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Abstract

Named Entity Recognition (NER) is a fun-
damental task in natural language processing.
In order to identify entities with nested struc-
ture, many sophisticated methods have been
recently developed based on either the tra-
ditional sequence labeling approaches or di-
rected hypergraph structures. Despite being
successful, these methods often fall short in
striking a good balance between the expres-
sion power for nested structure and the model
complexity. To address this issue, we present a
novel nested NER model named HIT. Our pro-
posed HIT model leverages two key properties
pertaining to the (nested) named entity, includ-
ing (1) explicit boundary tokens and (2) tight
internal connection between tokens within the
boundary. Specifically, we design (1) Head-
Tail Detector based on the multi-head self-
attention mechanism and bi-affine classifier to
detect boundary tokens, and (2) Token Interac-
tion Tagger based on traditional sequence la-
beling approaches to characterize the internal
token connection within the boundary. Exper-
iments on three public NER datasets demon-
strate that the proposed HIT achieves state-of-
the-art performance.

1 Introduction

Named Entity Recognition (NER) is a fundamen-
tal task in natural language processing due to the
fact that the named entities often convey the key
information of the text (Lample et al., 2016). It is
common in many practical scenarios that the named
entities have a nested structure (Finkel and Man-
ning, 2009; Silla and Freitas, 2011). That is, an en-
tity could contain other entities or be a part of other
entities. As shown in Figure 1, the entity “the west-
ern Canadian province of British Columbia” in the
first example contains two inner entities, i.e., “west-
ern Canadian” and “British Columbia”. Traditional
methods often treat the NER task as a sequence
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Figure 1: Examples of the named entity. The first ex-
ample is a sentence with nested named entities, and the
second one is a sentence only with flat named entities.

labeling problem (Lin et al., 2018) and thus are
primarily designed to recognize flat entities in the
input sentences (as shown in the second example
in Figure 1). Due to the nature of the nested en-
tity, a token might belong to different entities. It is
difficult to represent such nested structures using a
single label accurately. Therefore, the performance
of traditional NER methods will dramatically suf-
fer when recognizing nested entities (Katiyar and
Cardie, 2018).

In recent years, more sophisticated methods have
been developed for the nested NER task, which are
grouped into two categories, including sequence-
based method and hypergraph-based method. The
sequence-based methods (Sohrab and Miwa, 2018;
Ju et al., 2018; Zheng et al., 2019) often utilize the
traditional sequence labeling approaches to learn
the nested structure. For example, Ju et al., (2018)
leverage the hierarchical Long Short Term Memory
(LSTM) networks to capture the nested named en-
tities from the inner entity to the outer entity. How-
ever, such methods might still suffer from error
propagation due to the fundamental limitation of
sequence labeling approaches in representing the
nested structure. In response, hypergraph-based
methods (Lu and Roth, 2015; Wang and Lu, 2018)
introduce the hypergraph structure for learning the
nested named entity. These methods replace the
undirected graph structure, commonly used in the
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flat NER task, by the directed hypergraph struc-
ture. The advantage lies in that hyperedges can
naturally express the nested structure. One issue
of their method (Lu and Roth, 2015) is the spuri-
ous structure of hypergraphs. Wang and Lu (2018)
further propose the neural segmental hypergraphs
to address this issue. However, if the input sen-
tence is too long or there exist many entity cat-
egories, their hypergraph structure becomes too
complicated, which in turn makes the optimization
of such models very difficult, if not impossible.

This paper further explores the precise expres-
sion of the nested structure with appropriate model
complexity to overcome these shortcomings effec-
tively. We observe two key properties pertaining to
the named entity, including (1) explicit boundary
tokens and (2) tight internal connection between to-
kens within the boundary. For example, in Figure 1,
“Premier” and “Columbia” (in the first example) are
explicit boundary tokens, and the tokens within the
boundary are closely connected with each other.
On the other hand, although the candidate region
“Premier visited province of British Columbia” (in
the second example) shared the same boundary to-
kens “Premier” and “Columbia”, the tokens within
the boundary suggest this region should not be
an entity. This indicates that different internal to-
kens greatly influence whether the region deter-
mined by the boundary tokens is a valid entity. In
other words, in the NER task, one region should be
identified as a named entity if it meets these two
properties. More importantly, these properties are
sensitive to the entities with the nested structure.

Armed with these observations, we propose a
novel neural model named HIT for recognizing the
named entities with the nested structure. Our pro-
posed model effectively identifies nested named
entities by modeling both the boundary tokens
(referred to as “head-tail pair” in this paper) and
connection relationship between tokens within the
boundary (referred to as “token interaction” in this
paper). To be specific, we design a head-tail detec-
tor based on the multi-head self-attention mecha-
nism (Vaswani et al., 2017) and the bi-affine classi-
fier (Dozat and Manning, 2016) to detect explicit
boundary tokens. The main advantage of the multi-
head self-attention mechanism is that it can directly
learn the connection between tokens without hav-
ing to consider token ordering information. Partic-
ularly, we adopt Focal Loss (Lin et al., 2017) to
address the class imbalance problem in the training

process. This is because the head-tail detector aims
to detect all candidates of head-tail pairs, only a
few of which correspond to valid entities. In ad-
dition, we design a token interaction tagger based
on traditional sequence labeling approaches (Lam-
ple et al., 2016; Shang et al., 2018) to characterize
the internal connection between tokens within the
boundary through context. Another advantage of
the token interaction tagger is that the captured in-
ternal connection features contain abundant lexical
and semantic information, which can be used to
predict the category of entities. By integrating the
head-tail detector and token interaction tagger, we
apply the region classifier to predict the entity cate-
gories. Extensive experiments on three public NER
datasets, including GENIA (English) (Kim et al.,
2003), GermEval 2014 (German) (Benikova et al.,
2014), and INLPBA (English) (Kim et al., 2004),
reveal that our proposed HIT achieves state-of-the-
art performance.

The main contributions of this paper are as fol-

lows,

e We demonstrate that the head-tail pair can
effectively and precisely express the boundary
information of entities with nested structure.

o We utilize token interaction tagger to char-
acterize the internal connection between to-
kens within the boundary, where we reveal
that token interaction has a great impact on
identifying entities.

e We complete entity classification with head-
tail pair and token interaction sequence while
introducing a multi-task loss to train our
model simultaneously.

The rest of the paper is organized as follows. Sec-
tion 2 describes the details of our model. Experi-
mental results are reported in Section 3. Section 4
reviews the related work. Section 5 concludes the

paper.
2 Model

In this section, we present the HIT model in de-
tail. Figure 2 depicts the overall architecture of our
model. The HIT contains three main components,
including the head-tail detector, token interaction
tagger, and region classifier. For each given sen-
tence « = {wy, wa, ..., Wy, }, where m is the length
of the sentence, HIT firstly maps the sentence x
to a token representation sequence X = {w1, wWa,
..., Wi, }. The representation sequence x is then
fed into the head-tail detector to predict whether
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Figure 2: An overview of the proposed HIT model.

each pair-wise tokens is the head-tail of an entity.
In the meanwhile, token interaction tagger is used
to capture internal connections between adjacent
tokens based on context, which indicates if the to-
ken before or after the current token belongs to an
entity. Finally, the region classifier is employed to
integrate the head-tail detector and token interac-
tion tagger to complete the entity recognition. In
the following subsections, we will describe each
part of our proposed HIT in detail.

2.1 Head-Tail Detector

The head-tail detector is a pair-wise classifier that
determines whether each pair of tokens in the sen-
tence is the boundary of an entity. As shown in
Figure 2, the “interleukin - 2”” and “Mouse inter-
leukin - 2 receptor alpha gene” are both entities.
Ideally, our head-tail detector should be able to de-
termine that the head-tail pairs “interleukin-2” and
“Mouse-gene” are both boundary tokens of entities.
Formally, given the token representation se-
quence X, the head-tail detector first generates
the boundary representation b; of token w; based
on the multi-head self-attention network (Vaswani
et al., 2017). For simplicity, we denote the scaled
dot-product attention as the following equation,

T
Vi

where Q, K, V are the query matrix, keys matrix,
and value matrix, respectively. In our setting, Q =
K =V =x, and 1/1/d}, is the scaling factor. The
multi-head attention can learn multiple scaled dot-
product attentions by using different linear projec-
tions in parallel. Formally, the multi-head attention

Attention(Q, K, V) = softmax (

)V, (D

can be expressed as follows,
head; = Attention(QW2 KW VW), (2)
b = Concat(head;, . .. ,headh)WO, 3)

where WZ-Q, WK WY, and WO are trainable pro-
jection parameters.

By virtue of the self-attention mechanism, the
boundary representation b;, composed of all the
token representations, is immune from the order of
tokens in the sentence. In our model, the head-tail
detector is designed to detect each pair of tokens
in terms of whether it is the head-tail pair of an en-
tity, while filtering out the influence of the distance
between two tokens in the sentence. Thus the self-
attention mechanism is more suitable for head-tail
detector than other architectures, e.g., LSTM (Lam-
ple et al., 2016) and Convolutional Neural Network
(CNN) (Chiu and Nichols, 2016). It is worth point-
ing out that we additionally leverage the token in-
teraction tagger (Subsection 2.2) to characterize the
internal connection from the context, which takes
into account the token order information.

By the generated boundary representation se-
quence b = {by, bo, ..., b, }, we construct token
representation pairs (b;, b;) through pairwise com-
bination, where (b;, b;) denotes that the token w; is
assumed as the head token of an entity, and w; is as-
sumed as the tail token. Each token representation
pair is finally fed into a bi-affine classifier (Dozat
and Manning, 2016) to determine whether it is the
head-tail pair of an entity. The predicted head-tail
distribution is defined as follow,

di; =b; UWb; + (b; @ b)) UP +b, (4

where @ denotes concatenation operation, U
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and U@ denote weight matrices, and b denotes
bias.

In practice, the classifier does not need to con-
sider all token representation pairs due to (Wang
and Lu, 2018), which finds that restricting the max-
imum length of entities to 6 can cover more than
95% of entities. We set the same entity maximum
length restriction (6) in our model. In addition,
since only a few candidates are the boundaries
of valid entities, the head-tail detector might en-
counter the class imbalance problem during the
training process. Accordingly, we employ the Focal
Loss (Lin et al., 2017) to optimize the parameters
of the head-tail detector,

L=~ Bi;(1 — dj;)log(d),
9
v dij, Bij),
(@ 6) = {El T
where (1 — d; ;)7 denotes the modulating factor
and + is the focusing parameter. 3;; denotes the
weighting factor.

Note that since different entities do not share
the same head-tail pair, our head-tail detector can
naturally solve the difficulty of expressing nested
entities. Moreover, we preserve all the predicted
head-tail pairs of each sentence, which are also
important features for the subsequent region classi-
fication.

&)

if d;; is true;
otherwise,

2.2 Token Interaction Tagger

Although the head-tail pair is important for recog-
nizing the nested named entity, it still ignores the
connection between tokens within the head-tail pair.
Inspired by (Muis and Lu, 2017) and (Shang et al.,
2018), we construct a token interaction tagger to
label the gap between every two adjacent tokens in
the sentence. First of all, we define two possible
connections of the gap, including the internal con-
nection (I) and others (O). As shown in Figure 2,
we use the internal connection (I) to indicate that
both of the two adjacent tokens might belong to the
same entity. The others (O) means that at least one
of these two adjacent tokens do not belong to the
same entity.

It is worth mentioning that we encourage the to-
ken interaction tagger to label the nested boundary
gaps as the internal connection (I) when dealing
with the entities with nested structure. Take an ex-
ample in Figure 2 to illustrate this point, the gap
between “2” and “receptor” belongs to the nested
boundary gap, because the gap is inside the outer

entity “mouse interleukin-2 receptor alpha gene”.
Such nested boundary gaps should be labeled as
“I”, and the explicit distinction between outer and
inner entities is obtained by the head-tail detector.
Therefore, the token interaction tagger is designed
to capture the internal connection between adjacent
tokens primarily.

Since it is important to learn lexical and seman-
tic information in the context for determining token
interaction, we employ BiLSTM to encode the to-
ken representation sequence x. For simplicity, we
denote the interaction representation extraction as
the following equations,

Wi = LSTM;(w;, Wi1,07),  (6)
T = LSTMy(ws, hioy,6), (7
h;= h; o h,, )

where the 0y and 6, denote the parameters of the
forward and backward LSTM, respectively. The
ﬁi and ﬁz are the hidden states at the position ¢
of the forward and backward LSTM, respectively.

The interaction representation sequence h is then
fed into a CRF (Lafferty et al., 2001), which can
decode these features and tag connections for each
gap. The scoring equation defined by CRF is

m
s(h,y) = logymarr(yi — hy)
i=1 )
+log YrraNs(Yi-1 = ¥i),
where y is the target tag sequence corresponding
to sentence x. The ¥ gy (y; — h;) represents
the emission potential from the token wj to the tag
y;. The Yrrans € RM is a transition matrix that
comes from CRF to control the transition probabil-
ity from y;_1 to y;, where M is the tag size.

We use the following loss function to optimize
the parameters of token interaction tagger,

L; = —log(p(y[h))
exp(s(h, y))

sey exp(s(h, y'))
where 3/ is one of the candidate tag sequences in
Y. Since lexical and semantic information is ben-
eficial to predict the entity categories, we retain
the entire token interaction sequence h for the re-
gion classifier, which will be introduced in the next
subsection.

(10)

= _log(z )a
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2.3 Region Classifier

With the guidance of the head-tail pairs and to-
ken interaction sequence obtained from the above
two components, we can establish candidate region
representations. Moreover, each candidate region
representation should meet the two constraints, in-
cluding (1) the head-tail pair has been detected by
the head-tail detector and (2) the corresponding in-
ternal tokens are closely connected (i.e., all of the
token gaps within the head-tail pair labeled as in-
ternal connection (I)). Therefore, if all of the token
gaps corresponding to the detected head-tail pair
(b;, bj) are labeled as the internal connection (I),
then we obtain the final region representation r;;

as follows,

rij =b!®blacy,

_ |4 J

Cij = [jii k:illk]7
where c¢;; denotes the representation of candidate
token interaction, and we average the correspond-
ing token interaction subsequence to treat them
equally. The final regional representation r;; will
be sent to a two-layer multilayer perceptron net-
works (MLP) to predict entity category label. We

compute the loss of category label prediction as

follows,
d;; = softmax(MLP(r;;)),

L ==35(d;)log(d),

where (Ai;”j and d;; denote the true and predicted
category distributions, respectively.

(1D
(12)

(13)
(14)

2.4 Training

We define the final multi-task loss as follow,
L =MLyt + XL+ N3L,, (15)

where A1, Ag, and A3 are hyper-parameters of Ly
in Eq. (5), £; in Eq. (10), and £, in Eq. (14), re-
spectively. Note that the proposed HIT predicts the
category label after all the head-tail pairs and the to-
ken interactions have been recognized. We feed all
the ground-truth labels during training progress so
that all components can be trained jointly. All mod-
els are optimized using the Adaptive Moment Esti-
mation (Adam) (Kingma and Ba, 2014) method.

3 Experiments

In this section, we first introduce the datasets, the
baseline methods, and implementation details. We
then present the experimental results used for eval-
uations, followed by analyzing two key properties
and the ablation study of our HIT model.

Item Train Dev Test Overall Nested
Document 1599 189 212 2000 -
Sentences 15023 1669 1854 18546 -
Percentage  81% 9% 10% 100% -
DNA 7650 1026 1257 9933 1744
RNA 692 132 109 933 407
Protein 28728 2303 3066 34097 1902
Cell Line 3027 325 438 3790 347
Cell Type 5832 551 604 6987 389
Overall 45929 4337 5474 55740 4789

Table 1: Statistics of GENIA dataset.

3.1 Datasets

To evaluate our proposed model, we conduct ex-
periments on three public datasets, including GE-
NIA (Kim et al., 2003), GermEval 2014 (Benikova
et al., 2014), and JNLPBA (Kim et al., 2004).
Among them, both GENIA and GermEval 2014
are commonly used benchmark datasets for nested
NER task.

GENIA! dataset is English biology nested
named entity dataset, which is based on GENIAcor-
pus3.02p that comes with POS tags for each token.
It contains five entity types, including DNA, RNA,
protein, cell line, and cell type categories. The
dataset contains 18,546 sentences corresponding to
55,740 tokens. Following previous works (Finkel
and Manning, 2009; Lu and Roth, 2015), we split
the dataset into 8.1:0.9:1 for training, development,
and testing. Table 1 shows the statistics of GENIA
dataset.

GermEval 2014° dataset is a new German
nested named entity dataset that contains four entity
types. The dataset covers over 31,000 sentences
corresponding to over 590,000 tokens. We use this
dataset to evaluate the performance of our model
in different languages.

JNLPBA? dataset is originally from GENIA cor-
pus. It defines a training set and a testing set. Un-
like the other two datasets, only the flat top-most
entities are present in this dataset. Therefore, we
use it to evaluate how well the HIT model performs
in recognizing flat entities.

3.2 Baseline Methods

We compare our model with several state-of-the-art
models that can be divided into two groups:

"http://www.geniaproject.org/genia-corpus

Zhttps://sites.google.com/site/germeval2014ner/data

3http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-
shared-task-2004
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Sequence-based methods. Muis and Lu (2017)
label the gap between tokens by the entity sep-
arators, which can capture entities that overlap
with one another. Sohrab and Miwa (2018) use
the region representation by LSTM to recognize
nested entities. Ju et al. (2018) encode sentence
with stacking flat LSTM layers and decoding it
to different categories by cascaded CRFs. Zheng
et al. (2019) use the sequence labeling models to
detect the nested entity boundary and merge the cor-
responding boundary label sequence to complete
categorical prediction.

Hypergraph-based methods. Lu and
Roth (2015) are the first to use the hypergraph-
based method to tackle the problem of entity
detection. Katiyar and Cardie (2018) learn the
hypergraph representation for nested entities from
the multi-layer BiLSTMs. Wang and Lu (2018)
use segmental hypergraph representation to capture
features and interactions that cannot be captured
by previous models for nested entity recognition.

3.3 Implementation Details

For the embedding method, we initialize token vec-
tors with 128-dimension pre-trained token embed-
dings, which are fine-tuned during training. We
conduct hyper-parameter optimization by explor-
ing the range of parameters shown in Table 2 using
random search, and we select the set of parameters
that achieves the best performance on the GENIA
development set. The self-attention in the head-tail
detector has a depth of 4 and heads of 4. The BiL-
STM in the token interaction tagger has a depth
of 2 and a hidden size of 256. The MLP in the
region classifier has a depth of 2 and a hidden size
of 256. The focusing parameter vy is set to 2, and
the 3;; is set to 0.7. Moreover, the A1, A2 and A3
are set to 0.4, 0.3 and 0.3, respectively. The initial
learning rate is set to 0.008 and decreases as the
training step increases. We apply Dropout (Srivas-
tava et al., 2014) to the output of the BiLSTM layer
at the rates of 0.5. The batch size is set to 64 at
the sentence level. We monitor the training process
on the development set and report the final result
on the test set. We implement our model under
PyTorch*. All of our experiments are performed
on NVIDIA 1080ti GPU and Intel i7-8700K CPU.
The training time for each epoch is 40 min. From
the performance on the development set, our model
reached the best performance after 20 epochs.

*https://pytorch.org/

Hyper-parameters Range Final
Self Attention—depth  [1, 4] 4
Self Attention—head [1, 6] 4
BiLSTM-depth [1, 4] 2
BiLSTM-hidden size  [128,512] 256
MLP—depth [1,2] 2
MLP-hidden size [128,512] 256
Dropout [0.2, 0.8] 0.5
Y [0, 5] 2
Bij [0, 1] 0.7
Batch Size [16, 64] 64

Table 2: Hyper-parameters used for training the HIT
model.

3.4 Main Results

We employ the precision (P), recall (R), and F1-
score (F) to evaluate the performance of each
method. The experimental results of our HIT on
the GENIA dataset are illustrated in Table 3. As we
can see, the proposed HIT outperforms all the com-
pared methods in both recall and F1-score, with
better or comparable results in precision. For ex-
ample, our HIT achieves 74.4% recall value, which
surpasses Zheng et al. (2019) by 0.8%. From Table
3, we observe that all hypergraph-based methods
fall short in the recall value. These results demon-
strate that most entities recognized by our HIT are
indeed valid entities. The reason is that the region
classifier in our HIT can capture the non-entity
type for the candidate region, which means that the
classifier has the ability to determine whether the
candidate region is a valid entity or not. With this
ability of region classifier and the two constraints
introduced in Section 2.3, our HIT effectively alle-
viates the error propagation problem. Furthermore,
the HIT yields a precision value of 78.1%, which
is 1.7% lower than Katiyar and Cardie (2018). On
the other hand, the HIT outperforms Katiyar and
Cardie (2018) by 6.2% in the recall value. More
importantly, HIT outperforms Wang and Lu (2018)
by 1.1%, Zheng et al. (2019) by 2.5%, and Katiyar
and Cardie (2018) by 2.6% in terms of F1-score,
respectively. These results indicate that our HIT is
capable of capturing the explicit boundary tokens
and the tight internal connection between tokens
within the boundary, which precisely captures the
nested structure of entities. Specifically, Table 4
shows the performance of each category on GE-
NIA. We observe that the proposed HIT achieves
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Model P(%) R(%) F(%)
(Muis and Lu, 2017) 754  66.8 70.8
(Ju et al., 2018) 76.1  66.8 71.1
(Sohrab and Miwa, 2018) 733 683 70.7
(Zheng et al., 2019) 759 736 74.7
(Lu and Roth, 2015) 72.5 652 68.7
(Katiyar and Cardie, 2018) 79.8  68.2 73.6
(Wang and Lu, 2018) 77.0 733 75.1
Our HIT 78.1 744 76.2

Table 3: Main results on GENIA. Significant improve-
ment over baselines is marked with * ( p-value < 0.05).

Category P(%) R(%) F(%)
DNA 756 723 739
RNA 875 828 851
protein 794 756 715
cellline 782 743 762
celltype 749 712  73.0

Table 4: Results of entities for each category on GE-
NIA test dataset.

Model P(%) R(%) F(%)

(Sohrab and Miwa, 2018) 75.0  60.8 67.2
(Juetal., 2018) 729 615 66.7
(Zheng et al., 2019) 745  69.1 71.7
Our HIT 748  70.57  72.6"

Table 5: Main results on GermEval 2014. Significant
improvement over baselines is marked with * ( p-value
< 0.05).

the best performance in recognizing the entities of
the RNA category. The reason for the best results
obtained for RNA is that the entities pertaining
to RNA mainly end up either with “mRNA” or
“RNA”. And our HIT yields 77.5% F1-score on
the protein category, which covers over half of the
named entities in GENIA.

In addition, to evaluate the performance of our
proposed HIT in different languages, we con-
duct additional experiments on the GermEval 2014
dataset, and the experimental results are shown in
Table 5. We can first observe that the HIT outper-
forms all the compared methods both in recall and
F1-score. Compare to the suboptimal (Zheng et al.,
2019), it still significantly achieves 1.4% and 0.9%
relative improvements on recall and F1-score, re-
spectively. Also, compared with Table 3, we found
that the overall performance on the GENIA dataset
is better than on the GermEval 2014 dataset. One
possible reason is that the entities in the GermEval
2014 dataset are much sparser.

Furthermore, we conduct experiments on the
JNLPBA dataset to demonstrate the applicability
of our proposed HIT on flat entities. Compared

85
HIT without interaction constraint
B HIT

82 HIT with golden

79

76

73

70

Precision(%) Recall(%) F1-score(%)

Figure 3: Results on HIT of different structures.

with the state-of-the-art method (Gridach, 2017),
which achieves 75.8% in F1-score, HIT achieves a
competitive performance of 74.9%.

3.5 Analysis of Two Key Properties

Our proposed HIT is designed by leveraging two
key properties pertaining to the (nested) named en-
tity, including (1) explicit boundary tokens and (2)
tight internal token connection within the bound-
ary. In order to further evaluate the importance of
these properties for nested NER, we construct the
following two sets of comparative experiments on
the GENIA dataset, and the corresponding experi-
mental results are shown in Figure 3.

Analysis of Boundary Tokens. In our model,
we use the head-tail pair to represent the boundary
tokens of nested entities. To illustrate the impor-
tance of capturing entity boundary information in
identifying nested entities, we use golden head-tail
pairs instead of the results from the head-tail de-
tector to our HIT in this set of experiments>. This
revised model is denoted as “HIT with golden”,
and the golden head-tail pairs are collected from
the GENIA dataset. From Figure 3, we can find that
HIT with golden achieves additional performance
improvement over the proposed HIT in terms of
all metrics. These results further corroborate that
explicit boundary tokens indeed play an important
role in recognizing named entities, and the head-
tail pair can effectively and precisely express the
boundary of entities with the nested structure.

Analysis of Token Interaction. In order to fur-

SWe do not conduct opposite experiments using golden
token interaction tags since our model exploits the token in-
teraction representation to improve the overall performance,
rather than the token interaction tag. In addition, it is hard to
obtain the golden token interaction representation.
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ther explore the effects of token interaction within
the boundary, we modify the strategy of generat-
ing the candidate region representations in this set
of experiments. As we introduced in Section 2.3,
the candidate regions are generated under two con-
straints. We remove the token interaction constraint
(i.e., the second constraint), which indicates the
candidate region representation is only generated
under the detected head-tail pairs (i.e., the first con-
straint). In other words, all detected head-tail pairs
can establish their candidate region representations
based on Eq. (11). This means that some adjacent
tokens might not be closely connected together in
such candidate regions. The revised model denotes
as “HIT without interaction constraint”. From the
results shown in Figure 3, we can see that our HIT
outperforms the HIT without interaction constraint
by 2.4% on F1-score. The main reason is that the
token interaction constraint can mitigate the error
propagation caused by the head-tail detector. These
results validate that the internal tokens of entity are
indeed closely connected with each other, and the
token interaction has a great impact on detecting
named entities.

3.6 Ablation Study

We choose the GENIA dataset to conduct several
ablation experiments to elucidate the main compo-
nents of our proposed HIT, and the experimental
results are shown in Table 6 and Table 7.

Effectiveness of Head-Tail Detector. The head-
tail detector in our model consists of a multi-head
attention encoder and a bi-affine classifier. To ex-
plore the effectiveness of the detector, we examine
the head-tail detector based on different structures,
including the BiLSTM encoder and linear classi-
fier. In addition, in this set of experiments, we
also use the Cross Entropy instead of Focal Loss to
the detector. Table 6 shows the results of various
head-tail detection methods. From the results, one
could observe that the BiILSTM performs worse
than the multi-head attention mechanism in this
case. One explanation could be that the BILSTM
network learns the token ordering features and con-
siders the distance of the head token and tail token
in the sentence, which makes the BiLSTM-based
detector suffer from detecting long named entities.
Furthermore, we can observe that Focal Loss is
more effective for the detector than Cross Entropy,
due to the fact that the detector using Cross Entropy
overlooks the class imbalance problem. These re-

Method P(%) R(%) F(%)

HTD with BiLSTM encoder  79.7 77.1 78.4
HTD with linear classifier 81.2 78.9 80.0
HTD with Cross Entropy 792 767 719
Head-Tail Detector 82.1 80.4 81.2

Table 6: Performance of the head-tail pair detection
based on the Head-Tail Detector (HTD) of different
structures.

Method P(%) R(%) F(%)

TIT with softmax 91.7 88.6 90.1
Token Interaction Tagger  93.5 904 919

Table 7: Performance of the token interaction tagging
based on the token interaction tagger (TIT) of different
structures.

sults validate that the Focal Loss can perform well
in NLP tasks. In addition, the detector based on
the bi-affine classifier achieves 1.2% improvement
on Fl-score compared to the detector based on the
linear classifier.

Effectiveness of Token Interaction Tagger.
We compare the softmax with CRF as the output
layer of the token interaction tagger, and the exper-
imental results are shown in Table 7. We can see
that the tagger with CRF can effectively recognize
the token interaction and surpass the tagger with
softmax by 1.8%. The main reason is that the CRF
can utilize the connection of the current tag and the
previous tag, where the softmax cannot. Therefore,
we conclude that the CRF-based model is more
suitable for token interaction tagger.

4 Related Work

Many methods have been proposed for nested
NER. Early works on dealing with nested enti-
ties rely on hand-craft features or rule-based post-
processing (Zhang et al., 2004; Zhou et al., 2004).
They use the supervised method that combines
the Hidden Markov Model with rule-based post-
processing to extract both the inner and outer en-
tities. Moreover, Finkel and Manning (2009) pro-
pose a chart-based parsing method for handling
nested entities. They construct a discriminative
constituency tree to represent each sentence, and
each entity is represented as one of the subtrees.
However, their method has a cubic time complex-
ity.

Traditionally, the conventional NER is consid-
ered as a sequence labeling task. Some studies
reveal that sequence labeling-based methods can
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also perform well on the nested NER. Muis and
Lu (2017) introduce a novel notion of mention sep-
arators that can effectively detect the nested entity
mention. Their method labels gaps between words
to yield better performance, which relies on hand-
crafted features. Ju et al. (2018) propose dynami-
cally stacking flat NER layers, while the number of
stacked layers depends on the level of entity nesting.
It can recognize entities sequentially from inner to
outer. However, their method inevitably suffers
from the error propagation since the outer entity de-
tection overly depends on whether the inner entity
is correctly recognized or not. Zheng et al. (2019)
propose a boundary-aware neural model that lever-
ages entity boundaries to predict entity categorical
labels. Their method modifies the BIEO (i.e., Be-
ginning, Internal, End and Other) hypothesis for
detecting the boundary of nested entity.

More recently, Lu and Roth (2015) present a
novel hypergraph-based method with linear time
complexity to tackle the problem of nested entity
mention detection. One issue in their approach is
the spurious structures of the hypergraph. Wang
and Lu (2018) improve the method of Lu and
Roth (2015) by modeling arbitrary combinations of
mentions with a segmental hypergraph. However,
such an architecture leads to a higher time com-
plexity during both training and decoding. Katiyar
and Cardie (2018) propose a hypergraph-based rep-
resentation based on the BILOU tagging scheme.
They treat the hypergraph construction procedure
as a multi-label assignment process.

5 Conclusions

In this paper, we propose a novel neural model HIT
for recognizing nested named entity. It leverages
the head-tail pair and token interaction to express
the entities with the nested structure. Specifically,
the head-tail detector can detect the head-tail pair
of named entities. Furthermore, the token interac-
tion tagger captures the internal token connection
within the boundary. Experiments on three public
datasets show that our model achieves significant
improvements over the state-of-the-art models. For
future work, we will apply HIT to other languages,
and further explore potential cases of overlapping
entities in nested NER task.
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