Context (WebQSPEL 11.5%; GraphQEL 5%)
WebQSPEL what was walt disney ’s first cartoon called?

GOLD: walt disney → “The Walt Disney Company”

PRED: walt disney → “Walt Disney”

GraphQEL what botanical gardens to visit in washington ?

GOLD: washington → “Washington, D.C.”

PRED: washington → “Washington (state)”

Table 9: Examples of each error type made by our model.


