XGLUE: A New Benchmark Dataset
for Cross-lingual Pre-training, Understanding and Generation

Yaobo Liang, D}XINan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming Gong, Linjun Shou,
Daxin Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang, Rahul Agrawal, Edward Cui, Sining Wei, Taroon Bharti,
Ying Qiao, Jiun-Hung Chen, Winnie Wu, Shuguang Liu, Fan Yang, Daniel Campos, Rangan Majumder, Ming Zhou

{yalia,nanduan,yegong,t-niwu,v-fengu,v-weqi,migon,lisho,djiang,gucao,xiafan,bzhang,rahul.agrawal ,edwac,
sinwei,tbharti,yiqia,jiuche,winniew,shuguanl,fanyang,Campos.Daniel, ranganm,mingzhou } @ microsoft.com

Abstract

In this paper, we introduce XGLUE, a new
benchmark dataset that can be used to train
large-scale cross-lingual pre-trained models
using multilingual and bilingual corpora and
evaluate their performance across a diverse set
of cross-lingual tasks. Comparing to GLUE
(Wang et al., 2019), which is labeled in En-
glish for natural language understanding tasks
only, XGLUE has two main advantages: (1)
it provides 11 diversified tasks that cover both
natural language understanding and generation
scenarios; (2) for each task, it provides labeled
data in multiple languages. We extend a re-
cent cross-lingual pre-trained model Unicoder
(Huang et al., 2019) to cover both understand-
ing and generation tasks, which is evaluated on
XGLUE as a strong baseline. We also evalu-
ate the base versions (12-layer) of Multilingual
BERT, XLLM and XLM-R for comparison. '

1 Introduction

Pre-training + Fine-tuning has become a new NLP
paradigm, where the general knowledge are firstly
learnt from large-scale corpus by self-supervised
learning and then transferred to downstream tasks
by task-specific fine-tuning. Three different types
of pre-trained models are explored recently, includ-
ing monolingual pre-trained models (Radford et al.,
2018; Devlin et al., 2019; Liu et al., 2019; Yang
etal.,2019b; Dong et al., 2019; Lewis et al., 2019a),
multilingual and cross-lingual pre-trained models
(Devlin et al., 2019; Conneau and Lample, 2019;
Huang et al., 2019; Conneau et al., 2019) and mul-
timodal pre-trained models (Lu et al., 2019; Li
et al., 2020; Chen et al., 2019; Zhou et al., 2020).
In this paper, we focus on the cross-lingual pre-
trained models, due to their importance to alle-
viating the low-resource issue among languages,

The dataset is available at https://microsoft.

github.io/XGLUE/, The code and model is available at
https://github.com/microsoft/Unicoder

where an NLP task often has rich training data in
one language (such as English) but has few or no
training data in other languages (such as French
and German). In order to further advance the de-
velopment of cross-lingual pre-trained models for
various downstream tasks in different languages,
this paper introduces XGLUE, a new benchmark
dataset that can be used to: (i) train large-scale
cross-lingual pre-trained models using multilingual
and bilingual corpora, (ii) evaluate generalization
capabilities of the cross-lingual pre-trained models
across a diverse set of cross-lingual tasks.

The contribution of XGLUE is two-fold. First,
it provides 11 diversified cross-lingual tasks cov-
ering both understanding and generation scenarios.
XTREME (Hu et al., 2020) is a concurrent work
of XGLUE. But it includes cross-lingual under-
standing tasks only. Besides, XGLUE introduces 6
new tasks selected from Search, Ads and News sce-
narios,which makes XGLUE have more practical
values. Second, an extended version of Unicoder
(Huang et al., 2019) is described and evaluated as
a strong cross-lingual pre-trained model baseline
on XGLUE for both understanding and generation
tasks. We also evaluate the base versions (12-layer)
of Multilingual BERT (Devlin et al., 2019), XLM
(Conneau and Lample, 2019) and XLM-R (Con-
neau et al., 2019) for comparison.

2 XGLUE Benchmark

2.1 Pre-training Corpus

We collect two corpora, Small Corpus and Large
Corpus, with different sizes for cross-lingual pre-
training. Table 1 lists the data statistics.

2.1.1 Small Corpus (SC)

Multilingual Corpus We extract raw sentences
from Wikipedia using WikiExtractor. It leads to a
101G multilingual corpus covering 100 languages.
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Type # of Languages Size

. _ Multilingual 100 101G

Small Corpus — “pirinoval 27 146G
Laree Corbus Multilingual 100 2,500G+101G

ge Lorp Bilingual 27 146G

Table 1: The statistics of two pre-training corpora.

Bilingual Corpus We use an in-house pipeline
to extract bilingual sentence pairs from the Web,
which leads to a 146G bilingual corpus covering 27
languages, including Arabic, Bulgarian, Danish,
German, Greek, English, Spanish, Finnish, French,
Hebrew, Hindi, Hungarian, Indonesian, Italian,
Japanese, Korean, Dutch, Polish, Portuguese, Rus-
sian, Swedish, Swahili, Thai, Turkish, Urdu, Viet-
namese and Chinese. All the bilingual pairs are
English to another language.

2.1.2 Large Corpus (LC)

Multilingual Corpus Following Wenzek et al.
(2019), we construct a clean version of Common
Crawl (CC)? as the multilingual corpus. First,
we use a language identification model trained
based on Wikipedia to classify the language of
each page in CC. Then, we train a language model
for each language using the corresponding part of
the Wikipedia corpus, and use it to filter documents
as Wenzek et al. (2019) did. We use one CC dump
for English and twelve CC dumps for other lan-
guages. It leads to a 2,500G multilingual corpus
covering 89 languages. We also include the 101G
multilingual corpus described in Section 2.1.1.

Bilingual Corpus We reuse the bilingual corpus
described in Section 2.1.1. We will add CCMatrix
(Schwenk et al., 2019) in the future.

2.2 Downstream Tasks

We select 11 cross-lingual tasks in XGLUE, which
are categorized into 3 groups: single-input under-
standing tasks, pair-input understanding tasks, and
generation tasks. For each task, training set is only
available in English. In order to obtain a good per-
formance on XGLUE, a model should be able to
learn how to do a task well using its English train-
ing set, and then transfer this ability to test sets in
other languages. Table 2 gives the dataset statistics
and Table 3 lists languages covered by all tasks.

*https://commoncrawl.org/.

2.2.1 Single-input Understanding Tasks

NER We select a subset of the following two
NER tasks, CoNLL-2002 NER (Sang, 2002) and
CoNLL-2003 NER (Sang and De Meulder, 2003),
to form this cross-lingual NER dataset. It covers
4 languages, including English, German, Spanish
and Dutch, and 4 types of named entities, including
Person, Location, Organization and Miscellaneous
entities that do not belong to the previous three
types. F1 score is used as the metric.

POS Tagging (POS) Following (Kim et al,
2017), we select a subset of Universal Dependen-
cies (UD) Treebanks (v2.5) (Zeman et al., 2019),
which covers 18 languages. Accuracy (ACC) of
the predicted POS tags is used as the metric.

News Classification (NC) This task aims to pre-
dict the category given a news article. It covers
5 languages, including English, Spanish, French,
German and Russian. Each labeled instance is a
3-tuple: <news title, news body, category>. The
category number is 10. We crawl this dataset from
Microsoft News (MSN). Accuracy (ACC) of the
multi-class classification is used as the metric.

2.2.2 Pair-input Understanding Tasks

MLQA The MLQA (Lewis et al., 2019b) is a
multilingual machine reading comprehension task,
which contains QA annotations labeled in 7 lan-
guages, including English, Arabic, German, Span-
ish, Hindi, Viethamese and Chinese. F1 score of
the predicted answers is used as the metric.

XNLI We reuse the original XNLI dataset (Con-
neau et al., 2018) in XGLUE.

PAWS-X The PAWS-X (Yang et al., 2019a) is
a paraphrase identification dataset, which extends
the Wikipedia portion of the PAWS (Zhang et al.,
2019) evaluation to more languages. We select 4
languages, including English, Spanish, French and
German, from the original dataset and use them in
XGLUE. Accuracy (ACC) of the binary classifica-
tion is used as the metric.

Query-Ad Matching (QADSM) This task aims
to predict whether an advertisement (ad) is relevant
to an input query. It covers 3 languages, includ-
ing English, French and German. Each labeled
instance is a 4-tuple: <query, ad title, ad descrip-
tion, label>. The label indicates whether the ad is
relevant to the query (Good), or not (Bad). We con-
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Task # of Languages  |Train|*"  |Dev|*"Y  |Test|*’Y  Metric Data Source
NER 4 15.0K 2.8K 3.4K F1 ECI Multilingual Text Corpus
POS 18 25.4K 1.0K 0.9K ACC UD Tree-banks (v2.5)
NC* 5 100K 10K 10K ACC MSN

MLQA 7 87.6K 0.6K 5.7K F1 Wikipedia
XNLI 15 433K 2.5K 5K ACC MultiNLI Corpus
PAWS-X 4 49.4K 2K 2K ACC Wikipedia
QADSM* 3 100K 10K 10K ACC Bing

WPR* 7 100K 10K 10K nDCG Bing

QAM* 3 100K 10K 10K ACC Bing

QG~* 6 100K 10K 10K BLEU-4 Bing

NTG* 5 300K 10K 10K BLEU-4 MSN

Table 2: 11 downstream tasks in XGLUE. For each task, training set is only available in English. |Train|*" denotes
the number of labeled instances in the training set. |Dev|**9 and |Test|*"Y denote the average numbers of labeled
instances in the dev sets and test sets, respectively. * denotes the corresponding dataset is constructed by this paper.
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Table 3: The 19 languages covered by the 11 downstream tasks: Arabic (ar), Bulgarian (bg), German (de), Greek
(el), English (en), Spanish (es), French (fr), Hindi (hi), Italian (it), Dutch (nl), Polish (pl), Portuguese (pt), Russian
(ru), Swahili (sw), Thai (th), Turkish (tr), Urdu (ur), Vietnamese (vi), and Chinese (zh). All these 6 new tasks with
are labeled by human, except es, it and pt datasets in QG (80+% accuracy) are obtained by an in-house QA ranker.

struct this dataset based on Bing. Accuracy (ACC)
of the binary classification is used as the metric.

Web Page Ranking (WPR) This task aims to
predict whether a web page is relevant to an input
query. It covers 7 languages, including English,
German, French, Spanish, Italian, Portuguese
and Chinese. Each labeled instance is a 4-tuple:
<query, web page title, web page snippet, label>.
The relevance label contains 5 ratings: Perfect (4),
Excellent (3), Good (2), Fair (1) and Bad (0). We
construct this dataset based on Bing. Normalize
Discounted Cumulative Gain (nDCG) is used as
the metric.

QA Matching (QAM) This task aims to predict

whether a <question, passage> pair is a QA pair.

It covers 3 languages, including English, French
and German. Each labeled instance is a 3-tuple:
<question, passage, label>. The label indicates
whether the passage is the answer of the question

(1), or not (0). We construct this dataset based on
Bing. Accuracy (ACC) of the binary classification
is used as the metric.

2.2.3 Generation Tasks

Question Generation (QG) This task aims to
generate a question for a given passage. We collect
<passage, question> pairs from Bing. It covers
6 languages, including English, French, German,
Spanish, Italian and Portuguese. BLEU-4 score is
used as the metric.

News Title Generation (NTG) This task aims
to generate a proper title for a given news body.
We collect <news body, news title> pairs from Mi-
crosoft News (MSN). It covers 5 languages, includ-
ing German, English, French, Spanish and Russian.
BLEU-4 score is used as the metric.
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3 Pre-train Unicoder for Cross-lingual
Understanding Tasks

We select Unicoder (Huang et al., 2019) as the
backbone model. Section 3 introduces a simplified
version of Unicoder using two pre-training tasks
(MLN and TLM) for cross-lingual understanding
tasks. Section 4 describes how to extend Unicoder
to cover cross-lingual generation tasks.

The original Unicoder (Huang et al., 2019) in-
cludes more pre-training tasks besides MLLM and
TLM. But to keep the baseline pre-trained model
simple and to reduce the experimental cost, we just
use MLM and TLM in this paper. It means for
understanding tasks, Unicoder is almost equal to
XLM, except some hyper-parameter differences.

3.1 Masked Language Model (MLM)

Following Devlin et al. (2019), this task extends
the masked language model task to multiple lan-
guages. At each iteration, a batch is composed of
sentences sampled from different languages. The
sampling probability of a language /; is defined as
i, = pit/ >y, pft, where py, is the percentage of
the language [; in the entire corpus, the smoothing
factor « is set to 0.3. For each batch, we randomly
sample 15% of the words and replace them with
(i) a special symbol [MASK], (ii) a random token
or (iii) keep them unchanged with probability 80%,
10% and 10%, respectively. For each token, we
only use its token embedding and position embed-
ding, and discard segment embedding and language
embedding.

3.2 Translation Language Model (TLM)

Following Conneau and Lample (2019), this task
extends the MLM task to bilingual corpus. Given
a bilingual sentence pair, TLM first concatenates
them into a single sentence, and then masks words
using the same strategy of MLM. The pre-trained
model learns to recover each masked word based on
the bilingual context. We follow MLM to sample
language pairs in each batch with ao = 0.3.

4 Pre-train Unicoder for Cross-lingual
Generation Tasks

The encoder-decoder architecture is employed to
extend Unicoder to generation tasks, where the
BPE embeddings are shared between encoder and
decoder. Two separate generative tasks are pro-
posed for Unicoder pre-training: Multilingual De-

noising Auto-Encoding (xDAE) and Multilingual
Future N-gram Prediction (xFNP).

4.1 Multilingual Denoising Auto-Encoding
(xDAE)

Motivated by BART (Lewis et al., 2019a),
xDAE aims to predict the original text X =
(z1, 22, ... xm) € 1; from a language [; based on
its corrupted form c¢(X ), where ¢(X) is a noising
function that corrupts an input text X as its output.

Four different text noising strategies for ¢(-) are
explored in this paper. (1) Shuffle the input text X
by adding a noise « ~ U(0, 3) to the input indices
and then re-ordering X based on the rank of the
noised indices. (2) Drop words with a probability
of 0.1. (3) Replace 10% of the input words in X
with the [MASK] symbol. (4) Sample a number
of token spans from X with span lengths drawn
from a Poisson distribution (A = 3), and then re-
place each token span with a single [MASK] token.
Here, 0-length spans correspond to the insertion
of [MASK] tokens. Based on the performance of
different noising strategies (Table 10), we select (4)
and use it in pre-training. We leave finding better
text noising strategies for future work.

We train Unicoder using this task by maximizing
the following loss function £, pAg:

|X|

Lopap =Y Y Y logp(ailre,c(X))

liel Xel; t=1

where L. = [q,...,ly denotes N languages, X is
an instance in the i'? language I;, p(x¢|z <y, ¢(X))
denotes the probability of generating a single token
x; at time step ¢ given ¢(X) and z.

4.2 Multilingual Future N-gram Prediction
(xFNP)

Motivated by ProphetNet (Yan et al., 2020), xFNP
introduces a future n-gram prediction mechanism
to natural language generation. It encourages the
model to plan for the future tokens explicitly and
prevents over-fitting on strong local correlations.

Given an input text X = (z1,%2,...,7|x|) € l;
from a language l;, we randomly mask % token
spans of X to generate the masked text X " as the
input, and concatenate all masked token spans into
Y as the output. Details of this mask strategy are
described in Section 6.1. After this, XFNP first
encodes X to H,,. with the encoder:

Hepe = Encoder(X/)
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Then, instead of predicting the next token only at
each time step, XFNP generates n future tokens
simultaneously at time step ¢ with the decoder:

PWely<t, X, oo PWran—1ly<t, X)
= Decoder(y<t, Henc)

/

Following Yan et al. (2020), we set n = 2.
We train Unicoder using this task by maximizing
the following loss function L, rxp:

Y|
Lopnp =Y Y {oo- > logp(yily<e, X)
LEL Xel; =1
[Y]-1

+ay - Z log p(ye+1|y<e, X ')}
=1

where X and Y are generated from X based on
the method mentioned above. Following Yan et al.
(2020), we set g = a1 = 1.

S Experiments

5.1 Data Labeling

For tasks QADSM, WPR, QAM and QG, we label
the data on an Microsoft internal crowdsourcing
platform. Each labeler must learn the guideline and
pass the labeling test. Each sample is labeled by
three labeler. We only keep the samples with two
or three labeler have same label.

For tasks NC and NTG, we directly use the cate-
gory label on MSN website. All the category label
on MSN is review by human.

5.2 Experimental Settings

Understanding Tasks The hyper-parameters are
set as follows: 768 hidden units, 12 heads, GELU
activation, a dropout rate of 0.1, 512 max input
length, 12 layers in encoder.

In the pre-training stage, we first initialize
Unicoder;,~ with XLM-Rp.s. (Conneau et al.,
2019), and then run continue pre-training with the
accumulated 8,192 batch size with gradients accu-
mulation. We use Adam Optimizer with a linear
warm-up and set the learning rate to 3e-5. We select
different understanding tasks randomly in different
batches. This costed 12 days on 16 V100.

In the fine-tuning stage, the batch size is set to
32. We use Adam Optimizer (Kingma and Ba,
2014) with warm-up and set the learning rate to
Se-6. For all sentence classification tasks, we fine-
tune 10 epochs. For POS Tagging and NER, we

fine-tune 20 epochs. And for POS Tagging, we set
the learning rate to 2e-5. For MLQA, we set the
learning rate to 3e-5, batch size to 12 and train 2
epochs following BERT for SQuAD. After each
epoch, we test the fine-tuned model on the dev sets
of all languages. We select the model with the best
average result on the dev sets of all languages.

Generation Tasks We evaluate Unicoders24%
and UnicoderggN P as two separate models.

For UnicoderggAE , the hyper-parameters are set
as follows: 768 hidden units, 12 heads, GELU
activation, a dropout rate of 0.1, 512 max input
length, 12 layers in encoder, 12 layers in decoder.

In the pre-training stage, we first initialize en-
coder and decoder with XLLM-R, and then run con-
tinue pre-training with 1,024 batch size. We use
Adam optimizer with warm-up and set the learning
rate to 2e-4. This costed 10 days on 16 V100.

In the fine-tuning stage, the batch size is 1024.
We use Adam Optimizer with learning rate le-5
and warm-up steps 2000.

For UnicoderggN P the hyper-parameters are set
as follows: 1,024 hidden size, 12 layers in encoder,
12 layers in decoder, 512 max input length.

In the pre-training stage, we pre-train the model
from scratch and follow ProphetNet (Yan et al.,
2020) to randomly mask a continuous span (with a
fixed length 9) in every 64 tokens. About 15% of
the tokens in original sequence are masked in this
step. We use a special symbol [MASK] to replace
80% of the masked tokens, keep 10% unchanged,
and random replace 10% of the masked tokens. We
set the batch size to 1,024, training steps to 350,000.
The learning rate is set to le-4. We set the number
of future tokens n to 2.

In the fine-tuning stage, we use Adam Optimizer
and set the learning rate to 1e-4. We set the batch

size to 64 and the warm-up steps to 1,000.

5.3 Main Result

7 cross-lingual pre-trained models are evaluated
on XGLUE and compared in Table 4: 12-layer M-
BERT (Devlin et al., 2019) trained on Wikipedia
corpus for 102 languages, 12-layer XLM (Con-
neau and Lample, 2019) trained on Wikipedia
and bilingual corpora for 15 languages, 12-layer
XLM-Rpyse (Conneau et al., 2019) trained on Com-
mon Crawl corpus for 100 languages, 12-layer
Unicodergc trained on small corpus for 100 lan-
guages, 12-layer Unicoderz ¢ trained on large cor-
pus for 100 languages, 12-layer UnicoderggAE and
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Task Model ar bg de el en es fr hi it nl pl pt ru SW th tr ur vi zh  AVG

M-BERT - - 692 - 906 754 - - - 779 - - - - - - - - - 782
NER XLM-Ryqse - - 704 - 909 752 - - - 795 - - - - - - - - - 790
Unicoderr.c - - 718 - 9Ll 744 - - - 8l6 - - - - - - - - - 797

M-BERT 524 850 887 81.5 956 868 876 584 913 880 818 883 788 - 433 692 538 543 583 747
POS XLM-Rpqse 673 88.8 922 882 962 89.0 899 745 926 885 854 897 8.9 - 579 727 621 552 604 798
Unicoder,c  68.6 885 920 883 961 89.1 894 699 925 889 836 898 8.7 - 5.6 750 598 563 602 79.6

M-BERT - - 826 - 922 816 780 - - - - - 790 - - - - - - 82.7
NC XLM-Rypqse - - 845 - 918 832 782 - - - - - 794 - - - - - - 83.4
Unicoder ¢ - - 842 - 917 835 785 - - - - - 797 - - - - - - 835

M-BERT 509 - 638 - 805 671 - 479 - - - - - - - - - 595 554 607

MLQA XLM-Rpose 564 - 621 - 801 679 - 605 - - - - - - - - - 671 614 65.1
Unicoder,c 578 - 627 - 806 686 - 627 - - - - - - - - - 675 621 660

M-BERT 649 689 71.1 664 8.1 743 738 600 - - - - 690 504 558 616 580 695 693 66.3

XLM¢ 731 774 718 766 850 789 787 69.6 - - - - 753 684 732 725 673 761 765 5.1

XNLI XLM-Rpase 721 775 770 759 846 792 782 698 - - - - 755 647 716 729 651 748 737 742
Unicodersc ~ 68.5 732 71.6 71.6 829 750 747 660 - - - - 706 641 670 687 625 712 697 70.5
Unicoderrc ~ 73.9 785 782 773 854 798 792 701 - - - - 767 674 718 738 663 759 747 7153

M-BERT - - 829 - 940 859 860 - - - - - - - - - - - - 87.2

PAWS-X  XLM-Ryqse - - 869 - 944 880 887 - - - - - - - - - - - - 89.5
Unicoder ¢ - - 874 - 949 888 893 - - - - - - - - - - - - 901

M-BERT - - 60.3 - 63.3 - 64.1 - - - - - - - - - - - - 64.2
QADSM  XLM-Rpse - - 658 - 717 - 683 - - - - - - - - - - - - 686
Unicoder ¢ - - 646 - 718 - 687 - - - - - - - - - - - - 684

M-BERT - - 766 - 781 753 742 - 701 - - 766 - - - - - - 645 735

WPR XLM-Ryqse - - 716 - 782 760 744 - 707 - - 713 - - - - - - 639 738
Unicoderr.c - - 772 - 784 757 749 - 703 - - 774 - - - - - - 644 739

M-BERT - - 64.7 - 67.5 - 66.0 - - - - - - - - - - - - 66.1
QAM XLM-Rpase - - 681 - 693 - 678 - - - - - - - - - - - - 684
Unicoderc - - 68.4 - 69.9 - 68.4 - - - - - - - - - - - - 68.9
M-BERT 72.6

AVG} XLM-Rpase 75.8
Unicoderr,¢ 76.2

M-BERT B B 0.1 B 78 01 01 B 0.2 B E 0.1 B B E B B B E 14

QG XLM-Ryase - - 0.1 - 60 00 00 - 0.1 - - 0.0 - - - - - - - 1.0
Unicoder%24% - - 3.0 - 140 124 42 - 158 - - 8.3 - - - - - - - 9.6
Unicoderf5NP - - 3.7 - 139 148 49 - 170 - - 9.5 - - - - - - - 10.6

M-BERT - - 0.7 - 9.0 04 04 - - - - - 0.0 - - - - - - 2.1

NIG XLM-Rypqse - - 0.6 - 81 04 03 - - - - - 0.0 - - - - - - 1.9
Unicoder524% - - 6.8 - 156 90 87 - - - - - 7.7 - - - - - - 9.6
UnicoderZEN " - - 7.5 - 158 119 99 - - - - - 8.4 - - - - - - 10.7

M-BERT 18

2 XLM-Rypqse 1.5
AVGg Unicoder§24¥ 9.6
Unicoder%2N P 10.7

Table 4: The overall evaluation results on XGLUE. We use M-BERT (Devlin et al., 2019), XLLM (Conneau and
Lample, 2019) and XLM-Rp,s. (Conneau et al., 2019) as baselines. Unicodergc and Unicodery, ¢ are pre-trained
using small corpus and large corpus, respectively. Unicoder%24¥ and UnicoderZEN T are pre-trained by xDAE
and xFNP for 100 languages, respectively. For the results of M-BERT/XLM-R on generation tasks, we initialize
the encoder-decoder model with M-BERT/XLM-R and fine-tune it on each downstream task without pre-training.
All models are (12-layer) based ones. Given a task, each pre-trained model is fine-tuned using its English training
set only, and then applied to all test sets in different languages. AVG? and AVGZ denote the average score of the

average scores on 9 understanding tasks and 2 generation tasks, respectively.

Pivot  en fr es de el bg ru tr ar vi th zh hi SW ur  AVG

en 854 792 798 782 773 785 767 738 739 759 71.8 747 70.1 674 663 753
fr 840 799 803 788 774 792 770 73.6 737 767 727 753 73.0 674 683 758
es 845 802 812 797 782 792 716 745 748 770 728 762 732 677 69.6 764
de 835 791 801 802 779 786 770 749 746 761 733 762 731 677 689 76.1
el 838 801 810 786 796 793 770 742 749 771 735 759 727 69.1 69.1 764
bg 835 796 804 791 779 805 779 749 739 765 739 756 728 68.6 689 763
ru 84.1 799 799 788 715 799 781 739 745 771 738 757 731 685 69.0 762
tr 833 784 796 784 715 792 715 771 742 771 745 765 737 693 703 764
ar 832 789 1795 716 714 7186 710 754 768 768 740 760 730 695 693 762
vi 832 786 791 717 76.6 789 715 753 747 785 735 768 731 678 69.0 76.0
th 825 785 791 778 711 783 767 750 743 769 764 762 729 684 69.7 760
zh 81.6 782 779 1711 760 779 762 737 737 758 736 766 717 674 683 751
hi 81.8 785 792 767 712 782 762 745 739 764 717 752 73.8 682 685 753
swW 820 776 788 772 765 717 762 744 743 763 740 752 722 714 695 75.6
ur 767 725 741 726 721 739 727 697 697 728 70.1 724 69.0 660 675 715

Table 5: Impacts of different pivot languages on XNLI. Given each pivot language, the corresponding fine-tuned
XNLI results on all languages are listed in the same row. Each bolded number is the best result in that column.
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Pivot en es fr de ru AVG
en 15.6/15.8  9.0/11.9 8.7/9.9 6.8/7.5 7.7/8.4 9.6/10.7
es 7.8/8.8 17.1/171  10.6/10.9 7.6/8.0 8.0/8.6 10.2/10.7
fr 8.2/8.7 11.4/12.5  19.4/20.9 8.3/8.2 7.6/7.8 11.0/11.6
de 8.2/8.6 9.9/11.2 9.5/10.2  14.1/13.7 8.4/8.0 10.0/10.3
ru 6.9/7.4 9.3/10.8 8.8/9.9 6.9/7.0 16.6/16.7  9.7/10.4

Table 6: Impacts of different pivot languages on NTG.

Unicoder424F /UnicoderZEN Y evaluated by BLEU-4.

12-layer UnicoderglgN P trained on Wikipedia cor-

pus for 100 languages. Given a downstream task,
each pre-trained model is fine-tuned using its En-
glish training set and then applied to all test sets
in different languages. Note that, all results are
reproduced by this paper, except the XLM7 results
on XNLI are from Conneau and Lample (2019).

We find (1) Unicoderyc performs slightly bet-
ter than M-BERT and XLM-Rs. on the 9 under-
standing tasks, as it is pre-trained based on multi-
lingual and bilingual corpora at the same time and
uses TLM; (2) Unicoderc performs better than
Unicodergc, as it is pre-trained based on the larger
corpus; (3) UnicoderggAE and UnicoderggN P
show good cross-lingual transfer capabilities and
perform significantly better than M-BERT and
XLM-Rpyse On the 2 generation tasks. It proves
the importance of introducing generation tasks
into pre-training for cross-lingual text generation;
4) Unicoder"g]gN P performs slightly better than
UnicoderfggAE . But it is not a fair comparison,
because they use different text denoising tasks (sen-
tence prediction vs. span prediction) and different
generation mechanisms (single-token prediction vs.
multi-token prediction). We leave combining these
two tasks for future work.

5.4 Ablation Study
5.4.1 Pivot-language Fine-tuning

We define pivot-language (pl) fine-tuning as fine-
tune a pre-trained model for a downstream task
using its labeled data in a pivot language (e.g. En-
glish) and then apply the fine-tuned model to all
languages. Table 4 chooses English as the pivot lan-
guage, as all tasks in XGLUE have labeled data in
English. But is English always the optimal choice?
Will the results become better, if we do fine-tuning
using other pivot languages?

To answer these questions, we evaluate Unicoder
on XNLI and NTG using different pivot languages
in fine-tuning and list comparison results in Table
5 and Table 6, respectively. (1) For each test set in
language /; in Table 5 and Table 6, its best result is

often achieved when the model is fine-tuned using
l; as the pivot language; (2) For XNLI in Table 5,
the best pivot languages are Spanish (es), Greek (el)
and Turkish (tr), rather than English (en). For NTG
in Table 6, the best pivot language is French (fr) for
both UnicoderggAE and UnicoderggN P It means
the average quality of a cross-lingual pre-trained
model could be further improved on a downstream
task, by selecting a specific pivot language in fine-
tuning.

5.4.2 Multi-language Fine-tuning

We define multi-language (m!) fine-tuning as fine-
tune a pre-trained model for a downstream task
using all its available labeled data in different lan-
guages. We evaluate Unicoder on XNLI and NTG
using this fine-tuning method and list evaluation
results in Table 7 and Table 8, respectively.

We find multi-language fine-tuning can achieve
better results than pivot-language fine-tuning on
both XNLI and NTG. It means the average qual-
ity of a cross-lingual pre-trained model could be
significantly improved on a downstream task, by
using combined labeled data in multiple languages.

5.4.3 Multi-task Fine-tuning

We define multi-task (mr) fine-tuning as fine-tune
a pre-trained model for multiple downstream tasks
using their combined labeled data. To reduce the
experimental cost, we evaluate Unicoder on 5 un-
derstanding tasks: XNLI, PAWS-X, NC, QAM and
QADSM, using their merged English labeled data
in fine-tuning. Results are listed in Table 9.

We find PAWS-X and QADSM can benefit from
the joint fine-tuning strategy, but XNLI, NC and
QAM cannot. We leave discovering relationships
between different tasks for better downstream task
fine-tuning for future work.

5.4.4 TImpacts of Text Noising Strategies

We investigate the impacts of different text noising
strategies (Section 4.1) in Unicoder‘ggAE , and list
comparison results in Table 10, where (1)+(2)+(3)
denotes the result of using the first three strate-
gies in pre-training, (4) denotes the result of using
the last strategy in pre-training, (1)+(2)+(3)+(4)
denotes the result of using all strategies in pre-
training. To reduce experiment cost, we set max
sequence length to 256 and only train 60K steps.
We find that (4) can achieve the best average result
on NTG. So all results of UnicoderfggAE reported

in this paper is pre-trained using (4) only.
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en fr es de el bg ru tr ar vi th zh hi SW ur  AVG
XLM-Rpase (pl) 846 782 792 770 759 715 755 729 721 748 71.6 737 698 647 651 742
XLM-Rpase (ml) 857 815 825 812 797 81.7 80.0 790 771 80.1 779 792 765 730 713 79.1
Unicoderrc (pl) 854 792 798 782 773 785 767 738 739 759 718 747 70.1 674 663 753
Unicoderrc (ml) 858 81.9 823 815 808 8.0 799 787 781 802 784 793 762 732 724 794

Table 7: Impact of multi-language fine-tuning on XNLI. pl and m! denote pivot-language fine-tuning (English as

pivot) and multi-language fine-tuning, respectively.

Model en es fr de ru  AVG Text Noising Strategy ~ en es fr de ru AVG
Unicoder{24% (pl) 156 90 87 68 77 96 (DH+(2)+(3) 146 85 74 60 74 88
Unicoder{24¥ (ml) 185 183 282 155 334 228 4) 148 87 175 67 82 92
Unicoderf2NP (pl) 158 119 99 75 84 107 WO+ 152 79 73 62 77 89
Unicoder(ENP (ml) 156 171 191 139 158 163

Table 8: Impact of multi-language fine-tuning on NTG.
pl and ml denote pivot-language fine-tuning (English
as pivot) and multi-language fine-tuning, respectively.
BLUE-4 is the metric.

Model XNLI PAWS-X NC QAM QADSM AVG
Unicoderzc (pl) 75.3 90.1 835 689 68.4 77.2
Unicoderrc (mt)  74.4 90.2 834  68.7 69.0 77.1

Table 9: Impacts of multi-task fine-tuning on XNLI,
PAWS-X, NC, QAM and QADSM. pl and mt denote
pivot-language fine-tuning (English as pivot) on each
task and multi-task fine-tuning, respectively.

We also compare Unicoder‘glC)AE with XNLG

(Chi et al., 2019) on the Abstractive Summariza-
tion task. For fairly comparison, we implement
xDAE in same code base and use same pre-training
languages as XNLG. The zero-shot comparison re-
sults are listed in Table 11. We can see that by using
xDAE only in pre-training, UnicoderggAE can out-
perform XNLG significantly, which is pre-trained
using 4 tasks including MLM, DAE, XMLM and
XAE. It verifies the effectiveness of the fourth text
noising strategy described in Section 4.1 for gener-
ation tasks.

6 Related Work

Dataset GLUE (Wang et al., 2019) includes 9
natural language understanding tasks that are la-
beled in English only. Comparing to GLUE,
XGLUE not only expands task annotations to mul-
tiple languages, but also includes natural language
generation tasks. XNLI (Conneau et al., 2018),
NER (Sang, 2002; Sang and De Meulder, 2003),
POS Tagging (Kim et al., 2017), MLQA (Lewis
et al., 2019b) and PAWS-X (Yang et al., 2019a)
are 5 multilingual datasets built for specific tasks.

Table 10: Impact of different text noising strategies
on NTG using pivot-language fine-tuning (English as
pivot). BLUE-4 is the metric.

Model fr zh AVG
XNLG (Chietal.,2019) 363 389 37.6
UnicodergZ4F 379 422 401

Table 11: The zero-shot results on Abstractive Sum-
marization. Unicoderf24F and XNLG are fine-tuned
using English labeled data. ROUGE-L is the metric.

XGLUE not only includes these 5 existing tasks,
but also introduces 6 new tasks selected from
real-world scenarios (i.e., Search, Ads and News).
This makes XGLUE have more practical values.
XTREME (Hu et al., 2020) is a concurrent work of
XGLUE. Comparing to it, XGLUE includes both
understanding and generation tasks, which, to the
best of our knowledge, is the first attempt in the
cross-lingual dataset construction efforts.

Cross-lingual Pre-trained Model Multilingual
BERT (M-BERT) (Devlin et al., 2019) performs
pre-training based on the multilingual corpus with
the masked language model task. By sharing the
model parameters and the vocabulary for all lan-
guages, M-BERT can obtain the cross-lingual ca-
pability over 102 languages. XLLM (Conneau and
Lample, 2019) performs cross-lingual pre-training
based on multilingual corpus and bilingual cor-
pus, by introducing the translation language model
task into pre-training. Based on XIL.M, Unicoder
(Huang et al., 2019) uses more cross-lingual pre-
training tasks and achieves better results on XNLI.
XLM-R (Conneau et al., 2019) is a RoBERTa (Liu
etal., 2019)-version XLM without using translation
language model in pre-training. It is trained based
on a much larger multilingual corpus (i.e. Com-
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mon Crawl) and become the new state-of-the-art
on XNLI. In this paper, we use both the Common
Crawl corpus and the bilingual corpus, aiming to
build a stronger baseline model on XGLUE. BART
(Lewis et al., 2019a) and ProphetNet (Yan et al.,
2020) are two latest generative pre-trained models.
We borrow ideas from these two works and extend
Unicoder to cross-lingual generation tasks, which
goes a step further to verify and explore different
text generation approaches in the cross-lingual sce-
nario.

7 Conclusion

We present XGLUE as a new cross-lingual bench-
mark and conduct comprehensive evaluations with
interesting findings observed. We thank STC-A
NLP, Bing Answers, Bing Ads, Bing Relevance
and Microsoft News for providing the datasets.
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A The fine-tune parameters of Unicoder
on XGLUE.

Task batch size  epoch number learning rate
NER 32 20 Se-6
POS 32 20 Se-6
NC 32 10 Se-6
MLQA 12 2 3e-5
XNLI 32 10 Se-6
PAWS-X 32 10 Se-6
QADSM 32 10 Se-6
WPR 32 10 Se-6
QAM 32 10 Se-6

Table 12: The fine-tune parameters of understanding
tasks.

Task Model batch size learning rate ~ warm up steps
QG Unicoders24¥ 64 le-4 1000
NTG  UnicoderZ24% 64 le-4 1000
QG UnicoderfeN? 1024 le-5 2000
NTG  Unicoder5N Y 1024 le-5 2000

Table 13: The fine-tune parameters of generation tasks.

6018


http://hdl.handle.net/11234/1-3105

