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Abstract

Large pre-trained transformer-based language
models have achieved impressive results on a
wide range of NLP tasks. In the past few years,
Knowledge Distillation(KD) has become a
popular paradigm to compress a computation-
ally expensive model to a resource-efficient
lightweight model. However, most KD algo-
rithms, especially in NLP, rely on the acces-
sibility of the original training dataset, which
may be unavailable due to privacy issues. To
tackle this problem, we propose a novel two-
stage data-free distillation method, named Ad-
versarial self-Supervised Data-Free Distilla-
tion (AS-DFD), which is designed for com-
pressing large-scale transformer-based models
(e.g., BERT). To avoid text generation in dis-
crete space, we introduce a Plug & Play Em-
bedding Guessing method to craft pseudo em-
beddings from the teacher’s hidden knowledge.
Meanwhile, with a self-supervised module to
quantify the student’s ability, we adapt the dif-
ficulty of pseudo embeddings in an adversarial
training manner. To the best of our knowledge,
our framework is the first data-free distillation
framework designed for NLP tasks. We verify
the effectiveness of our method on several text
classification datasets.

1 Introduction

Recently, pre-trained language models (Devlin
et al., 2018; Yang et al., 2019; Liu et al., 2019; Raf-
fel et al., 2019) have achieved tremendous progress
and reached the state-of-the-art performance in var-
ious downstream tasks such as text classification
(Maas et al., 2011), language inference (Bowman
et al., 2015) and question answering (Rajpurkar
et al., 2016). These models become an indispens-
able part of current models for their transferability
and generalizability.
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However, such language models are huge in
volume and demand highly in computational re-
sources, making it impractical in deploying them
on portable systems with limited resources (e.g.,
mobile phones, edge devices) without appropri-
ate compression. Recent researches (McCarley,
2019; Gordon et al., 2020; Michel et al., 2019)
focus on compressing the large-scale models to a
shallow and resource-efficient network via weight
pruning (Guo et al., 2019), knowledge distillation
(Mukherjee and Awadallah, 2019), weight quan-
tization (Zafrir et al., 2019) and parameter shar-
ing (Lan et al., 2020). Among them, some meth-
ods (Sanh et al., 2019; Sun et al., 2019) draw on
the idea of transfer learning, utilizing knowledge
distillation (Hinton et al., 2015) to transfer latent
representation information embedded in teachers
to students. These knowledge distillation meth-
ods share some commonalities: they rely on the
training data to achieve high accuracy. It will be
intractable if we need to compress a model without
publicly accessible data. Reasons for that include
privacy protection, company assets, safety/security
concerns and transmission. Representative samples
include GPT2 (Radford et al., 2019), which has
not released its training data with fears of abuse of
language models. Google trains a neural machine
translation system (Wu et al., 2016) using inter-
nal datasets owned and protected by the company.
DeepFace (Taigman et al., 2014) is trained on user
images under confidential policies for protecting
users. Further, some datasets, like Common Crawl
dataset used in GPT3 (Brown et al., 2020), contain
nearly a trillion words and are difficult to transmit
and store.

Conventional knowledge distillation methods are
highly dependent on data. Some models or algo-
rithms in Computer Vision like DAFL (Chen et al.,
2019), ZSKD (Nayak et al., 2019) solve the data-
free distillation by generating pseudo images or uti-
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lizing metadata from teacher models. Exploratory
researches (Micaelli and Storkey, 2019; Fang et al.,
2019) also show that GANs can synthesize harder
and more diversified images by exploiting disagree-
ments between teachers and students. However,
these models only make attempts in image tasks,
designing for continuous and real-valued images.
Applying these models to generate sentences is
challenging due to the discrete representation of
words (Huszár, 2015). Backpropagation on discrete
words is not reasonable, and it seems unlikely to
pass the gradient through the text to the generator.
Apart from the discontinuity problem of text, some
promotion strategies like layer-wise statistic match-
ing in batch normalization (Yin et al., 2019) are not
suitable for transformer-based models, which trans-
poses batch normalization into layer normalization
to fit with varied sentence length (Ba et al., 2016).

To address the above issues and distill with-
out data, we propose a novel data-free distilla-
tion framework called ”Adversarial self-Supervised
Data-Free Distillation”(AS-DFD). We invert BERT
to perform gradient updates on embeddings and
consider parameters of the embedding layer as ac-
cessible knowledge for student models. Under
constraints of constructing ”BERT-like” vectors,
pseudo embeddings extract underlying represen-
tations of each category. Besides, we employ a
self-supervised module to quantify the student’s
ability and adversarially adjust the difficulty of
pseudo samples, alleviating the insufficient supervi-
sory problem controlled by the one-hot target. Our
main contributions are summarized as follows:

• We introduce AS-DFD, a data-free distillation
framework, to compress BERT. To the best of
our knowledge, AS-DFD is the first model in
NLP to distill knowledge without data.

• We propose a Plug & Play Embedding Guess-
ing method and align the pseudo embeddings
with the distribution of BERT’s embedding.
We also propose a novel adversarial self-
supervised module to search for samples stu-
dents perform poorly on, which also encour-
ages diversity.

• We verify the effectiveness of AS-DFD on
three popular text classification datasets with
two different student architectures. Extensive
experiments support the conjecture that syn-
thetic embeddings are effective for data-free
distillation.

2 Related Work

2.1 Data-Driven Distillation for BERT
Knowledge Distillation (KD) compresses a large
model (the teacher model) to a shallow model (the
student model) by imitating the teacher’s class dis-
tribution output (Hinton et al., 2015). Bert (De-
vlin et al., 2018) contains multiple layers of trans-
former blocks (Vaswani et al., 2017) which en-
codes contextual relationship between words. Re-
cently, many works successfully compress BERT
to a BERT-like model with knowledge distillation
(Sanh et al., 2019) and achieve comparable per-
formances on downstream-tasks. Patient-KD (Sun
et al., 2019) bridges the student and teacher model
between its intermediate outputs. TinyBERT (Jiao
et al., 2019) captures both domain-general and
domain-specific knowledge in a two-stage frame-
work. Zhao et al. (2019) employs a dual-training
mechanism and shared projection matrices to com-
press the model by more than 60x. BERT-of-
Theseus (Xu et al., 2020) progressively module
replacing and involves a replacement scheduler in
the distillation process. Besides, some recent sur-
veys focus on compress BERT to a CNN-based
(Chia et al., 2019) or LSTM-based model to create
a more lightweight model with additional training
data (Tang et al., 2019a,b).

2.2 Data-Free Distillation Methods
Current methods for data-free knowledge distilla-
tion are applied in the field of computer vision.
Lopes et al. (2017) leverages metadata of networks
to reconstruct the original dataset. Chen et al.
(2019) trains a generator to synthesize images that
are compatible with the teacher. Nayak et al.
(2019) models the output distribution space as a
Dirichlet distribution and updated the random noisy
images to compose a transfer set. Micaelli and
Storkey (2019) and Fang et al. (2019) incorporate
the idea of adversarial training into knowledge dis-
tillation, measuring the discrepancy between the
student and teacher. Yin et al. (2019) introduces
DeepInversion to synthesize class-conditional im-
ages. Due to the discrete nature of language, none
of the above methods can be applied to natural lan-
guage tasks. Melas-Kyriazi et al. (2020) proposes
a generation-distillation framework in low-data set-
tings, which employs a finetuned GPT2 as the gen-
erator and a CNN as the student model. Different
from methods above, we investigate the problem
of compressing BERT with no data.
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Figure 1: An overview of our two-stage Adversarial self-Supervised Data-Free Distillation framework. T ′ and S ′
contain transformer layers and classifier head. Firstly, when constructing synthetic samples, we iteratively guess
and update the pseudo embeddings e under the feedback of the teacher’s class-conditional supervision (top left)
and the student’s self-assessment (top right) in an adversarial training manner. Secondly, we use the generated
sample e to distill knowledge (top middle). The parameters of embedding layer are fixed, and no inputs will go
through the embedding layer when training.

3 Methods

In this section, we present our two-stage distilla-
tion framework named Adversarial self-Supervised
Data-Free Distillation (AS-DFD). We craft well-
trained embedding-level pseudo samples by con-
trollable Plug & Play Embedding Guessing with
alignment constraints (Section 3.1) and adver-
sarially adapt synthetic embeddings under self-
supervision of the student (Section 3.2). Using
these pseudo samples, we transfer knowledge from
the teacher to the student (Section 3.3). The work-
flow of AS-DFD is illustrated in Figure 1.

Problem Definition Knowledge Distillation is a
compression technique to train a high-performance
model with fewer parameters instructed by the
teacher model (Hinton et al., 2015). Let T
be a large transformer-based teacher model (12-
layer BERT-base here) and S be a comparatively
lightweight student model. For each sentence x,
the classification prediction can be formulated as:

e = EmbeddingLayer(x; θemb)
h = TransformerLayers(e; θlayer)
y = ClassifierLayer(h[CLS]; θclassifier)

(1)

where θemb, θlayer, θclassifier represent parame-
ters in the embedding layer, transformer layers and
classification head respectively. y is the softmax
probability output of x and h[CLS] denotes the hid-
den states in the last layer corresponding to the
special token [CLS]. Parameters with superscript
T belong to the teacher and S for the student.

Our goal of data-free knowledge distillation is
to train the student parameters θS with no data X
available. In other words, we only have a teacher
model T and we need to compress it.

3.1 Construct Pseudo Samples

Plug & Play Embedding Guessing In the data-
free settings, we need to solve the dilemma of hav-
ing no access to the original dataset. The major
challenge is how to construct a set of highly reli-
able samples, from which the student can extract
differential knowledge.

Our approach exploits representative knowledge
hidden in the teacher’s parameters in a Plug & Play
manner (Nguyen et al., 2017; Dathathri et al., 2020).
Given a sentence x and a label y, the conditional
probability can be written as P (y|x; θT ). When
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finetuning the teacher, we optimize parameters θT

towards higher probability. To capture impression
of prior training data in the teacher’s parameters,
we invert the model and utilize the teacher’s pa-
rameters to guide the generation of x by ascending
P (y|x; θT ) with θT fixed.

Due to the intractable discrete problem of text,
gradients updated on x are pointless. Most lan-
guage models transform discrete words into contin-
uous embeddings. Inspired by this, we ignore the
embedding layer and apply the updating on con-
tinuous representation space of embeddings. We
name this generation process ”Embedding Guess-
ing”. We randomly guess vectors e ∈ Rl×d, feed
them into the transformer blocks and get feedback
from gradients to confirm or update our guess. l
is the predefined length of sentence and d is the
embedding dimensionality, which is 768 in BERT-
base. Those target-aware embeddings can be ob-
tained by minimizing the objective:

LINPUT =
∑
e∈E

CE
(
T ′(e; θT

′
), ŷ
)

(2)

where T ′ takes pseudo embeddings e as input and
contains TransformerLayers and ClassifierLayer
in the teacher. θT

′
includes θTlayer and θTclassifier.

ŷ is a random target class. CE refers to the cross-
entropy loss. E is a batch of e initialized with
Gaussian distribution. We update e for several
iterations until convergence, representing that e is
correct judged by the teacher. As for θSemb, we
share θTemb with θSemb.

We argue that under the process of Embedding
Guessing, pseudo embeddings e contain the target-
specific information. Classification models need to
find out differentiated characteristics which propi-
tious to prediction over multiple categories. As the
human learning process, examples given by teach-
ers are encouraged to be representative and bet-
ter reflecting the discrepancy among classes. Bor-
rowed from this teaching strategy, we guess em-
beddings towards the direction of higher likelihood
on target category and seek the local minimum
regarding the target class, which reflects the charac-
teristics of the target class within regions. In other
words, these synthetic samples are more likely to
comprise separation statistics between classes.

Making Pseudo-Embeddings More Realistic
However, training on embeddings leads to a gap
between the pseudo embeddings and the true under-
lying embeddings. Specifically, Embedding Guess-

ing is independent of the parameter of the teacher’s
embedding and will shift the representational space.
We add some additional constraints to ensure gen-
erated embeddings imitate the distribution of real
data to a certain extent. Alignment strategies to re-
strain and reduce search space are listed as follows:

• Add e[CLS] and e[SEP] at both ends of the
synthetic embeddings. e[CLS] and e[SEP] rep-
resent embeddings corresponding to [CLS]
and [SEP].

• Continuously mask random length of embed-
dings from the tail of it. Lengths of sentences
in batches are indeterminate and synthetic em-
beddings should cover this scenario.

• Adjust the Gaussian distribution to find the
best initialization. Excessive initialization
scope expands search space while small one
converges to limited samples.

3.2 Adversarial self-Supervised Student
Modeling Learning Ability of the Student Ef-
fective teaching needs to grasp the student’s current
state of knowledge and dynamically adapt teaching
strategies and contents. How to model the ability of
the student without data? While processing natural
language, the ability to analyze the context is an
indicator of the student’s capabilities and it can be
quantified by a self-supervised module. Borrow-
ing the idea of masking and predicting the entries
randomly, we randomly mask one embedding in e.
Then, a new self-restricted objective is to predict
the masked embedding with the following forums:

h = S ′
(
emask; θS

′
)

LMASK =
∑
e∈E

∥∥∥∥ ei
‖ei‖2

− Whi

‖Whi‖2

∥∥∥∥2
2

(3)

where e is randomly masked on position i and con-
verted to emask. ei is the masked embedding and
W is the parameters in the fully-connected super-
vised module for predicting masked embedding.
S ′ acts the same way as T ′. Unlike the class-
conditional guidance, the self-supervised module
shifts the gradients with more concrete and diverse
supervision from context.

Adversarial Training of the Student To en-
force e with more valuable and diverse informa-
tion, we encourage the student to adversarially
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search for samples that the student is not confi-
dent. Prior works (Micaelli and Storkey, 2019;
Fang et al., 2019) maximize the discrepancy be-
tween the teacher and student to encourage diffi-
culty in samples and avoid synthesizing redundant
images. We design a self-assessed confrontational
mechanism, which guides the pseudo embeddings
towards greater difficulty by enlarging LMASK in
the constructing stage and enhances the student by
decreasing LMASK in the distillation stage. Here,
LMASK acts as the timely student’s feedback to
improve teaching.

3.3 Two-stage Training
Distillation Objective Students learn high-
entropy knowledge from teachers by matching soft
targets. Taking E as synthetic samples, we measure
the distance between the teacher and student as:

LKL =
∑
e∈E

KL
(
T ′(e; θT

′
),S ′(e; θS

′
), τ
)

(4)

where KL denotes the Kullback-Leibler divergence
loss and τ is the distillation temperature.

We follow PKD (Sun et al., 2019) to learn more
meticulous details for students. To capture rich
features, we define the additional loss as:

LPT =
∑
e∈E

∥∥∥∥∥ h[CLS]
T∥∥h[CLS]
T ∥∥

2

−
h[CLS]

S∥∥h[CLS]
S∥∥

2

∥∥∥∥∥
2

2
(5)

The objective of distillation can be formulated as:

LKD = LKL + αLPT (6)

where α balances these two losses.

Training Procedure We summarize the training
procedure in algorithm 1. The multi-round training
of AS-DFD splits into two steps: the construction
stage and the distillation stage. In the construc-
tion stage, after randomly sampling vectors with
alignment constraints, we repeat the adversarial
training of pseudo embeddings for niter times. In
each iteration, we guess embeddings under class-
conditional supervision information for nT steps,
and the student is asked to predict and give negative
feedback to guide pseudo-embeddings’ generation
for nS steps. When distilling, we train θS

′
as well

as W with those pseudo samples.

4 Experiments

4.1 Datasets
We demonstrate the effectiveness of our methods
on three widely-used text classification datasets:

Algorithm 1: Two-stage Adversarial self-
Supervised Data-Free Distillation

Input: Teacher model T with θT , µ, σ
Output: Student model S with θS , W

1 Initial θS
′

with θT
′

and set θSemb ← θTemb

2 for i← 1 to N do
3 // Stage 1: Construct Pseudo Samples
4 Fix θT

′
, θS

′
and W

5 Sample E ∼ N (µ, σ2)
6 Add alignment constraints on E
7 for iters← 1 to niter do
8 for m← 1 to nT do

9 E ← E − η∂LINPUT

∂E
10 end
11 for n← 1 to nS do

12 E ← E − η∂ (−LMASK)

∂E
13 end
14 end

15 // Stage 2: Knowledge Distillation
16 Fix θT

′
and update θS

′
, W

17 θS
′ ← θS

′ − ξ ∂LKD

∂θS′

18 W ←W − ξ ∂LMASK

∂W
19 end

AG News, DBPedia, IMDb (Auer et al., 2007;
Maas et al., 2011). The statistics of these datasets
are shown in Table 1. For datasets without val-
idation sets (DBPedia and IMDb), we randomly
sample 10% of the train set as the validation set.

Dataset Classes Train Valid Test
AG News 4 114k 6k 7.6k
DBPedia 14 504k 56k 70k

IMDb 2 22.5k 2.5k 25k

Table 1: Statistics of AG News/DBPedia/IMDb. Train-
ing samples are only available when finetuning teacher
models. AG News and DBPedia are topic classifica-
tion datasets and IMDb is a dataset for binary sentiment
classification.

4.2 Teacher/Student Models

We experiment with official uncased BERT-base
(Devlin et al., 2018) as the teacher model (BERT12)
for its widespread use in downstream tasks. BERT-
base has 12 layers of Transformer (Vaswani et al.,
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AG News DBPedia IMDb
Distill on Original Dataset
Teacher - BERT12 94.2 99.4 88.5
Student - BERT6 94.1 99.3 87.0
Student - BERT4 93.8 99.3 85.9
Train on Part of the Dataset
fastText (Chia et al., 2019) 75.2 91.0 /
8-layer BlendCNN(Chia et al., 2019) 87.6 94.6 /
Data-Free Distillation - BERT6 as student
Random Text 85.4 93.9 77.1
Modified-ZSKT 88.4 - 78.1
Modified-ZSKD 88.6 97.1 78.2
AS-DFD (Ours) 90.4 98.2 79.8
Data-Free Distillation - BERT4 as student
Random Text 78.5 77.3 67.6
Modified-ZSKT 81.1 - 70.4
Modified-ZSKD 83.8 83.0 70.7
AS-DFD (Ours) 88.2 94.1 77.2

Table 2: Distillation accuracy on three datasets: AG news, DBPedia and IMDb. FastText and 8-layer BlendCNN
are trained on 100 sentences per class. For fair comparision, Modified-ZSKT and Modified-ZSKD synthetic em-
beddings rather than images compared with its original algorithm. ’-’ means that accuracy cannot exceed the result
of Random Text and ’/’ means the results are not reported in the paper. Results show that AS-DFD outperforms
other baselines in data-free distillation.

2017) with 12 attention heads in each layer. We
conduct experiments on student models with dif-
ferent transformer layers: 4-layer BERT (BERT4)
or 6-layer BERT (BERT6). Statistics of parameters
and inference time are listed in Table 3.

Layers Params Inference Time(s)
12 109M (1×) 26.9s (1×)
6 67M (1.63×) 14.1s (1.91×)
4 52M (2.10×) 9.5s (2.84×)

Table 3: Number of parameters and inference time for
BERT12, BERT6 and BERT4. Inference speed is tested
on 7.6K samples from AG News.

4.3 Baselines

To the best of our knowledge, there is no data-free
distillation method for language tasks. However,
when slightly modifying the data-free distillation
models that are effective in Computer Vision, these
models can also work on language tasks. Imitating
Plug & Play Embedding Guessing method, we plug
those image generators/generation methods above
the embedding layer to synthesize continuous em-
beddings (instead of images).

Except for a baseline of random selection of

words, we choose two models that represent the
mainstream approaches in data-free distillation of
image classification. Baselines are described as
follows:

Random Text We randomly select words from
vocabulary and construct literally-uninterpretable
sentences.

Modified-ZSKT Modified-ZSKT is extended
from ZSKT (Micaelli and Storkey, 2019). ZSKT
trains an adversarial generator to search for images
in which the student’s prediction poorly matches
that of the teacher’s and reaches state-of-the-art
performance.

Modified-ZSKD Modified-ZSKD is derived
from ZSKD (Nayak et al., 2019). ZSKD performs
Dirichlet sampling on class probability and craft
Data Impression. DeepInversion (Yin et al., 2019)
extends ZSKD with feature distribution regular-
ization in batch normalization and outperforms
ZSKD. However, BERT is not suitable for this
performance-enhancing approach (BERT has no
BN or structure like BN to store statistics of train-
ing data) and DeepInversion cannot be the baseline
of our method.
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Figure 2: Comparison of AS-DFD versus Modified-ZSKD using different initializations. Experiments are con-
ducted on the 4-layer BERT student. Dash lines show the result initialized with BERT’s {1, 4, 7, 10} layers and
solid lines with {1, 5, 8, 12} layers.

4.4 Experimental Results

We first show the performance of data-driven
knowledge distillation. Then we show the effective-
ness of AS-DFD methods. As shown in Table 2,
AS-DFD with BERT4 and BERT6 performs the
best on three datasets. For 6-layer BERT, our algo-
rithm improves 1.8%, 1.1% and 1.6% compared to
Modified-ZSKD, closing the distance between the
teacher and student. Furthermore, when coaching
the 4-layer student, our methods gain 4.4%, 11.1%
and 6.5% increases, which significantly improves
the distillation accuracy. It seems that AS-DFD
performs better with higher compression rates com-
pared with other data-free methods. However, there
is still a large gap between the performance of data-
drive distillation and data-free distillation.

As for other baselines, Random Text can be re-
garded as a special case of unlabeled text where
models can extract information to infer on, espe-
cially on text classification tasks. We use it as a cri-
terion to judge whether a model works. Modified-
ZSKT performs worse than Random Text on DBPe-
dia. The reason lies in the structure of the generator,
which is designed for image generation and is not
suitable for language generation. The strength of
CNN-based generators lies in its ability to capture
local and hierarchical features. However, it is dif-
ficult for CNN to capture global and sequential
structures, which is essential for languages.

Implementation Details We train the AS-DFD
with nT = 5, nS = 1 and niter = 5. Maximum
sequence lengths for three datasets are set to 128.
Ideally, the more samples generated, the higher
the accuracy. We impose restrictions on the num-
ber of generated samples for each dataset. Train-

ing epochs are 2.5k(AG News), 10k(DBPedia),
10k(IMDb) with 48 samples per batch for all meth-
ods except ZSKT, which needs to train its genera-
tor from scratch (25k epochs in Modified-ZSKT).
In our experiments, these samples are enough for
models to reach a stable status. More implementa-
tion details about finetuning teachers and distilling
students are listed in Appendix A.1.

Initialization We observe that students’ perfor-
mance is highly sensitive to initializations (espe-
cially the Random Text baseline). Fan et al. (2019)
argues that different layers play different roles in
BERT. We report results using different initializa-
tion schemes and show the stability of AS-DFD.
Considering that the embedding layer is separated
from transformer blocks when training, we strongly
recommend sharing the first layer’s parameters of
the teacher with the student, which is also sug-
gested in Xu et al. (2020). Specifically, we choose
two sets of layer weights. One is {1, 4, 7, 10},
which is common in data-driven distillation, and
the other is {1, 5, 8, 12}, which intentionally put
the last layer’s parameters in. We evaluate these
initialization schemes on AS-DFD and Modified-
ZSKD. To eliminate the effects of distillation, we
ensure that hyperparameters in the distillation step
are consistent in two models, which intuitively
shows the disparity in samples’ quality. We do
not include Modified-ZSKT because samples of
Modified-ZSKT vastly outnumber the other two
approaches.

Experimental results are shown in Figure 2.
Modified-ZSKD highly dependent on initialization,
especially on AG news and DBPedia with 23.1%
and 47.1% performance drop relatively. On the
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Figure 3: t-SNE dimensionality reduction results be-
tween real and synthetic samples on output of last layer.

contrary, initialization has limited impacts on AS-
DFD. If pseudo-embeddings are initialized with
worse parameters, our method still achieves better
accuracy than other baselines (87.7% on AG News,
90.5% on DBPedia and 75.4% on IMDb). It shows
that our method synthesizes higher-quality samples
compared with Modified-ZSKD. Additionally, AS-
DFD maintains an upward trend when the size of
synthetic samples grows, suggesting that synthetic
samples are useful for knowledge transfer.

Validity of Synthetic Embeddings Embeddings
we generated are incomprehensible. We use t-SNE
(Maaten and Hinton, 2008) to visualize the syn-
thetic embeddings in comparison with the original
dataset. As shown in Figure 3, samples generated
by Embedding Guessing are close to the real sam-
ples and overlap with them to a certain extent.

4.5 Module Analysis

To verify the contribution of each module, we per-
form an ablation study and summarize it in Table 4.

Embedding Guessing is the foundation of the
entire model. After drawing into the idea of Plug
& Play Embedding Guessing, distillation perfor-
mance is improved with stability, demonstrating
that knowledge extracted from the teacher makes
the synthetic samples reasonable. The embedding
layer of the student model is completely separated
in the generation-distillation process. Imitating
BERT’s input precisely narrows this gap, leading
to a large improvement in accuracy. Additionally,
choosing an appropriate normal distribution can

Method Accuracy
Random Noise 25.1
+ Embedding Guessing 44.2
+ Alignment Constraints

+ Add [CLS] and [SEP] 80.3
+ Variable Length 82.2
+ Appropriate Gaussian Distribution 87.4

+ Adversarial self-Supervised Module 88.2

Table 4: Ablation study on AG News dataset. The
Student model BERT4 is initialized with BERT’s 1st,
4th, 7th and 10th layers.
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Figure 4: Accuracy curve with / without adversarial
self-supervised module. The shaded area around the
curve is the standard deviation over three seeds.

effectively reduce search space and avoid gener-
ating completely irrelevant samples. We conduct
experiments on different normal distributions in
Appendix A.2.

Effect of Adversarial self-Supervised Mod-
ule To investigate whether the adversarial self-
supervised module help data-free distillation, we
conduct experiments on AG News to demonstrate
the advantage of it in Figure 4.

We repeat each experiment 3 times and plot
mean and standard deviation to reduce the con-
tingency of experiments. With the adversarial self-
supervised module, distillation converges faster
and achieves higher accuracy. The number of
epochs can be reduced to 2500, saving half of
the time. As shown in the curve, AS-DFD does
not perform well in the early stage since the self-
supervised module is underfitting. After training
for a while, the self-supervised module can grasp
the student’s ability and provide corrective feed-
back to synthesize more challenging samples.
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5 Conclusion

In this paper, we propose AS-DFD, a novel data-
free distillation method applied in text classifica-
tion tasks. We use Plug & Play Embedding Guess-
ing with alignment constraints to solve the problem
that gradients cannot update on the discrete text.
To dynamically adjust synthetic samples according
to students’ situations, we involve an adversarial
self-supervised module to quantify students’ abil-
ities. Experimental results on three text datasets
demonstrate the effectiveness of AS-DFD.

However, it’s still challenging to ensure the di-
versity of generated embeddings under the weak
supervision signal and we argue that the gap be-
tween synthetic and real sentences still exists. In
the future, we would like to explore data-free dis-
tillation on more complex tasks.
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A Appendices

A.1 Implementation Details

Hyperparameters in Finetuning Teachers We
finetune BERT-base on three datasets mentioned
above. We train our teacher models with Adam
(Kingma and Ba, 2014) in 4 epochs. Learning
rate is set to 2e-5 with a scheduler that linearly
decreases it after 10% warmup steps. We set the
maximum sequence length to 128 and batch size to
32 for all datasets.

Hyperparameters in Data-Free Distillation
AS-DFD is trained on 1 TITAN Xp GPU. We set
batch size to 48 with the student’s learning rate ξ
from {5× 10−5, 2× 10−5, 1× 10−5} and embed-
ding learning rate η from {1 × 10−2, 5 × 10−3,
1× 10−3}. We conduct an additional search over
α from {100, 200, 250, 350, 500} and select the
hyperparameters with the highest accuracy. In our
experiment, η equals to 1× 10−2 and ξ equals to
1 × 10−5. α is set to 250. Temperature τ = 1
works well in our model. In the distillation step,
we use Adam with a warmup proportion of 0.1 and

we linearly decay the learning rate. In the con-
struction step, the learning rate is fixed with Adam
optimizer. There may be no validation set under
data-free settings, which makes tuning parameters
impossible. We experiment with the hyperparame-
ters performed best on AG News and find that this
set of parameters also performs well on the other
two datasets.

A.2 Adjust Gaussian Distributions
The other two parameters are the mean and stan-
dard deviation for Gaussian sampling. We found
in our experiments that standard deviation has a
great influence on the student’s performance. If
vectors are initialized with small standard devia-
tion(e.g. std=0.05, see Figure 5.b), generated sam-
ples in each category gather together, meaning that
they aggregate to limited regions and leading to
insufficient diversity of pseudo samples. Real data
samples show no aggregation under t-SNE(see Fig-
ure 5.a). A higher standard deviation(e.g. std=1)
indicates that samples are spread out from the mean,
which will increase the search space and far from
the embedding’s distribution of BERT. It is also re-
flected in our testing accuracy with 83.2, 85.3, 88.2,
83.2 corresponding to N (0, 0.052), N (0, 0.22),
N (0, 0.352), N (0, 12). We search standard devi-
ations over {0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4,
0.5, 1} and choose 0.35 to be the best standard
deviation, which works well on all three datasets.
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Figure 5: t-SNE results on real samples(a) or synthetic samples(b)


