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Abstract

Entity alignment (EA) aims at building a uni-
fied Knowledge Graph (KG) of rich content
by linking the equivalent entities from various
KGs. GNN-based EA methods present promis-
ing performance by modeling the KG struc-
ture defined by relation triples. However, at-
tribute triples can also provide crucial align-
ment signal but have not been well explored
yet. In this paper, we propose to utilize an
attributed value encoder and partition the KG
into subgraphs to model the various types of
attribute triples efficiently. Besides, the per-
formances of current EA methods are overes-
timated because of the name-bias of existing
EA datasets. To make an objective evaluation,
we propose a hard experimental setting where
we select equivalent entity pairs with very dif-
ferent names as the test set. Under both the
regular and hard settings, our method achieves
significant improvements (5.10% on average
Hits@1 in DBP15k) over 12 baselines in cross-
lingual and monolingual datasets. Ablation
studies on different subgraphs and a case study
about attribute types further demonstrate the
effectiveness of our method. Source code and
data can be found at https://github.com/
thunlp/explore—and-evaluate.

1 Introduction

The prosperity of data mining has spawned Knowl-
edge Graphs (KGs) in many domains that are often
complementary to each other. Entity Alignment
(EA) provides an effective way to integrate the com-
plementary knowledge in these KGs into a unified
KG by linking equivalent entities, thus benefiting
knowledge-driven applications such as Question
Answering (Yang et al., 2017, 2018), Recommen-
dation (Cao et al., 2019b) and Information Extrac-
tion (Kumar, 2017; Cao et al., 2018). However, EA
is a non-trivial task that it could be formulated as
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a quadratic assignment problem (Yan et al., 2016),
which is NP-complete (Garey and Johnson, 1990).

A KG comprises a set of triples, with each
triple consisting of a subject, predicate, and ob-
ject. There are two types of triples: (1) relation
triples, in which both the subject and object are en-
tities, and the predicate is often called relation (see
Figure 1(a)); and (2) attribute triples, in which the
subject is an entity and the object is a value, which
is either a number or literal string (see Figure 1(c)),
and the predicate is often called attribute.

Most of the previous EA models (Sun et al.,
2017; Wang et al., 2018; Wu et al., 2019a) rely
on the structure assumption that, the adjacencies
of two equivalent entities in KGs usually contain
equivalent entities (Wang et al., 2018) (see Fig-
ure 1(a)). These models mainly focus on modeling
KG structure defined by the relation triples. How-
ever, we argue that attribute triples can also provide
important clues for judging whether two entities are
the same, based on the attribute assumption that:
equivalent entities often share similar attributes
and values in KGs. For example, in Figure 1(b),
the equivalent entities e and ¢’ share the attribute
Area with similar values of 153,909 and 154, 077.
Therefore, we aim to improve EA using attribute
triples. We have identified the challenges of at-
tribute incorporation and dataset bias.

Attribute Incorporation Challenge. Model-
ing attribute triples together with relation triples
is a more effective strategy than modeling attribute
triples alone. In this way, the alignment signal
from attribute triples can be propagated to an en-
tity’s neighbors via relation triples. Recently, some
pioneer EA works (Zhang et al., 2019; Trisedya
et al., 2019) have incorporated both attribute and
relation triples. However, they learn relation and
attribute triples in separate networks. In this case,
the alignment signal from an entity’s discrimina-
tive attributes and values will be reserved to the
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(c) EA with attribute importance.

Figure 1: Examples for EA using different assumptions and identifying the different importance of attributes.
In Figure 1(a), we align e; and e} for the equivalent entity pairs (eg,e5) and (es,es) in their neighbors. In
Figure 1(b),1(c), we align e and ¢’ for their similar attributes and values; e refers to the entity “Georgia (U.S.
state)” from English Wiki and €’ is the Chinese equivalent. In Figure 1(c), attribute Time Zone and its value is
assigned less attention weight for being less discriminative for alignment. Chinese texts are translated. Dashed
curves link the target equivalent entity pairs. Dashed bothway arrows indicate alignment signals.

entity itself and will not help align its neighbors. In
addition, it is crucial to identify the different impor-
tance of attributes in discriminating whether two
entities are equivalent. For example, the attribute
Time Zone should be assigned less importance than
Name since many cities can share the same 7Time
Zone (Figure 1(c)). Previous works fail to consider
the different importance of attributes.

Dataset Bias Challenge. The performance
of EA is overestimated because the existing EA
datasets are biased to the attribute Name: 60% —
80% of the released seed set of equivalent entities
in DBP15k can be aligned via name matching. The
reason is that the equivalent entities are collected
using inter language links, which are labeled by a
strategy that heavily relies on the translation of en-
tity names'. In this way, the datasets contain many
“easy” equivalent entities that have similar names.
However, in the practical application of EA, the
“easy” equivalent entities are often aligned already,
and the challenge is to align the “hard” ones that
have very different names. This discrepancy be-
tween datasets and practical situation causes over-
estimated EA performance.

To address the first challenge, we propose
Attributed Graph Neural Network (AttrGNN) to
learn attribute triples and relation triples in a unified
network, and learn importance of each attributes
and values dynamically. Specifically, we propose
an attributed value encoder to select and aggre-
gate alignment signal from informative attributes
and values. We further employ the mean aggrega-
tor (Hamilton et al., 2017) to propagate this sig-
nal to entity’s neighbors. In addition, as different

'https://en.wikipedia.org/wiki/Help:Interlanguage links

types of attributes have different similarity mea-
surements, we partition the KG into four subgraphs
by grouping attributes, i.e., attribute Name, literal
attribute, digital attribute, and structural knowledge.
We apply separate channels to learn their represen-
tations. We present two methods to ensemble the
outputs from all channels.

To alleviate the name-bias of EA datasets (sec-
ond challenge), we propose a hard experimental
setting. Specifically, we construct harder test sets
from existing datasets by selecting equivalent enti-
ties that have the least similarity in their names. We
further evaluate the models on these harder test sets
to offer a more objective evaluation of EA mod-
els’ performance. Under both the hard and regular
settings, AttrGNN achieves the best result with sig-
nificant performance improvement (5.10% Hits@ 1
on average in DBP15k) over 12 baselines on both
the cross-lingual and monolingual datasets.

2 Related Work

Recent entity alignment methods can be classified
into embedding-based methods and Graph Neural
Network-based (GNN-based) methods.

2.1 Embedding-based Methods

Recent works utilize KG embedding methods, such
as TransE (Bordes et al., 2013), to model the rela-
tion triples and further unifies two KG embedding
spaces by forcing seeds to be close (Chen et al.,
2017). Attribute triples has been introduced in
this field. JAPE (Sun et al., 2017) computes at-
tribute similarity to regularize the structure-based
optimization. KDCoE (Chen et al., 2018) co-
trains entity description and structure embeddings
with a shared iteratively enlarged seed set. At-
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Figure 2: The framework of AttrGNN. Three GNN channels (GCs) are shown as an example. We do not use any
attributes in GC1 to focus on the learning of structural knowledge (node degree distribution). S is the output
similarity matrix of GCk. S¥ , is the similarity between e € KG1 and ¢’ € KG2 measured by GCk. For the KGs
and its subgraphs, we use circles to denote entities and rectangles to denote values.

trE (Trisedya et al., 2019) and MultiKE (Zhang
et al., 2019) encode values as extra entity embed-
dings. However, the diversity of attributes and
uninformative values limit the performance of the
above methods.

2.2 GNN-based Methods

Following Graph Convolutional Networks (Kipf
and Welling, 2017), many GNN-based models are
proposed because of GNN’s strong ability to model
graph structure. These methods present promis-
ing results on EA because GNN can propagate
the alignment signal to the entity’s distant neigh-
bors. Previous GNN-based methods focus on ex-
tending GNN’s ability to model relation types (Wu
et al., 2019a,b; Li et al., 2019), aligning entities via
matching subgraphs (Xu et al., 2019; Wu et al.,
2020), and reducing the heterogeneity between
KGs (Cao et al.,, 2019a). With the exception
of Wang et al. (2018) that have incorporated at-
tributes as the initial feature of entities, most of
the current GNN-based methods fail to incorpo-
rate the attributes and values to further improve the
performance of EA.

In this paper, we add values as nodes into graph
and use an attributed value encoder to conduct
attribute-aware value aggregation.

3 Methodology

The key idea of AttrGNN is to use graph partition
and attributed value encoder to deal with various
types of attribute triples. In this section, we first de-
fine KG and then introduce our graph partition strat-
egy. Further, we design different GNN channels
for different subgraphs and present two methods to
ensemble all channels’ outputs for final evaluation.

3.1 Model Framework

Knowledge Graph (KG) is formalized as a 6-
tuple directed graph G = (E,R, A, V,T",T%)
where E, R, A, and V refer to the set of enti-
ties, relations, attributes, and values, respectively.
7" = {(h,r,t) | h,t € E,r € R} and T* =
{(e;a,v) | e € E,a € A;v € V)} is the set of
relation triples and attribute triples.

Entity Alignment is to find a mapping between
two KGs G and G/, i.e., ) = {(e,€¢’) | e € E,€’ €
E'}, where e and ¢’ are equivalent entities. A seed
set of equivalent entities )° is used as training data.
Framework. The framework of our AttrGNN
model is shown in Figure 2, which consists of four
major components: (1) Graph Partition, which
divides the input KG into subgraphs by grouping
attributes and values. (2) Subgraph Encoder, which
employs multiple GNN channels to learn the sub-
graphs separately. Each channel is a stack of L
attributed value encoders and mean aggregators.
The attributed value encoder aggregate attributes
and values to generate the entity embeddings, and
the mean aggregator propagates entity features to
its neighbors following the graph structure. (3)
Graph Alignment, which unifies the entity vector
spaces of two KGs for each channel. (4) Channel
Ensemble, which infers the entity similarity using
each channel and ensemble all channels’ results for
final inference.

3.2 Graph Partition

Attributes and values have various types, e.g.,
strings S and numbers R. Different attributes have
different similarity measurements, for example, the
similarity between digital values should be numeri-
cal differences (153,909 v.s. 154,077), while the
similarity of literal values is often based on their
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semantic meanings. Therefore, we separately learn
the similarity measurements of the KG’s 4 sub-
graphs, defined as G* = (E, R, Ak, Vk T" T%),
where k € {1,2,3,4}:

e G includes attribute triples of Name only, i.e.,
Al = {aname}-

e G? includes attribute triples of literal values, i.e.,
A% ={a] (e,a,v) € T v €S,a # aname}-

o G includes attribute triples of digital values, i.e.,
A% ={a] (e,a,v) € T* v € R};

e G has no attribute triples, i.e., A* = (.

These subgraphs have mutually-exclusive at-
tribute triples but share the same relation triples.

3.3 Subgraph Encoder

We design different GNN channels (GCs) to en-
code the above four subgraphs: Name channel for
G, Literal channel for G2, Digital channel for G,
and Structure channel for G*. The building blocks
of these channels are two types of GNN layers: the
attributed value encoder and the mean aggregator.
Particularly, to select alignment signal from the in-
formative attributes and values, we first stack one
attributed value encoder and then mean aggregators
in the Literal and Digital channels. We stack no
attributed value encoder and only mean aggregators
for the Structure and Name channels because they
do not use various attribute triples. We add residual
connections (He et al., 2016) between GNN layers
for the Name, Literal, and Digital channels. Fol-
lowing previous EA works, all channels have two
GNN layers. Next, we describe attributed value
encoder and mean aggregator in details.

3.3.1 Attributed Value Encoder

Attributed value encoder can selectively gather
discriminative information from the initial fea-
ture of attributes and values to the central en-
tity. As an example, we show how to obtain e’s
first layer hidden state h!. The same method
applies to all the entities. We obtain the se-

quence of attribute features {ai,---,a,} and
value features {vi,---,v,} given the attribute
triples {(e, a1,v1),- - , (e, an, vy,)} of e as inputs.

Specifically, we use BERT (Devlin et al., 2019) to
obtain the features of both literal and digital values?.
BERT is a language model that is pre-trained on a
more than 3000M words corpora. It is popularly
used as a feature extractor in NLP tasks. By adding

2As shown by Andor et al. (2019), BERT embedding can
be used for simple numerical computation.

values as nodes and attributes as edges, which con-
nect values and the entity, into the graph, we then
can apply attention from the entity to attributes and
use the attention score to compute the weighted av-
erage of attributes and values. Following the Graph
Attention Networks (Velickovic et al., 2018), we
define h! as follows:

h! = o) a;Wilaj;vy)),
j=1

' 1
aj = softrnaX(Oj) = %’ N

0j = LeakyReLU(u” [h?; a;]),

where j € {1,--- ,n}, Wy € RPn*(PatDo) gapq
u € R(PetDa)x1 gre learnable matrices, o is the
ELU(-) function, and hY is the initial entity feature.

3.3.2 Mean Aggregator

Mean aggregator layer utilizes the features of the
target entity and its neighbors to generate the en-
tity embedding. The neighbor entities of e are de-
fined by relation triples: NV'(e) = {j | V(j,7,¢e) €
T" orV(e,r,j) € T",Vr € R}. We aggregate the
features of e’s neighbor entities to gather alignment
signal and learn the structural knowledge. Given
the hidden state h’~! from the [ — 1 layer, the mean
aggregator (Hamilton et al., 2017) is defined as:

h! = (W, MEAN({h. '} U {h}™",Vj € N(e)})) (2

where W, ¢ RPm>*Pri_1 ig a learnable matrix,
MEAN(+) returns the mean vector of the inputs,
and o is the nonlinear function chosen as ReLU(-).

3.4 Graph Alignment

Graph Alignment unifies the two KGs’ representa-
tions of each channel into a unified vector space by
reducing the distance between the seed equivalent
entities. We separately train the four channels and
ensemble their outputs afterward for final evalua-
tion (see Section 3.5). Following Li et al. (2019),
we generate negative samples of (e, e’) € ¢° by
searching the nearest entities of e (or ¢’) in the en-
tity embedding space. We denote the final output
h’ of the channel GC* as the entity embedding e*.
For each channel GC*, we optimize the following
objective function:

Lo= > (3 lde*, &™) —d(e &™)+

(e,e’)EYS e_ENS(e)
+ Y [de",e") —d(e,et) +7]1)
e/ _eNS(e’)

3
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where 1° is the seed set of equivalent entities,
NS(e) denotes the negative samples of e; [-]4 =
max{-,0}, d(+,-) = 1 — cos(-, -) is the cosine dis-
tance, and vy is a margin hyperparameter.

3.5 Channel Ensemble

We use the entity embedding of each channel
to infer the similarity matrices S¥ ¢ RIZI*IZ'|
(k € {1,2,3,4}), where S¥ , = cos(ek,e’k) is
the cosine similarity score between ¢ € E and
e/ € E'. We present two methods to ensemble the
four matrices into a single similarity matrix S* for
final evaluation.

Average Pooling. Empirically, we assume that
each channel has equal importance. We let S* =
154 S*, where S¥ is the standardized S*:

Gk _ S* — mean(SF) @
std(Sk)
SVM. We utilize LS-SVM (Suykens and Vande-
walle, 1999) to learn the weights for each channel:
S* = Zé:l wy,S*, where w = [wy, w2, w3, wy]
is trained as follow:

Loym = CZ[@/Z -max(0,1 — wal) +(1—y)-
=1

1
max (0,1 + w’x;)] + §WTW

5)
where x; = [Si o> Sg o> S‘Z o> Si‘ ] is a vector of
sampled similarity scores. If (e,€’) € ¢s, label

1y = 1, otherwise y; = 0.

4 Experiments

In this section, we compare AttrGNN with 12 base-
lines on the regular setting and our designed hard
setting of EA. We also present an ablation study
and a case study to evaluate attributes’ and values’
effects for EA.

4.1 Experimental Settings

Datasets. We test models on both cross-lingual
and monolingual datasets: DBP15k (Sun et al.,
2017) and DWY 100k (Sun et al., 2018). DBP15k
includes three cross-lingual datasets collected
from DBpedia: Chinese and English (DBPzu-Ex),
Japanese and English (DBPsa-exn), French and En-
glish (DBPrr-en). DWY 100k contains two mono-
lingual datasets: DBpedia and Wikidata (DBP-
WD), DBpedia and YAGO (DBP-YG). The origi-
nal DBP15k does not have attribute triples. There-
fore we retrieve attribute triples from the DBpedia

Datasets #Relation #Digital #Literal
DBPzu 153k 177k 290k
DBPeN 237k 203k 292k
DBPia 164k 152k 227k
DBPeN 233k 171k 268k
DBPrr 192k 162k 313k
DBPeN 278k 227k 323k

DWYwp 463k 362k 628k
DWYbs 448k 219k 403k
DWYvyc 428k 1147k 712k
DWYbs 502k 253k 506k

Table 1: Triple numbers of datasets. #Relation indi-
cates the number of relation triples. The numbers of
attribute triples that have digital values and literal val-
ues are denoted by #Digital and #Literal.

Attr | Value | Name | Iter

MTransE (2017)
JAPE (2017) v
IPTransE (2017) v
AlignE (2018)
BootEA (2018)
KDCOoE (2018)
GCN-Align (2018) v
MuGNN (2019a)
AttrE (2019)
MultiKE (2019)
GraphMatch (2019)
RDGCN (2019a)
AttrGNN (Ours) v v

AN

AN

SNESENENEN

Table 2: Characteristics of entity alignment models.
The top part lists 8 models without utilizing entity
names, and the bottom part lists 5 models with entity
names. Attr and Value indicate the attributes and val-
ues from attribute triples; Name indicates entity names;
and Iter indicates whether the model iteratively enlarge
training set of equivalent entities.

dump (2016-10). We then randomly sample 30%
of gold entity alignments for training and use the
rest for testing. For DWY 100k, we use the re-
leased attribute triples and the train/valid/test split
of Zhang et al. (2019). We show the number of
relation/attribute triples for each dataset in Table 1.

Baselines. We compare AttrGNN with 12 base-
lines. We summarize four common characteristics
of EA models and mark the employed characteris-
tic for each method in Table 2. Among them, AttrE
and MultiKE use the same information as AttrGNN.
We also construct a baseline NameBERT that only
uses the BERT embedding of entity names to mea-
sure the similarity. For each model, we list the
reported performance if available; otherwise, we
run the source code to get the result. Following ex-
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| DBPzu-EN DBPja-EN DBPrr-EN

Methods | @1 H@10 MRR [H@1 H@10 MRR |H@1 H@10 MRR
MTransE | 30.83 6141 0364 |27.86 5745 0349 | 2441 5555 0335
JAPE | 41.18 7446 0490 |3625 68.50 0476 | 3239 66.68 0430
AlignE | 47.18 79.19 0.581 |44.76 78.89 0563 |48.12 8243 0.599
BootEA | 6294 8475 0703 |6223 8539 0701 6530 8744 0.731
GCN-Align | 4125 7438 0549 [39.91 7446 0546 |37.29 7449 0.532
MuGNN | 4940 8440 0611 |50.10 8570 0.621 |49.50 87.00 0.621
NameBERT | 6036 7100 0.642 |74.53 8357 0779 |87.44 9206 0.891
MuliKE* | 4370 5162 0466 |57.00 6426 059 |71.43 7608 0.733
GraphMatch | 67.93 7848 - |7397 87.15 - [8938 9524 -
RDGCN | 7075 8455 0.749% | 7674 89.54 0.812% |88.64 9572 0.908*
AtrGNNave | 79.60 92.93 0.845 [ 7833 92.08 0.834 [9185 97.77 0910
AtrGNNew | 7772 9200 0.829 | 7625 90.88 0816 | 94.24 98.67 0.959

Table 3: Overall performance on the regular setting of DBP15k. Models in the first part do not use Names while

models in the second part use Name. * indicates results from our re-implementation using their source code.

isting works (Sun et al., 2018), we employ Hits@N
(%, short as H@N) and Mean Reciprocal Rank
(MRR) as the evaluation metrics. Higher Hits@N
and MRR indicate better performance.

Training Details. We use BERT (Devlin et al.,
2019) to initialize the feature vector for each value.
Specifically, given a value v consisting of a se-
quence of tokens, we use the pre-trained bert-base-
cased® to generate a sequence of hidden states and
apply max-pooling to obtain a fixed length vec-
tor v as the initial value feature vector. We do
not fine-tune the BERT so that the feature vectors
can be cached for efficiency. Following Sun et al.
(2017), we use Google Translate to translate all
values to English for cross-lingual datasets. We
initialize the four channels defined in Section 3.3
as follows. For the Name channel, we initialize
the entity features using the BERT embedding of
entity names. For the Literal, Digital, and Struc-
ture channels, we use randomly initialized the 128
dimensional vectors as the entity and attribute fea-
tures. We use Adagrad (Duchi et al., 2011) as the
optimizer. For each entity, we choose maximum 20
or 3 attribute triples based on GPU memory. For
Graph Alignment, we choose 25 negative samples
for each entity. We use 16 negative samples for
each positive sample in the SVM ensemble model.
We grid search the best parameters for each GNN
channel on the valid set (if available) in the follow-
ing range: learning rate {0.001, 0.004, 0.007}, L2
regularization {107%,1073,0}. We set v = 1.0.
We train each channel for 100 epochs. For the
SVM in Channel Ensemble, we search for C' in
range {1076,1075,107%,1073,1072,1071}. The

3https://github.com/huggingface/transformers

experiments are conducted on a server with two
6-core 2.40ghz CPUs, one TITAN X, and 128 GB
memory. On DBP15k, the Literal/Digital/Name
channel costs less than 20 minutes for a grid search,
and Structure channel costs less than 5 minutes.

4.2 Overall Performance

We report the results in two settings: regular set-
ting, i.e., the setting used in the previous entity
alignment works; and hard setting, where we con-
struct a harder test set for objective evaluation.

4.2.1 Regular Setting

Cross-lingual Dataset. Table 3 shows the overall
performance on DBP15K. We can see that:

1. As compared to the second best model, At-
trGNN achieves significant performance improve-
ments of 5.10% for Hits@1 and 0.056 for MRR
on average. This demonstrates the effectiveness of
AttrGNN in integrating both attribute triples and
relation triples.

2. NameBERT, which only uses entity names,
performs better than models without using names
in most cases. This demonstrates our observa-
tions that (1) the datasets are name-biased; and (2)
the evaluation result cannot reflect true EA perfor-
mance in real-world situation. Specifically, Name-
BERT performs better on DBPrr-En than that on
DBPia-exn and DBPzu-en, which indicates a higher
name-bias on DBPrr-En. The reason is the better
translation quality between French and English.

3. AttrGNN’s performance improvement over
baselines is higher on DBPzu-en (8.85%) than those
on DBPiaen (1.59%) and DBPrr-EN (4.86%). The
primary reason is that on DBPzu-en, different chan-
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nels of features complement each other better
than those on DBPaex and DBPsr ex. The ratios”
of complementary features on DBPzu-en/DBPia-
eN/DBPrrex are 19%/9%/5%. Thus, we benefit
the most on DBPzu-en from the ensemble.

4. The SVM ensemble strategy performs better
than average pooling on DBPrr-En. On DBPrr-EN,
the performances of AttrGNN channels are imbal-
anced: the Name channel performs much better
than other channels, as shown by the performance
gap between NameBERT and baselines without
names on these datasets. In these imbalanced cases,
SVM performs better because it can adjust the
weights of channels. However, we can not explain
that the SVM strategy performs worse that aver-
age pooling on DBPzu-ex and DBPia-en. In fact, the
integration of the various KG features is an open
problem. We leave that as a future work.
Monolingual Dataset. We evaluate models on this
monolingual setting to inspect the name-bias level
when there is no translation error. Table 4 shows
the performance on DWY100K. The overall per-
formance is similar to that on DBP15k, on which
AttrGNN achieves the best performance. There are
three major observations:

1. NameBERT achieves nearly 100% Hits@ 1
on DBP-YG, which shows more severe name-bias
than that on the cross-lingual dataset. The reason
is that both DBpedia and YAGO are derived from
Wikipedia, resulting in that 77.60% of the released
equivalent entities have exactly the same names
while the rest have very similar names, e.g., George
B. Rodney and George B Rodney. This results dose
not indicate that EA is solved because EA is still
challenging when integrating KGs from different
domains, where entity names can be very different.

2. AttrE and MultiKE, which use entity names,
do not perform well because of their agnostic of
attribute importance. The crucial alignment signal
from Name is thus averaged away by other attribute
triples (in DBpedia, each entity has 7-8 attribute
triples in average).

3. MultiKE performs better than AttrE because
it particularly sets a “Name View” to incorporate
names. However, MultiKE performs worse than
NameBERT on DBP-YG and DBP15k (Table 3),
indicating that its inefficient combination of “Name
View” and other views harms the performance.

“We test the ratios of two models’, i.e., the Name channel
and the ensemble of the other three channels, complementary
correct predictions.

| DBP-WD DBP-YG
Methods | @1 H@10 MRR|H@1 H@10 MRR
MTransE |28.12 51.95 0363 (25.15 4929 0.334
JAPE  |31.84 58.88 0411|2357 48.41 0.320
IPTransE |34.85 63.84 0.447(29.74 5576 0.386
BootEA |74.79 89.84 0.801|76.10 89.44 0.808
KDCoE |57.19 69.53 0.618[42.71 48.30 0.446

GCN-Align [47.70 75.96 0.577]60.05 84.14 0.686
MuGNN [61.60 89.70 0.714|74.10 93.70 0.810

NameBERT 83.32 90.15 0.860|99.85 99.99 0.999
AttrE 38.96 66.77 0.487|23.24 42.70 0.300
MultiKE [91.86 96.26 0.935|88.03 95.32 0.906

AttrGNNavg [96.08 98.86 0.972(99.89 99.99 0.999
AttrGNNsvm |85.50 93.73 0.884199.96 100.00 1.000

Table 4: Overall performance on DWY100K. The per-
formance of AttrE is reported in Zhang et al. (2019).

4.2.2 Hard Setting

In the hard setting, we aim to carry out a more
objective evaluation of EA models on a harder test
set. We first introduce how to construct the test set
and then present the results and discussion.

Build Harder Test Set. Let E; and E, be the set
of known aligned entities in G and G’. First, we
compute the similarity matrix S via NameBERT;
each element S, . denotes the similarity between
the entity pair e € E; and ¢’ € E.. Second, we
sort each row of S in descending order, by rank-
ing (e, ') higher when there is less similarity in
their names. Finally, we pick the highest-ranked
60% of equivalent entity pairs as the test set. The
train set (30%) and the valid set (10%) are then
randomly selected from the remaining set of data.
We construct harder test set for the cross-lingual
dataset only, because it is impractical to find equiv-
alent entity pairs whose entities have very different
names on the monolingual dataset, as shown by the
performance of NameBERT in Table 4.
Discussion. We implement AttrGNN and eight
best-performed baselines with their source codes
on the hard setting. Table 5 shows the overall per-
formance. We observe general performance drop
in Hit@1 on DBP15k for all models, as shown in
Figure 3. There are three major observations:

1. AttrGNN still achieves the best performance,
demonstrating the effectiveness of our model. How-
ever, the performance of AttrGNN has degraded
by around 6% for Hits@ 1. This degradation indi-
cates that the practical application of EA is still
challenging and worth exploration.

2. RDGCN shows the lowest degradation in per-
formance among all the models with entity names
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| DBPzu-EN DBPja-EN DBPrr-EN
Methods | 'He1 H@10 MRR | He1 H@10 MRR | H@1 H@10 MRR
JAPE | 3497 5663 0451 | 3107 5203 0410 | 2530 4829 0361
AlignE | 4009 6994 0501 | 3742 69.19 0479 | 3801 7128 0492
BootEA | 5126 7460 0593 | 4931 7464 0578 | 5128 7693  0.603
GCN-Align | 3659 6466 0464 | 3394 6530 0448 | 3032 6369 0414
MuGNN | 4064 7458 0521 | 39.86 7533 0515 | 4071 7826 0.531
NameBERT | 3836 5506 0444 | 60.03 7447 0654 | 79.02 8689  0.820
MuliKE | 2792 3521 0306 | 4818 5568 0509 | 64.69 69.54  0.665
GraphMatch | 5006 6693 - | 6026 7178 - | 8350 9047 -
RDGCN | 6044 7660 0.662 | 68.19 8377 0737 | 8287 9312  0.866
AtrGNNae | 6621 8L81 0719 | 7572 8876 0805 | 8641 9467 0894
AtrGNNem | 6590 8116 0716 | 77.39  90.33 0821 | 88.64 95.64  0.912

Table 5: Overall performance on the hard setting of DBP15k.

because RDGCN utilizes the feature of relation
type within a GNN framework. This stable per-
formance suggests that incorporating relation type
into GNN is crucial for EA and worth exploration.

3. Except for the iterative model, i.e., BootEA,
the performance of models without using entity
names exhibits less performance drop than the mod-
els with names. The iterative model’s performance
degrades more because the harder dataset weakens
the snowball effect > when iteratively enlarging the
seed set of equivalent entities.

4.3 Ablation Study

We conduct an ablation study on the performance
of each AttrGNN channel, AttrGNNavg without us-
ing the Name channel (A w/o Name), AttrGNN
without using relation triples (A w/o Relation), and
AttrGNN without graph partition (MixAttrGNN)
(Figure 4). A w/o Relation is to ensemble Name-
BERT and one-layer Literal and Digital channels.
There are three major observations:

1. The Literal and Structure channels’ perfor-
mances are close to the Name channel under the
hard setting. This demonstrates the importance
to explore non-name features, including other at-
tributes and relation, for practical EA.

2. Compared to MixAttrGNN, our simple graph
partition strategy achieves promising improvement.
The reason is that graph partition enables model to
measure the similarity of different attributes differ-
ently.

3. The Digital channel’s performance is poor
because it is challenging to learn the numerical
calculation with the supervision of entity alignment.
We thus leave it as future work.

>https://en.wikipedia.org/wiki/Snowball _effect

83.26 82.74

77.09 77.95

mRegular OHard 74.11

63.49 6.11) [77-31]
57.37 70.5
4842 5o 14 Ao

0.62 39 48

46.18
3661

38.51

&F & \&
'\\‘é‘\ &S S
v 9 @ S

Figure 3: Average Hits@1 (%) of models under the
regular setting and the hard setting on DBP15k.
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Figure 4: Ablation study on DBPzH-EN (Hits@1 %).

4. Our full model significantly outperforms the
Structure channel and the A w/o relation, which
are the models with only relation/attribute features.
This demonstrates the necessity of considering both
relation and attribute triples for EA.

4.4 Case Study of Attributes and Values

We give a qualitative analysis of how attribute
triples contribute to EA in this case study. Table 6
shows an equivalent entity pair that NameBERT
fails to align, but AttrGNN aligns it by taking align-
ment signal from attributes and values. We observe
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Score Attribute Value
English Entity: Georgia (U.S. state)

.109  postalabbreviation GA

.039 former Province of Georgia
.037 flag Flag of Georgia.svg
.028 arearank 24

.020 senators David Perdue
.020 governor Nathan Deal
019 motto Wisdom, Justice...
Chinese Entity: Georgia

.144  postalabbreviation GA

.048 flag Flag of Georgia.svg
.041 fullZhName Georgia

.037 arearank 24

.026 officiallang English

.026 admittancedate 1788

.025 totalarea 154077

Table 6: Attributes and values for the entity “Georgia
(U.S. state)” from the English and Chinese DBpedia.
Attributes are sorted in descending order according to
the attention score. Chinese texts are translated.

that most of the top-ranked attributes have similar
values between two KGs. In this case, the similar
values include three literal strings, e.g., GA, Flag of
Georgia and Seal of Georgia, and a number, e.g. 24.
Meanwhile, the values that are not shared in both
KGs are assigned low attention weights and filtered
out. As similar cases are commonly observed, we
conclude that — attributes determine the importance
of values, and values provide discriminative sig-
nals. In other words, the attributes whose values
are unique are ranked higher, e.g., postalabbrevi-
ation that denotes the unique postal abbreviation
of provinces. The value of the lowest-ranked at-
tributes may have different forms in different KGs.
For example, the attention weight of rotalarea is
small, because English KG and Chinese KG use
different units of area (square mile in English DB-
pedia and square kilometer in Chinese DBpedia).

5 Conclusion and Future Work

We propose a novel EA model (AttrGNN) and con-
tribute a hard experimental setting for practical
evaluation. AttrGNN can integrate both attribute
and relation triples with varying importance for
better performance. Experimental results under
the regular and hard settings present significant
improvements of our proposed model, and the se-
vere dataset bias can be effectively alleviated in our
proposed hard setting.

In the future, we are interested in replacing

BERT with knowledge enhanced and number sen-
sitive text representations models (Cao et al., 2017;
Geva et al., 2020).
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