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Abstract

Open-vocabulary slots, such as file name, al-
bum name, or schedule title, significantly de-
grade the performance of neural-based slot fill-
ing models since these slots can take on val-
ues from a virtually unlimited set and have
no semantic restriction nor a length limit. In
this paper, we propose a robust adversarial
model-agnostic slot filling method that ex-
plicitly decouples local semantics inherent in
open-vocabulary slot words from the global
context. We aim to depart entangled contex-
tual semantics and focus more on the holistic
context at the level of the whole sentence. Ex-
periments on two public datasets show that our
method consistently outperforms other meth-
ods with a statistically significant margin on
all the open-vocabulary slots without deterio-
rating the performance of normal slots.

1 Introduction

Slot filling is a critical component of spoken lan-
guage understanding (SLU) in task-oriented dia-
logue systems. It aims at extracting semantic con-
stituents from the user queries. Given an immense
amount of labeled training data, recent neural net-
works (Mesnil et al., 2015; Liu and Lane, 2015,
2016; Goo et al., 2018; Haihong et al., 2019; Chen
et al., 2019; He et al., 2020a,b) have been actively
applied to slot filling task and achieved good re-
sults.

Although most previous neural-based models
achieve state-of-the-art performance across a wide
range of slot filling datasets, they often suffer from
poor slot filling accuracy while dealing with ‘open-
vocabulary’ slots. Open-vocabulary slots signify
slot types that can take on values from a virtually
unlimited set, such as file name, album name, text
body, or schedule title. Typically, these slot values
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Figure 1: An error case of open-vocabulary slot
“playlist” in Snips dataset (Coucke et al., 2018). Here
“water” is mistakenly recognized as “entity name” type
by the baseline model (Liu and Lane, 2016) due to the
local context “don’t drink the water”. However, it rep-
resents a playlist at the level of the whole sentence.
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Figure 2: Error rates of open-vocabulary slots com-
pared to normal slots in Snips from Baseline (Liu and
Lane, 2016). We display the top10 slot types of the
highest error rates.

have no constraints on the length and specific se-
mantic patterns of content. Besides, these words
are employed differently from the meaning inher-
ent in themselves, as Fig 1 shows. Intrinsically, the
complexity of recognizing open-vocabulary slots
comes from the inconsistent context with different
granularity. For example, consider the utterance
“add the song don’t drink the water to my playlist”
in Fig 1. While identifying the slot type of the
word “water”, the slot filling model will mistakenly
recognize the word “water” as “entity name” slot
type if it only focuses on the local context “don’t
drink the water”. By contrast, it should instead
focus on the global context “add the song ... to my
playlist” to recognize the “don’t drink the water”
as the correct “playlist” slot type. Therefore, these
characteristics of open-vocabulary slots confuse
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Figure 3: The overall architecture of our approach, in-
cluding three core steps: forward, backward, and de-
coupling forward. Forward calculates the traditional
classification loss and backward adds adversarial de-
coupling perturbations. Then decoupling forward cal-
culates a new adversarial loss. Finally, the model is
updated by the weighted sum of two losses.

the models to recognize the correct slot type. Fig 2
displays slot error rates of open-vocabulary slots
are generally higher than normal slots. The results
confirm that traditional neural networks can not ad-
equately handle issues caused by open-vocabulary
slots.

Kim et al. (2018) exploits a long-term aware
attention structure and positional encoding with
multi-task learning to capture global information.
Kim et al. (2019) focuses on data augmentation
by adding random noise in the embeddings of all
slot words. Ray et al. (2019) proposes an itera-
tive delexicalization algorithm that utilizes model
uncertainty to improve delexicalization for open-
vocabulary slots. One major limitation is that these
methods can’t explicitly distinguish semantic rep-
resentation inherent in open-vocabulary slot words
from the holistic context.

In this paper, we propose a robust adversarial slot
filling approach that explicitly decouples local se-
mantic representation inherent in open-vocabulary
slot words from the global context. Our approach
aims to focus more on the holistic semantics at the
level of the whole sentence, not only the vicin-
ity of the local context within open-vocabulary
slots. Specifically, our approach generates model-
agnostic adversarial worst-case perturbations to the
inputs in the direction that significantly increases
the model’s loss. Our main contributions are three-
fold: (1) We dive into the issues of open-vocabulary

slots in slot filling task and propose a novel adver-
sarial semantic decoupling method which distin-
guishes local semantics from the global context.
(2) Our method can be easily applied to all the pre-
vious slot filling neural-based models. (3) Experi-
ments show that our proposed method consistently
outperforms various SOTA baselines, especially in
open-vocabulary slot f1.1

2 Approach

Problem Formulation Given a sentence X =
{x1, ..., xn} with n tokens, the slot filling task
is to predict a corresponding tag sequence Y =
{y1, ..., yn} in BIO format, where each yi can take
three types of values: B-slot type, I-slot type and
O.

Fig 3 shows the overall architecture of our
method. Here we adopt BiLSTM (Liu and Lane,
2016) as our backbone.2 Our method includes three
core steps: forward, backward, and decoupling for-
ward. We first feed each word to an embedding
layer to get word embeddings ei = E(xi). Then
in the forward step, we adopt a BiLSTM layer and
softmax output layer to calculate the classification
cross-entropy loss L(f(e; θ), Y ) for each word.

Then in the second backward step, we perform
adversarial attacks (Goodfellow et al., 2015; Ku-
rakin et al., 2016; Miyato et al., 2016; Jia and Liang,
2017; Zhang et al., 2019; Ren et al., 2019) to ex-
plicitly shift the local semantics of open-vocabulary
slot words and decouple them from the global con-
text. Theoretically, we need to compute a decou-
pling vector ṽdec that effectively degrades the cur-
rent model’s performance (i.e., maximum the loss
function):

ṽdec = argmax
||vdec||≤ε

L(f(e+ vdec; θ), Y ) (1)

where L indicates the loss function and ε is the
norm bound of the decoupling vector. However,
due to model complexity, accurate computation for
ṽdec is costly and inefficient. Similar to Vedula et al.
(2020) and Ru et al. (2020), we apply Fast Gradient
Value (FGV) (Rozsa et al., 2016) to approximate a
worst-case perturbation as our decoupling vector:

ṽdec = ε
g

||g||
;where g = ∇eL(f(e; θ), Y ) (2)

1Our code is available at https://github.com/
yym6472/OVSlotTagging

2Since our method is model-agnostic, we also apply our
method to BERT (Devlin et al., 2019) in the experiments.

https://github.com/yym6472/OVSlotTagging
https://github.com/yym6472/OVSlotTagging
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Here, the gradient g is the first-order differential
of the loss function L w.r.t. e, representing the di-
rection that rapidly increases the loss function. We
perform normalization to g and then use a small ε
to ensure the approximate is reasonable. Finally,
we perform a mask operation to filter out normal
words and add the decoupling vector to the origi-
nal token embeddings e. Hence, the updated word
embeddings are e′ = e+ṽdec while other model pa-
rameters are fixed. Ablation study proves that only
adding the decoupling vector to open-vocabulary
slot words achieves better improvement.

In the third decoupling forward step, we feed e′

to the same BiLSTM model and calculate a new
adversarial loss L′. The final loss is a weighted
sum of L and L′ controlled by a hyperparameter
α3:

Lfinal = α · L+ (1− α) · L′ (3)

Finally, we use Lfinal to update all the model pa-
rameters.

By adding those decoupling vectors to open-
vocabulary slot words, we break the semantics in-
herent in open-vocabulary slots and thus force the
model to pay more attention to global context (e.g.
“add the song ... to my playlist”) when identifies
types of open-vocabulary slots.

3 Experiment

3.1 Setup

Datasets To evaluate our approach, we conduct
experiments on two public benchmark datasets,
Snips (Coucke et al., 2018) and MIT-restaurant
(MR)4. Snips contains user utterances from vari-
ous domains resulting in relatively extensive open-
vocabulary slots, such as album and movie name.
MR is a single-domain dataset associated with
restaurant reservations, which contains open-
vocabulary slots, such as restaurant name and
amenity.5 Table 1 shows the full statistics and Ta-
ble 2 shows all the open-vocabulary slots of Snips
and MR datasets. Note that we identify the open-
vocabulary slots according to the diversity of dif-
ferent slot values as well as the average length of
slot values.

3In the experiments, we set α to 0.5.
4https://groups.csail.mit.edu/sls/

downloads/restaurant/
5Similar to (Ray et al., 2019), we do not consider the ATIS

(Hemphill et al., 1990) dataset since it lacks open-vocabulary
slots, hence not suited for our evaluation. And we only focus
on the main slot filling task instead of intent detection.

Snips MR
Vocabulary size 11,241 3,804
Percentage of OOV words 5.95% 2.76%
Number of all slots 39 8
Number of open-vocabulary slots 9 4
Train set size 13,084 6,894
Development set size 700 766
Test set size 700 1,521

Table 1: Statistics of Snips and MR datasets.

Dataset Open-vocabulary Slots Normal Slots

Snips

playlist, object name,
entity name, album,
movie name, track,
poi, geographic poi,
restaurant name

served dish,
cuisine, sort,
best rating,
genre, service,
movie type, ...

MR restaurant name, dish,
amenity, location

rating, hours,
cuisine, price

Table 2: The lists of all the open-vocabulary slots and
normal slots in Snips and MR datasets. We only show
a part of normal slots in Snips dataset for clarity.

Baselines For a fair comparison, we use the
same slot filling architecture BiLSTM (Liu and
Lane, 2016) as (Kim et al., 2019; Ray et al., 2019).
Kim et al. (2019) proposes two model variants,
where random noise means adding random noise
in the embeddings of all slot words and cw repre-
sents concatenating the context word window as
input. Note that the random noise in (Kim et al.,
2019) is independently sampled regardless of the
global context, which is significantly different from
our method. Our adversarial semantic decoupling
method can take into account the impact of differ-
ent contexts (global semantics) on local semantics,
thereby enabling more accurate decoupling. Ray
et al. (2019) proposes greedy delex and iterative
delex methods for open-vocabulary slots. We also
validate our method in the BERT-based models
(Devlin et al., 2019) for comprehensive analysis.

Evaluation We evaluate the performance of slot
filling using the F1 metric (Sang and Buchholz,
2000). Specially, we report the F1 score over all
open-vocabulary slots, noted as F1-ov. We fol-
lowed the set-ups in (Liu and Lane, 2016; Kim
et al., 2019), and re-implement the baseline BiL-
STM, +random noise and +random noise,cw based
on the same settings. We report the original results
of greedy delex and iterative delex from (Ray et al.,
2019).

3.2 Main Results

We display the experiment results in Table 3. Com-
pared to the previous state-of-the-arts , our method

https://groups.csail.mit.edu/sls/downloads/restaurant/
https://groups.csail.mit.edu/sls/downloads/restaurant/
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Model
Snips MR

Valid Test Valid Test
F1 F1-ov F1 F1-ov F1 F1-ov F1 F1-ov

BiLSTM (Liu and Lane, 2016) 91.63 78.91 88.99 71.78 73.67 71.44 72.07 70.39
+CRF 93.37 83.55 92.28 79.71 76.51 75.63 75.78 75.45
+random noise (Kim et al., 2019) 92.94 81.92 92.46 82.35 76.43 75.61 75.81 75.51
+random noise,cw (Kim et al., 2019) 93.52 82.06 92.89 82.58 76.51 75.78 75.92 75.60
+greedy delex (Ray et al., 2019) - - 92.56 - - - - -
+iterative delex (Ray et al., 2019) - - 93.24 - - - - -
ours 94.33 85.57 94.55* 86.09* 78.94 77.89 77.96* 77.48*

BERT (Devlin et al., 2019) 94.61 84.09 93.31 79.77 76.80 75.35 76.07 75.40
+CRF 95.93 88.05 94.70 84.99 79.66 79.43 79.39 79.55
+random noise 95.99 88.05 95.63 87.32 79.67 79.39 79.59 79.68
+random noise,cw 95.90 87.92 95.57 87.18 79.59 78.84 79.49 79.56
ours 95.88 88.24 95.87 88.06* 81.54 80.97 81.61* 81.78*

Table 3: Slot filling performance on Snips and MR datasets. F1 is the overall score on all slot types and F1-ov
is the score on all the open-vocabulary slots. The numbers with * indicate the significant improvement over all
baselines with p < 0.05 under t-test.

achieves significantly superior performance for
both datasets, both in F1-ov and overall slot F1. In
the Snips dataset, our BiLSTM-based method out-
performs the SOTA model by 3.51% in F1-ov and
1.31% in F1. In the MR dataset, our method gets
improvements of 1.88% in F1-ov and 2.04% in F1.
The results demonstrate that explicitly decoupling
local semantics inherent in open-vocabulary slot
words from the global context can effectively ben-
efit open-vocabulary slot filling. We observe that
in the Snips dataset F1-ov is extremely lower than
F1, which shows the previous slot filling methods
cannot tackle the critical issues of open-vocabulary
slots. There is no such clear performance drop
in the MR dataset. The probable reason is that
open-vocabulary slots account for a large propor-
tion(70%) of all samples on MR.

We also show the results of BERT models. Ta-
ble 3 displays that our method still achieves an
improvement of 8.29% in F1-ov over the original
BERT model and 0.74% over the previous SOTA,
which substantiates our method is model-agnostic
and can be easily integrated into different slot fill-
ing architectures. Meanwhile, the F1-ov scores in
BERT-based models are consistently higher than
BiLSTM-based models, which indicates that BERT
can effectively capture the global context semantics
and tackle long-term dependency than BiLSTM.

3.3 Qualitative Analysis
Results of all open slot categories Fig 4 shows
test F1 scores of five open-vocabulary slot types to
verify the improvement of each type. We choose
BiLSTM and random noise as our baseline models.
The results demonstrate that our method consis-
tently outperforms other methods on each open-
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Figure 4: Test F1 scores of each open-vocabulary slot
type on Snips. We show the results of five slots for
clarity.

Model F1 F1-ov F1-normal
BiLSTM 88.99 71.78 94.50
random noise 92.46 82.35 95.51
ours 94.55 86.09 97.10

Table 4: Performance comparison between open-
vocabulary slots and normal slots on Snips.

vocabulary slot type, which confirms our method
is not specific to several slot types. For the restau-
rant name type, the random noise model suffers
from a performance drop of 7.62% compared to
BiLSTM. It illustrates simply adding random noise
is not constrained and has no guarantee of seman-
tics decoupling. Conversely, our method employs
adversarial deliberate disturbance and outperforms
BiLSTM by 9.58%.

Open-vocabulary slots vs normal slots We
also show overall test F1, F1-ov on all the open-
vocabulary slots, and F1-normal on all the normal
slots in Table 4 to compare the comprehensive per-
formance. The results show that our method signif-
icantly outperforms BiLSTM by 14.31% on F1-ov
and 2.6% on F1-normal, which proves our method
gets notable improvement on open-vocabulary slots
without harm to the performance of normal slots.
We hypothesize the improvement on normal slots
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Filter Space ε α F1-ov
OV slots Embedding 1.5 0.5 86.09
All slots Embedding 1.5 0.5 84.44
OV slots BiLSTM 1.5 0.5 82.86
OV slots Embedding 1.0 0.5 84.44
OV slots Embedding 3.0 0.5 82.05
OV slots Embedding 1.5 0.4 85.20
OV slots Embedding 1.5 0.6 85.34

Table 5: Effects of different hyperparameters on Snips
dataset for the BiLSTM-based model. Filter indi-
cates whether the perturbation is applied to the open-
vocabulary slots or all slots. Space indicates which
space the perturbation is added to, where Embedding
means the space after the word embedding layer and
BiLSTM means the space after the BiLSTM layer. ε
indicates the norm of perturbation and α is a hyperpa-
rameter to balance two training objectives.

is mainly because our method can effectively al-
leviate contextual semantic noise caused by open-
vocabulary slots.

Analysis of generalization capability Table 3
shows there exists clear overfitting for BiLSTM and
BERT models on open-vocabulary slots. For ex-
ample, BiLSTM gets a performance drop of 7.13%
comparing test F1-ov with valid F1-ov, and BERT
gets a drop of 4.32%. The overfitting illustrates
these baselines cannot capture contextual patterns,
resulting in poor generalization capability to new
slot values. By contrast, our method achieves com-
parable performance on valid and test sets both
for BiLSTM(85.57 vs 86.09) and BERT(88.24 vs
88.06) architectures. The results demonstrate our
method has a strong generalization capability for
open-vocabulary slots.

Ablation studies To study the effects of differ-
ent hyperparameters of our method, we conduct
ablation analysis under BiLSTM architecture (Ta-
ble 5). We can see that adding perturbation to
the embedding layer of open-vocabulary slots gets
significant improvement. Specifically, for the Fil-
ter setting, adding perturbation to open-vocabulary
slots outperforms all slots by 1.65%. For the Space
setting, adding perturbation to the word embedding
layer is superior to the RNN layer. For the hyper-
parameters ε and α, ε = 1.5 and α = 0.5 achieves
the best performance.

Case study Table 6 gives three examples from
the Snips dataset: (1) the baseline model identifies
a partial word “one” in “the sound of one hand clip-
ping” as “rating value” due to overfitting. (2) the
baseline model fails to identify “look to you” since
it is heavily coupled with “put” in local semantics.

Example 1 search for the sound of one hand clipping
Baseline Pred. O O B-obj nm I-obj nm O B-rating value
O B-obj nm
Proposed Pred. O O B-obj nm I-obj nm I-obj nm I-obj nm
I-obj nm I-obj nm
Example 2 i want to put look to you on the playlist named
80s classic hits
Baseline Pred. O O O O O O O O O O O B-plist I-plist I-plist
Proposed Pred. O O O O B-ent nm I-ent nm I-ent nm
O O O O B-plist I-plist I-plist
Example 3 a day no pigs would die deserves a best rating of 6
and a value of 4
Baseline Pred. B-obj nm I-obj nm I-obj nm I-obj nm O O
O O O O O B-best rt O O O O B-rt value
Proposed Pred. B-obj nm I-obj nm I-obj nm I-obj nm
I-obj nm I-obj nm O O O O O B-best rt O O O O B-rt value
Abbreviation ‘object’: ‘obj’, ‘name’: ‘nm’, ‘entity’: ‘ent’,
‘playlist’: ‘plist’, ‘rating’: ‘rt’

Table 6: Three examples from the Snips dataset. The
italic spans are open-vocabulary slots and should be
viewed as a whole. We use RED and GREEN text to
represent wrong and correct slot filling results, respec-
tively. For brevity, we abbreviate some slot type words.

(3) the predicate “would die” in open-vocabulary
slots are identified as the predicate of the whole
sentence and thus are mistakenly labeled as “O”
by the baseline model. In all cases, the baseline
model focuses too much on local semantics and
neglects the hints in global. With our proposed
approach, the model is trained to pay more atten-
tion to global semantics and succeeds to identify
open-vocabulary slots.

4 Conclusion

In this paper, we dive into the issues of open-
vocabulary slots in slot filling task and propose
a novel model-agnostic adversarial semantic decou-
pling method which distinguishes local semantics
inherent in open-vocabulary slot words from the
global context. Experiments confirm the effective-
ness of semantic decoupling. We hope to provide
new guidance for the future slot filling work.
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