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Abstract

Supertagging is conventionally regarded as
an important task for combinatory categorial
grammar (CCG) parsing, where effective mod-
eling of contextual information is highly im-
portant to this task. However, existing studies
have made limited efforts to leverage contex-
tual features except for applying powerful en-
coders (e.g., bi-LSTM). In this paper, we pro-
pose attentive graph convolutional networks to
enhance neural CCG supertagging through a
novel solution of leveraging contextual infor-
mation. Specifically, we build the graph from
chunks (n-grams) extracted from a lexicon and
apply attention over the graph, so that differ-
ent word pairs from the contexts within and
across chunks are weighted in the model and
facilitate the supertagging accordingly. The ex-
periments performed on the CCGbank demon-
strate that our approach outperforms all previ-
ous studies in terms of both supertagging and
parsing. Further analyses illustrate the effec-
tiveness of each component in our approach to
discriminatively learn from word pairs to en-
hance CCG supertagging.!

1 Introduction

Combinatory categorial grammar (CCG) is a lexi-
calized grammatical formalism, where the lexical
categories (also known as supertags) of the words
in a sentence provide informative syntactic and
semantic knowledge for text understanding. There-
fore, CCG parse often provides useful information
for many downstream natural language processing
(NLP) tasks such as logical reasoning (Yoshikawa
et al., 2018) and semantic parsing (Beschke, 2019).
To perform CCG parsing in different languages,
most studies conducted a supertagging-parsing pi-
pline (Clark and Curran, 2007; Kummerfeld et al.,
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'Our code and models for CCG supertagging are released
athttps://github.com/cuhksz-nlp/NeST-CCG.

#*songyan@cuhk.edu.cn

2010; Song et al., 2012; Lewis and Steedman,
2014b; Huang and Song, 2015; Xu et al., 2015;
Lewis et al., 2016; Vaswani et al., 2016; Yoshikawa
et al., 2017), in which their main focus is the first
step, and they generated the CCG parse trees di-
rectly from supertags with a few rules afterwards.

Building an accurate supertagger in a sequence
labeling process requires a good modeling of con-
textual information. Recent neural approaches to
supertagging mainly focused on leveraging power-
ful encoders with recurrent models (Lewis et al.,
2016; Vaswani et al., 2016; Clark et al., 2018), with
limited attention paid to modeling extra contextual
features such as word pairs with strong relations.
Graph convolutional networks (GCN) is demon-
strated to be an effective approach to model such
contextual information between words in many
NLP tasks (Marcheggiani and Titov, 2017; Huang
and Carley, 2019; De Cao et al., 2019; Huang et al.,
2019); thus we want to determine whether this ap-
proach can also help CCG supertagging.

However, we cannot directly apply conventional
GCN models to CCG supertagging because in most
of the previous studies the GCN models are built
over the edges in the dependency tree of an input
sentence. As high-quality dependency parsers are
not always available, we do not want our CCG su-
pertaggers to rely on the existence of dependency
parsers. Thus, we need another way to extract use-
ful word pairs to build GCN models. For that, we
propose to obtain word pairs from frequent chunks
(n-grams) in the corpus, because those chunks are
easy to identify with co-occurrence counts. To ap-
propriately learn from n-grams, one requires the
GCN to be able to distinguish different word pairs
because such information in n-grams are not ex-
plicitly structured as that in dependency parses. Be-
cause existing GCN models are limited in treating
all word pairs equally, we propose an adaptation of
conventional GCN for CCG supertagging.
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Figure 1: The architecture of our CCG supertagger
with A-GCN and an example input sentence with its
supertagging and parsing output. The supertagging pro-
cess for “buy” is highlighted in green. The adjacency
matrix illustrates the edges of the graph that is built
upon the chunks (n-grams) extracted from the lexicon
N, with the chunks illustrated in the red boxes.

In this paper, we propose attentive GCN (A-
GCN) for CCG supertagging, where its input graph
is built based on chunks (n-grams) extracted with
unsupervised methods. In detail, two types of edges
in the graph are introduced to model word relations
within and across chunks and an attention mech-
anism is applied to GCN to weight those edges.
In doing so, different contextual information are
discriminatively learned to facilitate CCG supertag-
ging without requiring any external resources. The
validity of our approach is demonstrated by ex-
perimental results on the CCGbank (Hockenmaier
and Steedman, 2007), where state-of-the-art perfor-
mance is obtained for both tagging and parsing.

2 The Approach

We treat CCG supertagging as a sequence labeling
task, where the input is a sentence with n words
X = z129---2; -y, and the output is a se-
quence of supertags Y = G102 Uj - - - Y. Our
approach uses attentive GCN (A-GCN) to incor-
porate information of word pairs through a graph;
the graph is built based on n-grams in the input
sentence that appear in a lexicon AV. This lexicon

consists of n-grams automatically extracted from
raw corpora by unsupervised methods. The overall
architecture of our tagger is illustrated in Figure 1,
with an input sentence and corresponding supertag-
ging and parsing output. The details of the main
components in the architecture are provided below.

2.1 GCN

Normal GCN models with L layers learn from
word pairs suggested by the dependency parsing
results of the input sentence X, where the edges
between all pairs of words z; and x; are repre-
sented by an adjacency matrix A = {ai7j}an. In
A, a; ; = 1if there is a dependency edge between
x; and x; or ¢ = j (the direction of the edge is
ignored), and a; ; = 0 otherwise. Based on the
adjacency matrix, for each x;, the [-th GCN layer
finds all z; associated with x; (where a; ; = 1),

takes their hidden vectors thl*l) from the (I — 1)-
th layer, and computes the output for x; by
n

b = o(LN(Y aiy(WO-B{"Y 1)) (1)
j=1

where W) and b(®) are trainable matrix and bias
for the [-th GCN layer, LN refers to layer nor-
malization and o the ReLU activation function.
Therefore, in normal GCN, for each z;, all the z;
that connect to z; are treated exactly the same.

2.2 Graph Construction based on Chunks

Since CCG supertagging is also a parsing task, we
do not want our approach to rely on the existence
of a dependency parser. Without such a parser, we
need an alternative for finding good word pairs to
build the graph in A-GCN (which is equivalent
to build the adjacency matrix .A). Inspired by the
studies that leverage chunks (n-grams) as effective
features to carry contextual information and en-
hance model performance (Song et al., 2009; Song
and Xia, 2012; Ishiwatari et al., 2017; Yoon et al.,
2018; Zhang et al., 2019; Tian et al., 2020a,c,b), we
propose to construct the graph based on the chunks
(n-grams) extracted from a pre-constructed n-gram
lexicon . Specifically, the lexicon is constructed
by computing the PMI of any two adjacent words
s’, s in the training set by

!/ //)

p(s's
p(s')p(s”)
where p is the probability of an n-gram (i.e., s/,
s and s's”) in the training set; then a high PMI

PMI(s',s") =log 2)
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Figure 2: Examples of the two types of edges for build-
ing the graph in an input sentence, in which chunks (n-
grams) extracted from the lexicon N are highlighted
in green; example in-chunk and cross-chunk edges are
marked in blue and red color, respectively.

score suggests that the two words co-occur a lot in
the dataset and are more likely to form a n-gram.
For each pair of adjacent words s;_1, s; in a sen-
tence S = $152 - S;_18; * - - Sn, We compute the
PMI score of the two words and use a threshold to
determine whether a delimiter should be inserted
between them. As a result, the sentence S is seg-
mented into pieces of n-grams and we extract all
n-grams from all sentences to form the lexicon .2

Then for graph building, given an input sentence
X, we find all the n-grams in X" that appear in \V.
A chunk is either a n-gram that does not overlap
with other n-grams or a text span that covers multi-
ple overlapping n-grams. For example, in Figure
2, we find four chunks (i.e., “all students”, “are
required to”, “finish”, and “in two hours”) in the
example sentence according to the lexicon N (the
chunks are highlighted in green). In these chunks,
“all students”, “finish”, and “in two hours” are non-
overlapping n-grams included in the lexicon and
“are required to” is a text span that covers the over-
lapping n-grams “are required” and “required to”.
In most cases, the adjacent words within the same
chunk tend to have a strong word-word relation in
terms of co-occurrence, and thus we can build the
graph and its adjacency matrix accordingly.

Based on the chunks, we construct the graph by
two types of edges, i.e., the in-chunk and cross-
chunk ones: the first type is to model local word
pairs, and the graph includes edges between any
two adjacent words within the same chunk. For
example, as shown in Figure 2, the in-chunk edges
(blue lines) for the chunk “in two hours” are “(in,
two)” and “(two hours)”. The second type is to
model cross chunk word pairs, which are built from

’For example, a sentence can be segmented into S =
s1/828384/s5 (“I” refers to a delimiter) if the PMI of s1, s2
and s4, s5 are lower than the threshold and the PMI of sz, s3
and s3, s4 are greater than the threshold; we thus obtain three
n-grams, i.e., $1, S25354, and s5 from this sentence.

any two adjacent chunks with the starting and end-
ing words in the two chunks connected. The mo-
tivation of using the starting and ending words is
that English phrases tend to be head-initial (e.g.,
verb phrase such as “buy some books’) or head-
final (e.g., adjective phrase such as “red apples”) in
many cases. E.g., for the two chunks “all students”
and “are required to” in Figure 2, the correspond-
ing cross-chunk edges (red lines) are “(all, are)”,
“(all, to)”, “(students, are)”, and ““(students, to)”.
The graph is equivalent to the adjacency matrix A,
where a; ; = 1 if there is an edge between z; and
x; in the graph or¢ = j,and a; ; = 0 otherwise.?

2.3 The Attentive GCN

When learning from a graph, conventional GCN
models treat all word pairs from the graph equally,
and thus are unable to account for the possibil-
ity that the contribution of different x; on z; may
vary. Particularly for our graph built from chunks,
it is important to be able to distinguish different
word pairs because all the chunks and the graph are
constructed automatically without a dependency
parser. Therefore, we apply an attention mecha-
nism to the adjacency matrix and adapt Eq. (1)
used in the normal GCN for our A-GCN by replac-
ing the a; ; € {0,1} by a weight pEZJ) € (0,1). For
each x; and all its associated x;, the weight pglj)
this word pair is computed by

aij - exp(hglil) -W,(;Qs i h;lfl))

(I-1)
hj )
3)
where W,(,lg)s models the positional relation (i.e.,
left, right, or self) between x; and x; and it has

three choices, i.e., Wl(i)ft Wf%ht, and nge)l f for

different i and j,* with each of them a trainable
square matrix in the /-th layer of A-GCN.

for

(1) _

" PRI R €$p(h§l_1) 'ngs :

2.4 Supertagging with A-GCN

To conduct supertagging with A-GCN, we firstly
obtain the hidden vector hgo) for x; from BERT
(Devlin et al., 2019) to feed into the first GCN
layer. Upon receiving the encoding results from
A-GCN, the following supertagging process is
straightforward: each hEL) is obtained from the
last A-GCN layer and aligned with the output by
o, =Wy, hZ(L), where W is a trainable matrix

3We do not distinguish the two types of edges in A.
“For example, Wélgs = Wl(?ft’ if j <.



‘ Train Dev Test
SectionNo. | 2-21 0 23
Sentence # 39,604 1,913 2,407
Word # 929,552 45,422 55,371

Table 1: The train/dev/test splits of English CCGBank
and the statistics of sentences and words in them.

Hyper-parameters Values
Batch Size 16, 32
Drop-out Rate 0.2

Learning Rate 3e-5, 2e-5, le-5, 5e-6

Max Sentence Length 300
Random Seed 42
Training Epoch 50
Warm-up Rate 0.1,0.2

Table 2: The list of hyper-parameters tested in our ex-
periments. We run all models with the combination of
those hyper-parameters and use the one achieving the
highest supertagging results in our final experiments.

for the alignment. Then, a softmax decoder is used
to predict the supertag g; for x;:

exp(og)
[T t
i1 exp(o;)

where 7 denotes the set with all CCG categories
and o the value at dimension ¢ in o;.

“4)

1J; = arg max

3 Experiments

3.1 Settings

We run experiments on the English CCGbank
(Hockenmaier and Steedman, 2007)° and fol-
low Clark and Curran (2007) to split it into
train/dev/test sets, whose statistics (sentence and
word numbers) are reported in Table 1. To con-
struct n-gram lexicon N for building the edges in
our graph, we perform PMI on the training set of
CCGbank to extract n-grams whose length is be-
tween [1, 5], with the threshold of the PMI score
set to 0. For the encoder, we try both cased and un-
cased BERT-Large (Devlin et al., 2019) with their
default settings (e.g., 24 layers of self-attentions
in 1024 dimensional hidden vectors)® and used
two layers for A-GCN. To obtain CCG parse from

SThe official dataset is obtained from https://
catalog.ldc.upenn.edu/LDC2005T13.

SWe download the pre-trained BERT models from https :
//github.com/google-research/bert.

Models | PARM | TAG LF

BERT-Cased 335M 96.04 90.31
+ A-GCN (Full) 343M 95.93 90.13
+ A-GCN (Chunk) 343M 96.11 90.49

BERT-Uncased 337M 96.06 90.37
+ A-GCN (Full) 345M 95.99 90.21
+ A-GCN (Chunk) 345M 96.17 90.60

Table 3: Results (supertagging accuracy and labeled F'-
scores) of different models with BERT-Large encoder
on the development set of CCGbank. “PARM” is the
number of trainable parameters in the models; “Full”
uses the fully connected graph and “Chunk” uses the
graph built based on chunks.

the generated supertags, we adopt the parsing al-
gorithm used in EasyCCG (Lewis and Steedman,
2014a). We follow previous studies (Lewis and
Steedman, 2014a; Lewis et al., 2016; Yoshikawa
et al., 2017) to use the most frequent 425 supertags
as the tag set and evaluate our model on both the
tagging accuracy and the labeled F-scores (LF) of
the dependencies converted from CCG parse’.

For other hyper-parameter settings, we test their
values as shown in Table 2 when training our mod-
els. We tried all combinations of them for each
model and use the one achieving the highest su-
pertagging results in our final experiments. Note
that, with the best hyper-parameters, the best per-
formance is achieved with warm-up rate 0.1, batch
size 16, and learning rate le-5.

3.2 Results

To explore the effectiveness of our approach, we
run CCG taggers with and without A-GCN, and try
two ways to construct the graph: one is a fully con-
nected GCN where edges are built between every
two words; the other is our proposed approach with
the chunk-based graph. Experimental results on
supertagging accuracy (TAG) and labeled F-scores
(LF) for parsing on the development set of CCG-
bank are reported in Table 3, with the number of
trainable parameters of all models also presented.
The experiments show that, for both cased and
uncased BERT encoders, the proposed chunk A-
GCN works the best in terms of both supertagging
accuracy and parsing results. In contrast, Full A-
GCN has inferior performance to the BERT base-
lines. This contrast shows the importance of appro-
priate construction of the graphs fed into A-GCN,
since the fully connected graph with all words asso-
"We use the “generate” script from C&C parser (Clark

and Curran, 2007) to convert CCG parse results to their corre-
sponding dependencies.
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Models | TAG LF
Lewis and Steedman (2014b) 91.3 86.11
Xu et al. (2015) 93.00 87.07
Lewis et al. (2016) 94.7 88.1
Vaswani et al. (2016) 94.24  88.32
Yoshikawa et al. (2017) - 90.4
Clark et al. (2018) 96.1 -
Stanojevi¢ and Steedman (2019) 954 90.5
EasyCCGt | - 86.14
BERT} 96.06  90.34
BERT + A-GCN (Full) 9591  90.20
BERT + A-GCN (Chunk)f 96.25  90.58

Table 4: Comparison of our models with uncased
BERT encoder and previous studies on the test set of
CCGbank. Models with “t” use the EasyCCG parser to
generate CCG parse trees from the predicted supertags.

ciated with one another may introduce noise word
relations and thus yield bad performance.
Furthermore, we run our models with uncased
BERT encoder on the test set and compare the per-
formance with previous studies on both supertag-
ging and parsing. Table 4 shows the results, where
the studies marked by t use the same parser (i.e.,
the EasyCCG parser) to generate CCG trees from
supertags. Among the previous studies, Stanojevic¢
and Steedman (2019) performed CCG parsing di-
rectly without the suppertagging step, whereas the
rest all did supertagging first. Regardless of this
difference, our approach performs the best on CCG-
bank in both supertagging accuracy and parsing LF.

3.3 Ablation Study

We conduct an ablation study to explore the effect
of the two types of edges and the attention mech-
anism on our best model. The supertagging and
parsing results of models with different configu-
rations are reported in Table 5, where the results
are categorized into four groups. The first group
(ID 1) is the results of the best performing model
where all settings are activated; the second (ID 2-3)
is the ablation of either in-chunk or cross-chunk
edges with attention; the third (ID 4-6) is the result
of using normal GCN without the attention mech-
anism; and the last group (ID 7) is the baseline
model where none of the three settings is activated.

The results show that the model performance
drops when either part is ablated (ID 1 vs. ID 2-6).
Specifically, removing attention significantly hurts
the performance, where all configurations without
attention (ID 4-6) shows worse-than-baseline (ID
7) results; this observation confirms the importance
of applying attention on GCN. One possible expla-

Settings

D In-chunk  Cross-chunk  Attention Tag LF

1 \ Vv Vv Vv \ 96.25 90.58
2 X Vv v 96.18 90.49
3 Vv X Vv 96.11 90.41
4 Vv V4 X 87.26 81.96
5 X V4 X 94.92 89.75
6 Vv X X 89.67 84.39
7 \ X X X \ 96.06 90.34

Table 5: Experimental results of models with un-
cased BERT-Large encoder on the test set of CCGbank,
where the in-chunk, cross-chunk edges or the attention
mechanism in our A-GCN module is ablated.

nation to this phenomenon could be that consider-
able noises are introduced to the graph because the
edges in our graph are derived from chunks and
they do not follow syntax in most cases; thus, it
is crucial to assign weights to the edges and not
treat them with equally. Interestingly, comparing
the two types of edges, models with cross-chunk
edges yield much higher results than the ones with
in-chunk edges only when the attention is not used
(ID 5 vs. ID 6), while it is slightly better when at-
tention is applied (ID 2 vs. ID 3). This comparison
suggests that in-chunk edges could introduce more
noise than cross-chunk edges. So that when the at-
tention is not used (ID 6), the model fails to weight
the edges and results in a significant drop on its
performance; On the contrary, when the attention
is applied (ID 3), our model is able to even the per-
formance of models with in-chunk and cross-chunk
edges, which confirms that weighting is essential in
selecting useful information for CCG supertagging.

4 Conclusion

In this paper, we propose A-GCN for CCG su-
pertagging, with its graph built from chunks ex-
tracted from a lexicon. We use two types of edges
for the graph, namely, in-chunk and cross-chunk
edges for word pairs within and across chunks, re-
spectively, and propose an attention mechanism
to distinguish the important word pairs according
to their contribution to CCG supertagging. Experi-
mental results and the ablation study on the English
CCGbank demonstrate the effectiveness of our ap-
proach to CCG supertagging, where state-of-the-art
performance is obtained on both CCG supertagging
and parsing. Further analysis is performed to inves-
tigate using different types of edges, which reveals
their quality and confirms the necessity of introduc-
ing attention to GCN for CCG supertagging.
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Appendix A: Example Sentences with
Extracted Chunks

f(2) The 49 stock specialist firms on the Big Board floor -- the
| buyers and sellers of last resort who were criticized after the :
\ 1987 crash -- once again could n't handle the selling pressure . |

N\
|
|

:/(3) Arbitragers could n't dump their UAL stock -- but they rid\:
I
\

:/(5) At 3:30 p.m. , at the end of the cooling off period , the\'
| average was down 114.76 points . |

Figure 3: Example sentences with the chunks extracted
from the lexicon A highlighted in green.

In the main experiments, we use the lexicon ob-
tained from the training set of the English CCG-
bank to extract chunks in each sentence, where
the chunks are used to build the graph. Figure
3 shows five example sentences in which the ex-
tracted chunks are highlighted in green. We report
more examples in the supplemental materials.

Appendix B: Example Suppertagging and
Parsing Results

Figure 4 shows the CCG supertagging and parsing
results of EasyCCG? and our approach (i.e., BERT
+ A-GCN (Chunk)) on two example sentences. In
the figure, the correct and incorrect supertags are
represented by green and red color, respectively.
We report more CCG parsing results of our ap-
proach in the supplemental materials.

8We use the implementation from CCGweb (Evang et al.,
2019) at https://ccgweb.phil.hhu.de/.
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Figure 4: The CCG supertagging and parsing results of EasyCCG and our approach (i.e., BERT + A-GCN (Chunk))
on the examples, where the correct and incorrect supertags are represented in green and red color, respectively.



