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Abstract

The performance of autoregressive models on
natural language generation tasks has dramat-
ically improved due to the adoption of deep,
self-attentive architectures. However, these
gains have come at the cost of hindering in-
ference speed, making state-of-the-art mod-
els cumbersome to deploy in real-world, time-
sensitive settings. We develop a compression
technique for autoregressive models that is
driven by an imitation learning perspective on
knowledge distillation. The algorithm is de-
signed to address the exposure bias problem.
On prototypical language generation tasks
such as translation and summarization, our
method consistently outperforms other distilla-
tion algorithms, such as sequence-level knowl-
edge distillation. Student models trained with
our method attain 1.4 to 4.8 BLEU/ROUGE
points higher than those trained from scratch,
while increasing inference speed by up to 14
times in comparison to the teacher model.1

1 Introduction

Autoregressive models are ubiquitous in natural lan-
guage processing. Due to the sequential nature of
text generation, they are often the tool of choice for
tackling sequence-to-sequence problems such as
translation (Sutskever et al., 2014), summarization
(Rush et al., 2015), and dialogue (Eric and Man-
ning, 2017). Furthermore, they form the backbone
of several successful generative pre-training archi-
tectures (Howard and Ruder, 2018; Peters et al.,
2018; Radford et al., 2019; Dai et al., 2019).

Two recent trends have made autoregressive
models cumbersome to deploy in real-world, natu-
ral language generation (NLG) applications. First,
state-of-the-art models have grown larger and
larger, amounting to hundreds of millions and even

1Our code can be found at https://github.com/
asappresearch/imitkd.

billions of parameters (Dong et al., 2019; Liu and
Lapata, 2019; Raffel et al., 2019). The increase
in size and depth dramatically slows down infer-
ence speed. Second, the architecture of choice for
autoregressive models seems to have shifted from
the recurrent neural network (RNN) (Bahdanau
et al., 2014; Luong et al., 2015) to the Transformer
(Vaswani et al., 2017). Though the Transformer’s
self-attention mechanism improves performance, it
also increases the computational complexity of the
step-by-step generation algorithms that are used
at test time. Thus, both of these trends have con-
tributed to significantly increasing inference time
costs, especially on CPUs and low-resource de-
vices, hindering their use in production systems.

Knowledge distillation (KD) (Buciluǎ et al.,
2006; Hinton et al., 2015) is one popular method
for model compression. It transfers the information
learned by a large, pretrained teacher to a smaller,
untrained student. In comparison to other meth-
ods such as weight pruning and quantization, KD
allows the compressed model’s architecture to sig-
nificantly differ from that of the original teacher.
This feature enables models trained with KD to
achieve high performance while meeting particular
inference requirements (e.g. memory, speed, etc.).

Sequence-level knowledge distillation (SeqKD),
proposed by Kim and Rush (2016), is the domi-
nant technique for autoregressive KD in the current
NLG literature, especially for machine translation
(Gu et al., 2017; Ren et al., 2019; Zhou et al., 2019).
This method trains a student model using a modi-
fied dataset generated by the teacher model and the
standard negative log-likelihood objective. While
SeqKD is simple and efficient, we argue that it does
not take advantage of the teacher’s full potential.

Training the student model with a static dataset
leads to the exposure bias problem. During train-
ing, the student model learns to predict the next
token given previous tokens provided by the data.

https://github.com/asappresearch/imitkd
https://github.com/asappresearch/imitkd
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However, at inference time, the student generates
the entire sequence from scratch by repeatedly us-
ing its own outputs as context for subsequent steps.
This training-inference inconsistency causes a de-
crease in generation quality. Alternatively, we pro-
pose that the student can leverage the teacher in a
dynamic fashion during the learning process.

We devise a new compression algorithm for au-
toregressive models called imitation-based knowl-
edge distillation (ImitKD). It is inspired by an imi-
tation learning (IL) perspective on the autoregres-
sive distillation problem. Our algorithm trains a
student model within an IL framework by treating
the teacher as an oracle, and allows the student to
explore its own generation during training. The
teacher corrects the student’s generation at every
time step, thereby guiding the student in learning
how to generate.

Experimental results in translation and summa-
rization show that ImitKD is especially suitable for
compressing deep Transformer models that achieve
high performance into shallow RNNs that gener-
ate up to 14 times faster at inference time. Our
method consistently outperforms other distillation
algorithms (such as word-level KD and sequence-
level KD), and yields student models that beat mod-
els trained without a teacher by 1.4 to 4.8 points on
generation metrics such as BLEU and ROUGE.

2 Background

2.1 Autoregressive Distillation

First, we formalize the task of autoregressive distil-
lation. An autoregressive model π specifies a joint
distribution over a T -dimensional target sequence
y = {y1, . . . , yT } ∈ Y by decomposing it into a
product of univariate conditionals:

π(y) =
T∏
t=1

π(yt | y<t), (1)

where y<t denotes {y1, . . . , yt−1} for t > 1 and
∅ for t = 1. The joint distribution over y may
itself be conditional on some related source feature
x ∈ X (e.g. translation, summarization) or not
(e.g. language modeling). Since the former case
can generalize the latter by letting X = ∅, we will
specify the presence of x in the rest of the paper.

In autoregressive distillation, the goal is to learn
a student model π that performs well at sequence
generation by minimizing its loss with respect to a
pre-trained teacher model π∗. In many cases, the

training objective can be expressed as

L(π) = Ey|x∼D

[
T∑
t=1

`π
∗
(y<t,x;π)

]
, (2)

where `π
∗
(·;π) is the next-token loss function mea-

suring the discrepancy between the teacher and
student models given some prior context {y<t,x}.

Here, D denotes a distribution (or dataset) of
source-target pairs x→ y. Due to the combinato-
rial nature of sequence generation, an autoregres-
sive distillation method must maximize its learning
efficiency by carefully D, i.e. how it explores the
exponentially-sized space. We motivate this choice
with the field of imitation learning, an active re-
search area of reinforcement learning.

2.2 Distillation as Imitation Learning
Autoregressive text generation can be interpreted
as a T -step Markov decision process (MDP). In
particular, the autoregressive model π we wish to
learn can be treated as a policy learner that maps
a state to a distribution over actions. In our case, a
state is a partial sequence y<t for t < T , an action
is the next token yt, and the action space is the
vocabulary. Given a state (partial sequence) and a
chosen action (next token), the transition function
is deterministic and simply concatenates them to
form a new state (partial sequence).

The policy learner must be trained using some
form of supervision. One option is to use reward-
based reinforcement learning, which requires defin-
ing the numerical quality of a state. However, for
the autoregressive distillation problem, an arguably
better choice is imitation learning (IL), which opti-
mizes the policy by learning from demonstrations.
In IL settings, an oracle policy π∗ that is known to
achieve high performance is provided during train-
ing. As a result, we can recast the overall goal as
minimizing the divergence of the policy π from the
oracle π∗. For example, it may be difficult to objec-
tively define what it means for an aspiring translator
to perform well at the local token-by-token level.
Yet, if we were given access to an expert translator,
we could simply say the learner is performing well
if they translate in the same way as the expert.

The IL framework is well-suited for autoregres-
sive distillation, since the student and teacher mod-
els naturally fill the respective roles of the learner
π and the oracle π∗. Thus, we can easily apply the-
oretical results and practical methods from the IL
literature to the autoregressive distillation problem.
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2.3 SeqKD as Behavioral Cloning
One distinguishing feature between different imi-
tation learning methods pertains to how to define
the state distribution D in the training objective
(Equation 2). Indeed, this is also one of the key
design questions of autoregressive distillation. For
instance, one simple and effective IL method is be-
havioral cloning (Ross and Bagnell, 2010), which
obtains D by running the oracle π∗ on the MDP.

The popular sequence-level knowledge distilla-
tion (SeqKD) algorithm of Kim and Rush (2016)
can be interpreted as behavioral cloning. For each
source feature x in the original training data, the
teacher/oracle generates its (approximate) mode
y∗ = argmaxy′ π

∗(y′ | x), typically using beam
search. This new set of x → y∗ pairs forms a
teacher-generated datasetD∗ that serves as the state
distribution for training the student. In addition,
the negative log-likelihood of the teacher’s tokens
y∗ = {y∗1, · · · , y∗T } is used as the loss `π

∗
(·;π).

The overall training objective LSeqKD(π) is

Ey∗|x∼D∗

[
T∑
t=1

− log π(y∗t | y∗<t,x)

]
. (3)

The key advantage of SeqKD (as well as be-
havioral cloning) lies in its simplicity – we only
need some samples from the teacher/oracle to work
with. In comparison to vanilla supervised learning
(which minimizes the negative log-likelihood of
human-generated text), SeqKD has no additional
training overhead other than the creation of D∗.

However, the simplicity of the algorithm also
limits its potential. Ross and Bagnell (2010) ar-
gued that training a policy π via behavioral cloning
incurs regret with respect to the oracle π∗ that is
a quadratic function of the time horizon T . In-
tuitively, behavioral cloning suffers from the ex-
posure bias problem. During training, the stu-
dent model learns to perform good actions for
the teacher/oracle’s state distribution D∗, but is
never exposed to its own states. Thus, during test-
ing (when the student must walk an MDP of self-
generated states), the step-by-step errors compound
over time, resulting in suboptimal generations.

We argue that in autoregressive distillation, the
teacher/oracle can do more than produce a static
dataset. It is a dynamic entity capable of interacting
with the student throughout training. By querying
the teacher with its own states, the student has the
opportunity to ameliorate exposure bias and learn
how to generate.

3 Imitation-Based Distillation Algorithm

In this section, we present our IL-based algorithm
for autoregressive distillation. We begin by describ-
ing the key design principles and why we expect
them to work well. Then, we elaborate on the algo-
rithm’s implementation in detail.

3.1 Design Principles and Rationale

One key principle of our algorithm is that the stu-
dent model must be trained on its own state distri-
bution so that it will perform better at generation.
In practice, we achieve this by sampling training ex-
amples from D̃, a mixture of an initial distribution
D (e.g. a static training set) and the distributionDπ
of generations from the student π. We useD to alle-
viate the cold-start problem, in which an untrained
π generates poorly at the start of training.

This idea builds upon the empirical and theoret-
ical foundation of dataset aggregation (DAgger),
one of the most popular imitation learning meth-
ods that improve upon behavioral cloning. DAg-
ger (Ross et al., 2011) successively populates its
training set by adding new data generated from the
oracle-learner mixture. It then re-trains the policy
learner on the aggregated dataset at each iteration.
Under some assumptions (such as the loss func-
tion being strongly convex in π), Ross et al. (2011)
proved that DAgger yields a policy π that has linear
regret in T with respect to π∗. This is a significant
improvement over the behavior cloning result and
can be attributed to fixing exposure bias. We ex-
pect a similar strategy of mixing oracle and learner
distributions to work well for non-convex neural
networks, as shown in other applications (Zhang
and Cho, 2016; Sun et al., 2017).

Another key principle of our algorithm is that
the teacher model should play the role of the or-
acle and correct the student’s generations at each
time step. In order for such a training strategy to
be successful, the teacher must be able to provide
better actions than the student for the student’s own
states. To test this hypothesis, we experiment with
a deep Transformer-based translation model com-
pleting the partial translations of a shallow RNN.
As shown in Table 1, the Transformer completions
achieve much higher BLEU score than the RNN’s
full generations. This validates our assumption that
a strong teacher model can indeed play the role of
the oracle and guide the student to better states.
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Decoding Method Bleu ↑
Transformer only 33.8
RNN only 28.6
RNN first, Transformer completes 31.4

Table 1: Greedy decoding BLEU scores on the IWSLT
validation set for the preliminary test.

3.2 The ImitKD Algorithm
Our imitation-based knowledge distillation algo-
rithm (ImitKD) is given in Algorithm 1. The cen-
tral training objective is

LImitKD(π) = Ey|x∼D̃

[
T∑
t=1

`π
∗
(y<t,x;π)

]
, (4)

where D̃ is the data mixture defined by sampling
from the initial dataset D and generating with the
student (lines 8-11). The probability βi ∈ [0, 1]
(line 8) controls how often an example comes from
D. The loss function `π

∗
can be realized as the

negative log-likelihood of the oracle’s optimal next
token/action,

`π
∗

opt(y<t,x;π) = − log π(v∗ | y<t,x), (5)

where v∗ = argmaxv∈V π
∗(v | y<t,x). Alterna-

tively, `π
∗

can be the cross-entropy loss between
the full distributions,

`π
∗

full(y<t,x;π) (6)

= −
∑
v∈V

π∗(v | y<t,x) · log π(v | y<t,x).

Next, we describe some practical implementa-
tions in order to make Algorithm 1 suitable for
compressing deep learning systems. One limitation
of DAgger is that the training data keeps growing,
making each iteration successively more expensive.
As an alternative to aggregation, we perform data
replacement within each training batch.

As shown in Algorithm 1, we treat each mini-
batch D̃i as a new iteration of the dataset and per-
form a single step of stochastic gradient descent on
LImitKD (Equation 4) with respect to the parame-
ters of the previous model πi to yield πi+1. Thus,
the number of iterations I becomes the number of
mini-batches used to train the student model.

Our practical algorithmic changes are inspired
by theory. The dataset aggregation algorithm (Ross
et al., 2011) achieves its regret bounds because
it reduces to the Follow-the-Leader algorithm for

Algorithm 1 Imitation-Based Distillation
1: Let D be initial dataset.
2: Initialize π1 at random.
3: for i = 1, . . . , I do
4: Initialize new dataset D̃i = ∅.
5: repeat B times
6: Sample an example e = y | x ∼ D.
7: Sample uniformly u ∼ [0, 1].
8: if u > βi then
9: Generate ŷ from πi given x.

10: Replace example with e = ŷ | x.
11: end if
12: Append example e to D̃i.
13: Compute LImitKD(πi) on D̃i with π∗.
14: Let πi+1 = πi − αi · ∂LImitKD/∂πi.
15: end for
16: return Best policy π on validation set.

online learning (Kakade et al., 2009). Our training
paradigm can be similarly interpreted as an online
gradient descent algorithm, which has comparable
guarantees for strongly convex losses (Hazan et al.,
2007) and even certain non-strongly convex losses
(Garber, 2019). Variants of this paradigm have
also been employed in other deep learning work
(Bengio et al., 2015; Sun et al., 2017).

3.3 Data Mixture Selection and Annealing

Dataset replacement requires an initial dataset that
can be potentially replaced at each step. A natural
candidate for this initial dataset is the original su-
pervised training data (denoted as D′), which can
be interpreted as a collection of samples from a hu-
man oracle. Alternatively, we can use the SeqKD
dataset D∗, which has generations from the teacher.

If we take samples from D′ or D∗ and replace
some of them with student-generated samples, we
effectively create a teacher-student dataset mixture.
Unlike DAgger, this mixture occurs at the sequence
level instead of the token/state level. An advan-
tage of sequence-level mixtures is that they do not
require generating with the teacher during each
training iteration, which can be quite expensive if
the teacher is a large neural network. Instead, the
teacher only needs to compute the batched loss,
which is comparatively much cheaper. The exact
mixing schedule β1, . . . , βI is a customizable fea-
ture of Algorithm 1. Empirically, we have found
an exponential decay to work well, i.e. βi = ri/I ,
where r ∈ [0, 1] is the final mixing rate.



6125

3.4 Speeding Up Training

Generating sequences ŷ on the fly at every iteration
(line 9) can be a major computation bottleneck dur-
ing training. We speed up this step by generating a
pool of B ·M examples in parallel only once every
M iterations, where B is the batch size and M is a
hyperparameter. One caveat of this modification is
that at iteration i, the loss function may no longer
be computed on examples generated by the most
recent set of model parameters, but rather parame-
ters from up to M iterations prior. Nonetheless, we
have found that setting M to a small integer (e.g.
2-8) can speed up training time without impacting
final model performance.

We use greedy decoding or top-K sampling with
small K to produce samples ŷ (line 9) in our al-
gorithm. These two strategies are efficient to run,
operate similarly to the generation employed at in-
ference time, and have empirically worked well in
our experiments. Of course, the generation strategy
can be customized for different tasks.

4 Related Work

The distillation problem for autoregressive models
was first tackled by Kim and Rush (2016), who
introduced sequence-level knowledge distillation
for neural machine translation. Subsequent works
have used seqKD for non-autoregressive translation
models (Gu et al., 2017; Zhou et al., 2019), low-
resource settings (Chen et al., 2017), and ensemble
distillation with multiple teachers (Kuncoro et al.,
2016; Tan et al., 2019). Wei et al. (2019) proposed a
behavioral cloning method for distilling autoregres-
sive translation models into non-autoregresssive
translation models. In contrast, our method aims to
address the learning challenges in autoregressive
distillation, such as exposure bias.

Various methods other than standard supervised
learning have been explored for training generative
models of language. MIXER (Ranzato et al., 2015)
and Beam Search Optimization (Wiseman and
Rush, 2016) also perform generation during train-
ing, but use sequence-level metrics (e.g. BLEU
score) as training supervision. Simlarly, SEARNN
(Leblond et al., 2017) trains RNNs to iteratively
generate sequences with beam search to compute
the local loss of a single action during the decod-
ing process. Scheduled sampling (Bengio et al.,
2015) and its extensions (Goyal et al., 2017; Zhang
et al., 2019) alleviate exposure bias by replacing
some words in the true context with the model’s

prediction. However, without a dynamic query-
able oracle, these methods face the challenge of
properly defining the training signal when the gen-
erated sequence no longer exists in the static train-
ing data. For example, directly reusing the tokens
in the static dataset as the target next token leads to
an inconsistent training procedure (Huszár, 2015).
In contrast to these methods, distillation can fully
leverage the teacher oracle, allowing us to design a
simple and efficient imitation learning algorithm.

5 Experimental Setup

We test our autoregressive distillation method and
all baselines on three language generation tasks
– IWSLT 2014 German → English translation,
WMT 2016 English → German translation, and
CNN/DailyMail abstractive news summarization.

Datasets The IWSLT 2014 De→En dataset con-
sists of approximately 170K sequence pairs. Fol-
lowing standard practice (Bahdanau et al., 2016;
Deng et al., 2018; Wang et al., 2019), we randomly
sample 4% of this dataset as the validation set and
let the remaining be the training set. The test set is
the concatenation of the dev2010, tst2010, tst2011,
and tst2012 files. We use a shared vocabulary of
14K lowercased BPE tokens (Sennrich et al., 2015).

The WMT 2016 En→De dataset has 4.5 million
training pairs. We use the same preprocessing of
the prior work (Ott et al., 2018), newstest2013 as
the validation set and newstest2014 as the test set.
The vocabulary consists of 32K cased BPE tokens.

The CNN/DailyMail summarization dataset has
287K, 13K and 12K pairs in the training, valida-
tion and test sets, respectively. Following prior
work (See et al., 2017), we truncate documents to
400 tokens and summaries to 100 tokens in the
training set. During evaluation, we generate up to
128 tokens. We use a pre-trained BERT (Devlin
et al., 2018) tokenizer with a vocabulary of 30K
lowercased tokens (Liu and Lapata, 2019).

Models Transformers often attain state-of-the-
art performance on common language generation
tasks. On the other hand, RNNs (without self-
attention) generate much faster at inference time.
Thus, from a practitioner’s standpoint, it may be
most desirable to compress a high-performing
Transformer into a lightweight RNN. For all tasks,
we use the state-of-the-art Transformer architec-
ture (Vaswani et al., 2017) as the teacher model.
The teacher models are trained using vanilla super-
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Variant Context (States) Loss
Vanilla Data NLL
SeqKD Teacher NLL
ImitKD Student/Data Mix NLL
ImitKD* Student/Teacher Mix NLL
Vanilla + Full Data `π

∗
full

SeqKD + Full Teacher `π
∗

full
ImitKD + Full Student/Data Mix `π

∗
full

ImitKD* + Full Student/Teacher Mix `π
∗

full

Table 2: Summary of training variants. Base variants
use the negative log-likelihood (NLL) of the optimal
next token – which is taken from the data for Vanilla,
found using beam search for SeqKD, and queried from
the teacher for ImitKD (i.e. `π

∗

opt). All “+ Full” variants
are trained with the full teacher-student cross entropy.

vised learning. For WMT, we directly use the pre-
trained Transformer model provided by the Fairseq
library (Ott et al., 2018, 2019).

In all tasks, we use a recurrent neural network,
specifically SRU (Lei et al., 2017), as the stu-
dent model. For completeness, we also train
Transformer, GRU (Cho et al., 2014), and LSTM
(Hochreiter and Schmidhuber, 1997) based student
models on the IWSLT translation task, illustrating
the effectiveness of our distillation method for var-
ious neural architectures. All RNN-based models
follow the seq2seq, encoder-decoder architecture
(Sutskever et al., 2014) and employ a single scaled
dot-product attention between the encoder and de-
coder (Bahdanau et al., 2014; Luong et al., 2015).

All models are trained using the Adam opti-
mizer (Kingma and Ba, 2014) with an inverse-
square-root learning rate scheduler and learn-
ing rate warmup (Vaswani et al., 2017). Our
experiments were conducted using Flambé, a
PyTorch-based model training and evaluation li-
brary (Wohlwend et al., 2019). More implemen-
tation details such as hyperparameter settings are
provided in Appendix A.

Variants For the student models, we compare a
wide range of training variants, including baselines
such as vanilla supervised learning (which directly
uses the original training set) and sequence-level
knowledge distillation (SeqKD). All SeqKD vari-
ants form the teacher-generated dataset using beam
search with beam size K = 5. For our imitation-
based method, we experiment with annealing from
the original training set (ImitKD) or the teacher-
generated SeqKD dataset (ImitKD∗). We also ex-

periment with different token-level losses; base
variants are trained with the optimal next token
while “+ Full” variants are trained with the full
cross entropy. Table 2 summarizes all variants and
highlights their differences. Note that the Vanilla +
Full baseline – referred to as “WordKD” by Kim
and Rush (2016) – has appeared in other distillation
works (e.g. Tan et al., 2019; Sanh et al., 2019).

Evaluation We use BLEU score (Papineni
et al., 2002) for translation and report ROUGE-1,
ROUGE-2 and ROUGE-L scores (Lin, 2004) for
summarization. For all models, the training check-
point with the highest BLEU/ROUGE-1 score on
the validation set is used for test set evaluation. We
also report the perplexity metric for all tasks.

6 Results

IWSLT De→En Translation Table 3 compares
all distillation methods on the IWSLT dataset. The
teacher model is an 8-layer Transformer. We use
a 3-layer SRU, a 2-layer SRU and a 2-layer Trans-
former as student models. For all three student
models, our ImitKD method outperforms all base-
lines in terms of BLEU score with beam size 1
(Bleu1), BLEU score with beam size 5 (Bleu5)
and perplexity (PPL). The improvement on Bleu
score ranges from 1.4 to 4.8 points compared to the
Vanilla training method. The 3-layer SRU model
trained with ImitKD + Full even slightly exceeds
the performance of the teacher model. Furthermore,
our method consistently outperforms SeqKD by up
to 1.4 BLEU, highlighting the benefit of training
the student model with its own state distribution.

To further demonstrate the effectiveness of
ImitKD across different model types, we report
validation set Bleu1 for various 2-layer neural ar-
chitectures in Table 4. Our ImitKD method out-
performs the baselines in all cases, with the gains
being especially large for recurrent architectures.

WMT En→De Translation Table 5 presents
our results for the WMT dataset. The teacher
is a 6-layer Transformer and the student is a 4-
layer SRU. Here, we see that ImitKD performs
closer to SeqKD. These results reveal that direct
behavioral cloning (SeqKD) can be quite effective
when the amount of oracle demonstrations is suf-
ficiently high, e.g. several millions of examples.
Nonetheless, ImitKD and ImitKD* can improve
on SeqKD by training the student with its own
states. Among all variants, ImitKD + Full performs
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Variant PPL ↓ Bleu1 ↑ Bleu5 ↑
Transf. (8-layer)

Teacher 5.6 34.4 35.2
SRU (3-layer)

Vanilla 7.4 30.0 31.2
SeqKD 153.0 33.0 33.1
ImitKD 14.7 34.1 34.4
Vanilla + Full 5.4 34.2 34.8
SeqKD + Full 6.1 34.3 34.8
ImitKD + Full 5.3 34.8 35.4

SRU (2-layer)
Vanilla 7.4 29.5 30.6
SeqKD 102.1 32.0 32.4
ImitKD 12.7 33.3 33.7
Vanilla + Full 6.0 33.0 33.8
SeqKD + Full 6.8 33.1 33.7
ImitKD + Full 5.7 33.7 34.5

Transf. (2-layer)
Vanilla 6.4 32.8 33.4
SeqKD 23.4 34.0 34.2
ImitKD 7.5 34.3 34.6
Vanilla + Full 5.9 33.8 34.2
SeqKD + Full 7.1 34.0 34.4
ImitKD + Full 5.9 34.4 34.8

Table 3: Results on IWSLT test dataset.

Variant SRU GRU LSTM Transf.
Vanilla 28.6 28.6 27.7 32.4
SeqKD 31.4 31.2 30.5 33.3
ImitKD 32.7 32.7 32.4 33.7

Table 4: BLEU scores of different student architectures
on the IWSLT validation set. We use a beam size of 1.
The teacher attains a validation BLEU of 33.8.

the best while avoiding the overhead of creating a
teacher-modified dataset. Furthermore, we see that
ImitKD is especially effective in low-data regimes.
As shown in the bottom block of Table 5, ImitKD
methods achieve much stronger results over base-
lines when we reduce the WMT training data to the
same size as IWSLT.

CNN/DailyMail Summarization In Table 6, we
present the CNN/DailyMail results for a 6-layer
Transformer teacher and a 2-layer SRU student.
Once again, the best student is ImitKD + Full,
which achieves ROUGE scores that are within 1
point of the teacher’s. ImitKD variants outperform
the baselines on all ROUGE metrics, showcasing
the utility of our method on a different NLG task.

Variant PPL ↓ Bleu1 ↑ Bleu5 ↑
Teacher 3.2 28.7 29.2
Vanilla 5.5 22.0 23.1
SeqKD 9.0 24.9 25.5
ImitKD 7.4 24.6 25.5
ImitKD* 8.4 25.3 25.8
Vanilla + Full 5.2 23.8 24.5
SeqKD + Full 5.6 24.7 25.3
ImitKD + Full 5.6 25.3 25.9
ImitKD* + Full 5.6 25.0 25.8
4Vanilla 18.7 13.8 15.1
4SeqKD 42.3 17.1 17.9
4ImitKD 15.0 17.8 19.0
4ImitKD* 17.8 18.6 19.5

Table 5: Results on WMT dataset. ImitKD* is trained
on a student/teacher dataset mixture. 4 indicates that
the model is trained with 25× less data.

Variant PPL ↓ R1 ↑ R2 ↑ RL ↑
Teacher 12.5 39.0 17.6 35.7
Vanilla 14.7 36.1 15.6 32.8
SeqKD 52.9 36.4 16.1 33.1
ImitKD 17.2 37.3 16.4 34.1
ImitKD* 37.1 37.7 16.7 34.5
Vanilla + Full 13.6 36.2 16.0 32.9
SeqKD + Full 20.2 37.4 16.5 34.0
ImitKD + Full 14.0 38.4 17.1 34.9
ImitKD* + Full 17.9 38.1 17.1 34.6

Table 6: Results on CNN/DailyMail dataset. All mod-
els generate using beam search K = 5 decoding.

Size and Speed Analysis In Table 7, we ana-
lyze how our distillation technique can reduce
computational costs, using the IWSLT (Table 3),
WMT (Table 5), and CNN/DailyMail (Table 6)
teacher/student pairs as case studies. By training
small student models with ImitKD, we can substan-
tially decrease model size and increase inference
speed, while minimizing performance loss. Shal-
low, recurrent architectures are especially attractive,
because they can generate 4-14 times faster than
deep Transformer teachers, and 2-3 times faster
than Transformer students of similar size.

Performance Analysis at Different Lengths
Figure 1 breaks down BLEU score vs. decoding
length for IWSLT models trained with different
algorithms (Vanilla, SeqKD, ImitKD). We show
results for the three types of RNNs and the Trans-
former of Table 4. All models have two layers.
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Task Model Size % Compress CPU Time × Faster % Perform
IWSLT Transf. (8-layer)† 20.1 M — 269 / 518 ms — —

SRU (3-layer) 14.0 M 68.7% 55 / 97 ms 4.9 / 5.3 101.2%
SRU (2-layer) 8.6 M 42.7% 37 / 56 ms 7.2 / 9.3 98.0%
Transf. (2-layer) 8.5 M 42.3% 78 / 144 ms 3.4 / 3.6 100.0%

WMT Transf. (6-layer)† 209.9 M — 816 / 1466 ms — —
SRU (4-layer) 34.2 M 16.3% 174 / 306 ms 4.7 / 4.8 88.2%

CNN/DM Transf. (6-layer)† 59.8 M — 1900 / 12138 ms — —
SRU (2-layer) 14.4 M 24.1% 258 / 826 ms 7.4 / 14.7 98.5%

Table 7: Model types, along with statistics on size (in number of parameters) and CPU inference time per decoding
(in milliseconds) for beam search with beam size K ∈ {1, 5}. Teacher models are marked with †. The “%
Perform” column records the ratio of the best student’s performance to the teacher’s performance on BLEU score
for translation tasks and ROUGE-1 for the summarization task.
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Figure 1: Bleu score versus sequence decoding length across different models and training variants. Each point on
the graph represents the Bleu score of all sequences whose length is within a bin of width 20.

As expected, we observe that the generation qual-
ity (in terms of BLEU score) degrades as the decod-
ing length increases. This phenomenon can be ex-
plained by the global error compounding with each
additional decision step (Ross et al., 2011) and has
been reported in previous works (Bahdanau et al.,
2014; Zhang et al., 2019). As shown in Figure 1,
models trained with the vanilla objective, especially
RNN-based models, suffer the most from this prob-
lem. SeqKD improves the performance across all
sequence lengths, but still experiences some BLEU
score degradation for longer sequences. ImitKD
further improves the BLEU score across all bins,
and more importantly, the improvement is most
significant for longer sequences. This analysis sug-
gests that ImitKD explicitly addresses the exposure
bias problem for training student models.

Additive Effect of Fine-Tuning Kim and Rush
(2016) propose a fine-tuning method for autoregres-
sive distillation called SeqInter. This method can
further improve pretrained student models by ex-
posing them to the sequence in the teacher beam’s

Variant SRU GRU LSTM Transf.
Vanilla 32.1 31.9 31.2 34.0
SeqKD 32.2 32.0 31.4 34.2
ImitKD 33.5 33.4 33.1 34.4

Table 8: IWSLT validation set BLEU scores of
SeqInter fine-tuning applied to the different student ar-
chitectures of Table 4. We use a beam size of 1. The
teacher (without fine-tuning) attains a validation BLEU
of 33.8.

that is closest to the target in terms of sentence-level
BLEU. In Table 8, we show the results of applying
SeqInter to each of the IWSLT models that were
trained from scratch in Table 4. While SeqInter en-
ables Vanilla models to “close the gap” on SeqKD
models, ImitKD models clearly maintain their su-
perior performance even after fine-tuning.

7 Conclusion

In this work, we developed a new knowledge distil-
lation technique inspired by imitation learning for
compressing large and cumbersome autoregressive
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models into smaller and faster counterparts. We
demonstrated the empirical success of our method
over popular baselines on several natural language
generation tasks.

We are excited about several possible avenues
for future work. One branch of ideas involves in-
corporating more advanced IL algorithms beyond
DAgger, such as LOLS (Chang et al., 2015), to
further improve the distillation process. Another
possibility is to design imitation-based fine-tuning
analogs to the SeqInter method. Finally, although
our experiments in this paper focused on sequence-
to-sequence settings, we are interested in exploring
the use of ImitKD for compressing large language
models aimed at transfer learning.
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Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 535–541.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agar-
wal, Hal Daume, and John Langford. 2015. Learn-
ing to search better than your teacher. In Inter-
national Conference on Machine Learning, pages
2058–2066. PMLR.

Yun Chen, Yang Liu, Yong Cheng, and Victor OK
Li. 2017. A teacher-student framework for zero-
resource neural machine translation. arXiv preprint
arXiv:1705.00753.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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Rémi Leblond, Jean-Baptiste Alayrac, Anton Osokin,
and Simon Lacoste-Julien. 2017. Searnn: Train-
ing rnns with global-local losses. arXiv preprint
arXiv:1706.04499.

Tao Lei, Yu Zhang, Sida I Wang, Hui Dai, and
Yoav Artzi. 2017. Simple recurrent units for
highly parallelizable recurrence. arXiv preprint
arXiv:1709.02755.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yang Liu and Mirella Lapata. 2019. Text summa-
rization with pretrained encoders. arXiv preprint
arXiv:1908.08345.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensi-
ble toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. arXiv preprint arXiv:1806.00187.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Ofir Press and Lior Wolf. 2016. Using the output
embedding to improve language models. arXiv
preprint arXiv:1608.05859.

Alec Radford, Jeffrey Wu, Dario Amodei, Daniela
Amodei, Jack Clark, Miles Brundage, and Ilya
Sutskever. 2019. Better language models and
their implications. OpenAI Blog https://openai.
com/blog/better-language-models.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. arXiv preprint
arXiv:1511.06732.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2019. Fastspeech:
Fast, robust and controllable text to speech. In Ad-
vances in Neural Information Processing Systems,
pages 3165–3174.
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A Appendices

A.1 DAgger Algorithm

The dataset aggregation (DAgger) algorithm (Ross
et al., 2011) minimizes the following objective:

LImit(π) = Es1,...,sT∼D

[
T∑
t=1

`π
∗
(st;π)

]
, (7)

whereD is a distribution (or dataset) of T -step state
trajectories and `π

∗
(s, π) is the action-discrepancy

loss between the oracle π∗ and the policy learner
π in state s. The full DAgger algorithm is given in
Algorithm 2.

Algorithm 2 Dataset Aggregation

1: Let D = ∅ be initial dataset.
2: Initialize π1 at random.
3: for i = 1, . . . , I do
4: Let mixture policy π̃i = βiπ

∗+(1−βi)πi.
5: Initialize new dataset Di = ∅.
6: repeat B times
7: Run MDP on π̃i, sample {s1, . . . , sT }.
8: Append new states {s1, . . . , sT } to Di.
9: Aggregate D = D ∪Di.

10: Train πi+1 on D to min LImit with π∗.
11: end for
12: return Best policy π on validation set.

A.2 Implementation Details

In all experiments, all RNN-based models with hid-
den dimension N consist of a bidirectional encoder
with hidden dimension N/2 and a left-to-right de-
coder with hidden dimension N .

For BLEU score evaluation, we use the NLTK
library.2 For ROUGE score evaluation, we use the
py-rouge library.3

Preliminary Study For Table 1, we train both
an 8-layer Transformer and a 2-layer RNN (specif-
ically SRU) on the IWSLT dataset using standard
supervised learning. The architectural and training
details are the same as those outlined in the IWSLT
experiments. At test time, both the Transformer
and the RNN perform greedy decoding. On aver-
age, ground-truth translations in the IWSLT test
set have 24.5 tokens. The “RNN first, Transformer
completes” mixed decoding strategy generates 12

2https://www.nltk.org/ modules/nltk/translate/
bleu score.html

3https://github.com/Diego999/py-rouge

tokens (i.e. half on average) with the RNN and the
rest with the Transformer. We measure generation
quality using Bleu score.

IWSLT The IWSLT 2014 German → English
dataset is taken directly from the source website.4

We train an 8-layer Transformer teacher model
with model dimension 256, feedforward dimension
1024, and four attention heads as the teacher model.
The 2-layer student SRU model has a hidden di-
mension 512, and the 3-layer model has hidden di-
mension 1024 and projection dimension 256. The
student Transformer model has model dimension
256, feedforward dimention 768 and 4 attention
heads.

All models have word embedding dimension
256 and exhibit weight tying between the decoder
embeddings and the output layer (Press and Wolf,
2016). We train models for 80K steps with batch
size 128 using the Adam optimizer with base learn-
ing rate 0.1. We use an inverse-square-root learn-
ing rate scheduler (Vaswani et al., 2017) with 10K
warmup steps for the teacher and 5K warmup steps
for all students. Validation set metrics are recorded
every 1K steps. For all ImitKD variants, we set the
final mixing rate r = 0.005 (i.e. very close to 0),
and use top-K sampling with K = 5 as the gener-
ation algorithm during training. We use M = 4 as
the batch parallelization parameter.

In Table 4, the 2-layer SRU and the 2-layer
Transformer follow the same architecture as those
in Table 3. To standardize architecture across
RNNs, the GRU and the LSTM have the same
embedding dimension (i.e. 256) and hidden dimen-
sion (i.e. 512) as the SRU.

WMT The WMT 2016 dataset is taken from the
Fairseq library.5

We use a pre-trained Transformer-large model
from the Fairseq library (Ott et al., 2018, 2019) as
our teacher model. It has embedding dimension
1024, model dimension 1024, and feedforward di-
mension 4096. The student is a 4-layer SRU with
hidden size 1024, projection size 256, and embed-
ding size 256. The student is trained for 15 epochs
with batch size 512, base learning rate 0.1, and 4K
warmup steps. We record validation metrics every
1/4 of the epoch. The encoder embeddings, de-
coder embeddings, and decoder output layer share

4https://sites.google.com/site/
iwsltevaluation2014/data-provided

5https://github.com/pytorch/fairseq/tree/
master/examples/translation

https://www.nltk.org/_modules/nltk/translate/bleu_score.html
https://www.nltk.org/_modules/nltk/translate/bleu_score.html
https://github.com/Diego999/py-rouge
https://sites.google.com/site/iwsltevaluation2014/data-provided
https://sites.google.com/site/iwsltevaluation2014/data-provided
https://github.com/pytorch/fairseq/tree/master/examples/translation
https://github.com/pytorch/fairseq/tree/master/examples/translation
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the same weight parameters. We tune the final
mixing rate r ∈ {0.5, 0.1, 0.005} for our ImitKD
variants.

CNN/Dailymail The CNN/DailyMail dataset is
taken from Professor Kyunghyun Cho’s website,
a commonly used source for this dataset.6 The
teacher model is a 6-layer Transformer-base model
with embedding dimension 512, model dimension
512, and feedforward dimension 2048. The student
is a 2-layer SRU with embedding dimension 256,
hidden size 1024, and projection size 256. We use
a batch size of 128. For both models, the learn-
ing rate follows an inverse-square root schedule
with warmup of 2K steps. Validation set metrics
are recorded every 2K steps. The teacher has a
base learning rate of 0.03, while the student has
a base learning rate of 0.1. The teacher benefits
from larger effective batch sizes by accumulating
gradients every eight steps. On the other hand,
the student does not seem to benefit from gradient
accumulation and therefore takes a gradient step
after processing each batch. All ImitKD variants
use final mixing rate r = 0.1 and greedy decod-
ing during training. We use M = 4 as the batch
parallelization parameter.

Size and Speed Analysis CPU generation times
for all models were measured on a 2019 MacBook
Pro with a 2.6GHz 6-core Intel Core i7 processor.
Time estimates reported in Table 7 were averaged
over examples in the test set of the corresponding
dataset.

Performance Analysis at Different Lengths
For each IWSLT variant, we ran greedy decod-
ing (i.e. beam search decoding with beam size
K = 1) on the test set. Then, we sorted the de-
coded sequences by length into the following bins:
[0, 20], [21, 40], [41, 60], [61, 80], [81, 100], [101,
120]. Each point in Figure 1 is the Bleu score of
all sequences within one of these bins for the corre-
sponding IWSLT variant.

Additive Effect of Fine-Tuning For the fine-
tuning experiments, we generated SeqInter data
with a beam size of K = 5 and NLTK’s sentence-
level BLEU implementation. We used the Adam
optimizer with a base learning rate of 0.01 and
an inverse-square root scheduler with 2K warmup
steps. All models were fine-tuned for 20K itera-
tions. Models were validated every 1K iterations.

6https://cs.nyu.edu/∼kcho/DMQA/

https://cs.nyu.edu/~kcho/DMQA/

