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Abstract

There is little to no data available to build nat-
ural language processing models for most en-
dangered languages. However, textual data
in these languages often exists in formats that
are not machine-readable, such as paper books
and scanned images. In this work, we address
the task of extracting text from these resources.
We create a benchmark dataset of transcrip-
tions for scanned books in three critically en-
dangered languages and present a systematic
analysis of how general-purpose OCR tools
are not robust to the data-scarce setting of en-
dangered languages. We develop an OCR post-
correction method tailored to ease training in
this data-scarce setting, reducing the recogni-
tion error rate by 34% on average across the
three languages.1

1 Introduction

Natural language processing (NLP) systems exist
for a small fraction of the world’s over 6,000 liv-
ing languages, the primary reason being the lack
of resources required to train and evaluate models.
Technological advances are concentrated on lan-
guages that have readily available data, and most
other languages are left behind (Joshi et al., 2020).
This is particularly notable in the case of endan-
gered languages, i.e., languages that are in danger
of becoming extinct due to dwindling numbers of
native speakers and the younger generations shift-
ing to using other languages. For most endangered
languages, finding any data at all is challenging.

In many cases, natural language text in these
languages does exist. However, it is locked away
in formats that are not machine-readable — pa-
per books, scanned images, and unstructured web
pages. These include books from local publishing

†: Work done at Carnegie Mellon University.
1Code and data are available at https://shrutirij.

github.io/ocr-el/.

(a) Ainu (left) – Japanese (right)

(b) Griko (top) – Italian (bottom)

(c) Yakkha (top) – Nepali (middle) – English (bottom)

(d) Handwritten Shangaji – typed English glosses

Text 31: cashew nuts 
Amina Sharaama explains how to make a sauce of green cashew nuts. Recorded on the 26th of 
April 2007. 
notebooks: p. 1230 
 
31.1 
nxúuzi wa náńtiíkwa 
mu-xuzi o-a nantikwa 
3-sauce 3-Conn 1a.cashew 
A sauce of green cashew nuts. 
31.2 
mí kittóonxipilíkáari nhaáno wírá nxúzí wa náńtiíkwa 
mi ki-ttoo-mu-xipilikari-a mu-hano o-ir-a mu-xuzi o-a nantikwa 
1sg.Subst 1sg-Prog-1-explain-Fi 3-white.woman 15-say-Inf 3-sauce 3-Conn 1a.Cashew 
I am explaining the white woman about a sauce of green cashew nuts. 
31.3 
nańtiíkwa khaaju* khaáju t'íiniyaá nańtiíkwa 
nantikwa khaju khaju khaju ti e-ni-iy-a_yo nantikwa 
1a.cashew 9;cashew 9.cashew Cop 9-Pres-be-Fi_Rel 1a.cashew 
Green cashew nuts are cashew nuts, cashew nuts is what are green cashew nuts. 
31.4 
khajú yáaw'etíile eri étteétthe esikhoomaléeni 
khaju e-awe entile e-ri e-ttetthe e-si-khoomal-eni 
9.cashew 9-Poss.1 9.Demiii 9-be 9-unripe 9-Neg-be.fully.grown-PSit 
these very cashew nuts are unripe, they are not fully grown yet 
31.5 
masí esikhoomaléeni n'eesiyéeni étteétthe 
masi e-si-khoomal-eni na e-si-iy-eni e-ttetthe 
but 9-Neg-be.fully.grown-PSit and 9-Neg-be-PSit 9-unripe 
but they are not fully grown and also not completely unripe 
31.6 
eri ya wíyá nakátthí nakáatthi 
e-ri e-a o-iy-a nakatthi nakatthi 
9-be 9-Conn 15-be-Inf 1a.middle Red 
they are in between 
31.7 
okhóomaál'okhuúno osíkóomaal'okhuúno 
o-khoomal-a okhuno o-si-khoomal-a okhuno 
15-be.fully.grown-Inf here 15-Neg-be.fully.grown-Inf here 
fully grown on the one side and not fully grown on the other side 

Comment [m1]: also: vakátthí vakáatthi 

Figure 1: Examples of scanned documents in endan-
gered languages accompanied by translations from the
same scanned book (a, b, c) or linguistic archive (d).

houses within the communities that speak endan-
gered languages, such as educational or cultural ma-
terials. Additionally, linguists documenting these
languages also create data such as word lists and
interlinear glosses, often in the form of handwrit-
ten notes. Examples from such scanned documents
are shown in Figure 1. Digitizing the textual data
from these sources will not only enable NLP for
endangered languages but also aid linguistic docu-
mentation, preservation, and accessibility efforts.

https://shrutirij.github.io/ocr-el/
https://shrutirij.github.io/ocr-el/
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In this work, we create a benchmark dataset and
propose a suite of methods to extract data from
these resources, focusing on scanned images of
paper books containing endangered language text.
Typically, this sort of digitization requires an opti-
cal character recognition (OCR) system. However,
the large amounts of textual data and transcribed
images needed to train state-of-the-art OCR models
from scratch are unavailable in the endangered lan-
guage setting. Instead, we focus on post-correcting
the output of an off-the-shelf OCR tool that can
handle a variety of scripts. We show that targeted
methods for post-correction can significantly im-
prove performance on endangered languages.

Although OCR post-correction is relatively well-
studied, most existing methods rely on consider-
able resources in the target language, including a
substantial amount of textual data to train a lan-
guage model (Schnober et al., 2016; Dong and
Smith, 2018; Rigaud et al., 2019) or to create syn-
thetic data (Krishna et al., 2018). While readily
available for high-resource languages, these re-
sources are severely limited in endangered lan-
guages, preventing the direct application of existing
post-correction methods in our setting.

As an alternative, we present a method that
compounds on previous models for OCR post-
correction, making three improvements tailored
to the data-scarce setting. First, we use a multi-
source model to incorporate information from the
high-resource translations that commonly appear in
endangered language books. These translations are
usually in the lingua franca of the region (e.g., Fig-
ure 1 (a,b,c)) or the documentary linguist’s primary
language (e.g., Figure 1 (d) from Devos (2019)).
Next, we introduce structural biases to ease learn-
ing from small amounts of data. Finally, we add
pretraining methods to utilize the little unanno-
tated data that exists in endangered languages.

We summarize our main contributions as follows:

• A benchmark dataset for OCR post-correction
on three critically endangered languages: Ainu,
Griko, and Yakkha.

• A systematic analysis of a general-purpose OCR
system, demonstrating that it is not robust to the
data-scarce setting of endangered languages.

• An OCR post-correction method that adapts the
standard neural encoder-decoder framework to
the highly under-resourced endangered language
setting, reducing both the character error rate and

the word error rate by 34% over a state-of-the-art
general-purpose OCR system.

2 Problem Setting

In this section, we first define the task of OCR
post-correction and introduce how we incorporate
translations into the correction model. Next, we
discuss the sources from which we obtain scanned
documents containing endangered language texts.

2.1 Formulation
Optical Character Recognition OCR tools are
trained to find the best transcription corresponding
to the text in an image. The system typically con-
sists of a recognition model that produces candidate
text sequences conditioned on the input image and
a language model that determines the probability
of these sequences in the target language. We use
a general-purpose OCR system (detailed in Sec-
tion 4) to produce a first pass transcription of the
endangered language text in the image. Let this be
a sequence of characters x = [x1, . . . , xN].
OCR post-correction The goal of post-
correction is to reduce recognition errors in the
first pass transcription — often caused by low
quality scanning, physical deterioration of the
paper book, or diverse layouts and typefaces (Dong
and Smith, 2018). The focus of our work is on
using post-correction to counterbalance the lack
of OCR training data in the target endangered
languages. The correction model takes x as
input and produces the final transcription of the
endangered language document, a sequence of
characters y = [y1, . . . , yK].

y = arg max
y′

pcorr(y′∣x)

Incorporating translations We use information
from high-resource translations of the endangered
language text. These translations are commonly
found within the same paper book or linguis-
tic archive (e.g., Figure 1). We use an exist-
ing OCR system to obtain a transcription of the
scanned translation, a sequence of characters t =
[t1, . . . , tM]. This is used to condition the model:

y = arg max
y′

pcorr(y′∣x, t)

2.2 Endangered Language Documents
We explore online archives to determine how many
scanned documents in endangered languages exist
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as potential sources for data extraction (as of this
writing, October 2020).

The Internet Archive,2 a general-purpose archive
of web content, has scanned books labeled with the
language of their content. We find 11,674 books la-
beled with languages classified as “endangered” by
UNESCO. Additionally, we find that endangered
language linguistic archives contain thousands of
documents in PDF format — the Archive of the
Indigenous Languages of Latin America (AILLA)3

contains ≈10,000 such documents and the Endan-
gered Languages Archive (ELAR)4 has ≈7,000.

How common are translations? As described in
the introduction, endangered language documents
often contain a translation into another (usually
high-resource) language. While it is difficult to es-
timate the number of documents with translations,
multilingual documents represent the majority in
the archives we examined; AILLA contains 4,383
PDFs with bilingual text and 1,246 PDFs with trilin-
gual text, while ELAR contains ≈5,000 multilin-
gual documents. The structure of translations in
these documents is varied, from dictionaries and
interlinear glosses to scanned multilingual books.

3 Benchmark Dataset

From the sources described above, we select docu-
ments from three critically endangered languages5

for annotation — Ainu, Griko, and Yakkha. These
languages were chosen in an effort to create a ge-
ographically, typologically, and orthographically
diverse benchmark. We focus this initial study
on scanned images of printed books as opposed
to handwritten notes, which are a relatively more
challenging domain for OCR.

We manually transcribed the text correspond-
ing to the endangered language content. The text
corresponding to the translations is not manually
transcribed. We also aligned the endangered lan-
guage text to the OCR output on the translations,
per the formulation in Section 2.1. We describe the
annotated documents below and example images
from our dataset are in Figure 1 (a), (b), (c).

Ainu is a severely endangered indigenous lan-
guage from northern Japan, typically considered

2https://archive.org/
3https://ailla.utexas.org
4https://elar.soas.ac.uk/
5UNESCO defines critically endangered languages as

those where the youngest speakers are grandparents and older,
and they speak the language partially and infrequently.

a language isolate. In our dataset, we use a book
of Ainu epic poetry (yukara), with the “Kutune
Shirka” yukara (Kindaichi, 1931) in Ainu tran-
scribed in Latin script.6 Each page in the book
has a two-column structure — the left column has
the Ainu text, and the right has its Japanese trans-
lation already aligned at the line-level, removing
the need for manual alignment (see Figure 1 (a)).
The book has 338 pages in total. Given the effort
involved in annotation, we transcribe the Ainu text
from 33 pages, totaling 816 lines.

Griko is an endangered Greek dialect spoken in
southern Italy. The language uses a combination
of the Latin alphabet and the Greek alphabet as its
writing system. The document we use is a book of
Griko folk tales compiled by Stomeo (1980). The
book is structured such that in each fold of two
pages, the left page has Griko text, and the right
page has the corresponding translation in Italian.
Of the 175 pages in the book, we annotate the
Griko text from 33 pages and manually align it at
the sentence-level to the Italian translation. This
results in 807 annotated Griko sentences.

Yakkha is an endangered Sino-Tibetan language
spoken in Nepal. It uses the Devanagari writing
system. We use scanned images of three chil-
dren’s books, each of which has a story written
in Yakkha along with its translation in Nepali and
English (Schackow, 2012). We manually transcribe
the Yakkha text from all three books. We also align
the Yakkha text to both the Nepali and the English
OCR at the sentence level with the help of an exist-
ing Yakkha dictionary (Schackow, 2015). In total,
we have 159 annotated Yakkha sentences.

4 OCR Systems: Promises and Pitfalls

As briefly alluded to in the introduction, training an
OCR model for each endangered language is chal-
lenging, given the limited available data. Instead,
we use the general-purpose OCR system from the
Google Vision AI toolkit7 to get the first pass OCR
transcription on our data.

The Google Vision OCR system (Fujii et al.,
2017; Ingle et al., 2019) is highly performant and
supports 60 major languages in 29 scripts. It can
transcribe a wide range of higher resource lan-
guages with high accuracy, ideal for our proposed
method of incorporating high-resource translations

6Some transcriptions of Ainu also use the Katakana script.
See Howell (1951) for a discussion on Ainu folklore.

7https://cloud.google.com/vision

https://archive.org/
https://ailla.utexas.org
https://elar.soas.ac.uk/
https://cloud.google.com/vision
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Language CER WER

Ainu 1.34 6.27
Griko 3.27 15.63
Yakkha 8.90 31.64

Table 1: Character error rate and word error rate with
the Google Vision OCR system on our dataset.

into the post-correction model. Moreover, it is par-
ticularly well-suited to our task because it provides
script-specific OCR models in addition to language-
specific ones. Per-script models are more robust
to unknown languages because they are trained
on data from multiple languages and can act as a
general character recognizer without relying on a
single language’s model. Since most endangered
languages adopt standard scripts (often from the
region’s dominant language) as their writing sys-
tems, the per-script recognition models can provide
a stable starting point for post-correction.

The metrics we use for evaluating performance
are character error rate (CER) and word error rate
(WER), representing the ratio of erroneous char-
acters or words in the OCR prediction to the total
number in the annotated transcription. More de-
tails are in Section 6. The CER and WER using the
Google Vision OCR on our dataset are in Table 1.

4.1 OCR Performance

Across the three languages, the error rates indicate
that we have a first pass transcription that is of rea-
sonable quality, giving our post-correction method
a reliable starting point. We note the particularly
low CER for the Ainu data, reflecting previous
work that has evaluated the Google Vision system
to have strong performance on typed Latin script
documents (Fujii et al., 2017). However, there re-
mains considerable room for improvement in both
CER and WER for all three languages.

Next, we look at the edit distance between the
predicted and the gold transcriptions, in terms of
insertion, deletion, and replacement operations. Re-
placement accounts for over 84% of the errors in
the Griko and Ainu datasets, and 55% overall. This
pattern is expected in the OCR task, as the recogni-
tion model uses the image to make predictions and
is more likely to confuse a character’s shape for an-
other than to hallucinate or erase pixels. However,
we observe that the errors in the Yakkha dataset do
not follow this pattern. Instead, 87% of the errors
for Yakkha occur because of deleted characters.

exi  i  kaddinàra!

eχi  i  kaḍḍinàra!

_खारिनङ्गो
ङ्खाॽिनङ्गो

OCR
−−−→ exi i kaddinàra

exi  i  kaddinàra!

eχi  i  kaḍḍinàra!

_खा!िनङ् गो
"#   खा$िनङ् गो

è ffacilo
è ffaćilo हाङ् चाङ्  %&'(

हाङ्चाङ्चाङ्

OCR
−−−→exi  i  kaddinàra!

eχi  i  kaḍḍinàra!

_खा!िनङ् गो
"#   खा$िनङ् गोFigure 2: Examples of errors in Griko (top) and Yakkha

(bottom) when using the Google Vision OCR.

4.2 Types of Errors
To better understand the challenges posed by the
endangered language setting, we manually inspect
all the errors made by the OCR system. While
some errors are commonly seen in the OCR task,
such as misidentified punctuation or incorrect word
boundaries, 85% of the total errors occur due to
specific characteristics of endangered languages
that general-purpose OCR systems do not account
for. Broadly, they can be categorized into two types,
examples of which are shown in Figure 2:

• Mixed scripts The existing scripts that most
endangered languages adopt as writing systems
are often not ideal for comprehensively represent-
ing the language. For example, the Devanagari
script does not have a grapheme for the glottal
stop — as a solution, printed texts in the Yakkha
language use the IPA symbol ‘P’ (Schackow,
2015). Similarly, both Greek and Latin charac-
ters are used to write Griko. The Google Vision
OCR is trained to detect script at the line-level
and is not equipped to handle multiple scripts
within a single word. As seen in Figure 2, the
system does not recognize the Cyrillic script char-
acter χ in Griko and the IPA symbol P in Yakkha.
Mixed scripts cause 11% of the OCR errors.

• Uncommon characters and diacritics En-
dangered languages often use graphemes and di-
acritics that are part of the standard script but are
not commonly seen in high-resource languages.
Since these are likely rare in the OCR system’s
training data, they are frequently misidentified,
accounting for 74% of the errors. In Figure 2,
we see that the OCR system substitutes the un-
common diacritic d. in Griko. The system also
deletes the Yakkha character ङ्, which is a ‘half
form’ alphabet that is infrequent in several other
Devanagari script languages (such as Hindi).

5 OCR Post-Correction Model

In this section, we describe our proposed OCR
post-correction model. The base architecture of
the model is a multi-source sequence-to-sequence
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Ainu

OCR

x1 . . .xN

encoder

h
x
1 . . .h

x
N

Japanese

OCR

t1 . . . tM

encoder

h
t
1 . . .h

t
M

attention attention

c1 . . . cK

decoder

s1 . . . sK

softmax

P (y1 . . .yK)

Figure 3: The proposed multi-source architecture with
the encoder for an endangered language segment (left)
and an encoder for the translated segment (right). The
input to the encoders is the first pass OCR over the
scanned images of each segment. For example, the
OCR on the scanned images of some Ainu text (left)
and its Japanese translation (right).

framework (Zoph and Knight, 2016; Libovický and
Helcl, 2017) that uses an LSTM encoder-decoder
model with attention (Bahdanau et al., 2015). We
propose improvements to training and modeling for
the multi-source architecture, specifically tailored
to ease learning in data-scarce settings.

5.1 Multi-source Architecture
Our post-correction formulation takes as input the
first pass OCR of the endangered language segment
x and the OCR of the translated segment t, to
predict an error-free endangered language text y.
The model architecture is shown in Figure 3.

The model consists of two encoders — one that
encodes x and one that encodes t. Each encoder is
a character-level bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) and transforms the input
sequence of characters to a sequence of hidden
state vectors: hx for the endangered language text
and h

t for the translation.
The model uses an attention mechanism during

the decoding process to use information from the
encoder hidden states. We compute the attention
weights over each of the two encoders indepen-
dently. At the decoding time step k:

e
x
k,i = v

x
tanh (Wx

1sk−1 +W
x
2h

x
i ) (1)

α
x
k = softmax (exk)
c
x
k = [Σiα

x
k,ih

x
i ]

where sk−1 is the decoder state of the previous time
step and v

x, Wx
1 and W

x
2 are trainable parameters.

The encoder hidden states hx are weighted by the
attention distribution αx

k to produce the context
vector cxk . We follow a similar procedure for the
second encoder to produce c

t
k. We concatenate

the context vectors to combine attention from both
sources (Zoph and Knight, 2016):

ck = [cxk; c
t
k]

ck is used by the decoder LSTM to compute the
next hidden state sk and subsequently, the proba-
bility distribution for predicting the next character
yk of the target sequence y:

sk = lstm (sk−1, ck,yk−1) (2)

P (yk) = softmax (Wsk + b) (3)

Training and Inference The model is trained for
each language with the cross-entropy loss (Lce)
on the small amount of transcribed data we have.
Beam search is used at inference time.

5.2 Model and Training Improvements
With the minimal annotated data we have, it is
challenging for the neural network to learn a good
distribution over the target characters. We propose
a set of adaptations to the base architecture that
improves the post-correction performance without
additional annotation. The adaptations are based
on characteristics of the OCR task itself and the
performance of the upstream OCR tool (Section 4).

Diagonal attention loss As seen in Section 4,
substitution errors are more frequent in the OCR
task than insertions or deletions; consequently,
we expect the source and target to have similar
lengths. Moreover, post-correction is a monotonic
sequence-to-sequence task, and reordering rarely
occurs (Schnober et al., 2016). Hence, we expect
attention weights to be higher at characters close to
the diagonal for the endangered language encoder.

We modify the model such that all the elements
in the attention vector that are not within j steps
(we use j = 3) of the current time step k are added
to the training loss, thereby encouraging elements
away from the diagonal to have lower values. The
diagonal loss summed over all time steps for a
training instance, where N is the length of x, is:

Ldiag = ∑
k

⎛
⎜
⎝

k−j

∑
i=1

α
x
k,i +

N

∑
i=k+j

α
x
k,i

⎞
⎟
⎠
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Copy mechanism Table 1 indicates that the first
pass OCR predicts a majority of the characters
accurately. In this scenario, enabling the model to
directly copy characters from the first pass OCR
rather than generate a character at each time step
might lead to better performance (Gu et al., 2016).

We incorporate the copy mechanism proposed
in See et al. (2017). The mechanism computes a
“generation probability” at each time step k, which
is used to choose between generating a character
(Equation 3) or copying a character from the source
text by sampling from the attention distribution αx

k .

Coverage Given the monotonicity of the post-
correction task, the model should not attend to the
same character repeatedly. However, repetition is a
common problem for neural encoder-decoder mod-
els (Mi et al., 2016; Tu et al., 2016). To account for
this problem, we adapt the coverage mechanism
from See et al. (2017), which keeps track of the
attention distribution over past time steps in a cov-
erage vector. For time step k, the coverage vector
would be gk = ∑k−1

k′=0α
x
k′ .

gk is used as an extra input to the attention mech-
anism, ensuring that future attention decisions take
the weights from previous time steps into account.
Equation 1, with learnable parameter wg, becomes:

e
x
k,i = v

x
tanh (Wx

1sk−1 +W
x
2h

x
i +wggk,i)

gk is also used to penalize attending to the same
locations repeatedly with a coverage loss. The
coverage loss summed over all time steps k is:

Lcov = ∑
k

n

∑
i=1

min (αx
k,i, gk,i)

Therefore, with our model adaptations, the loss for
a single training instance:

L = Lce + Ldiag + Lcov (4)

5.3 Utilizing Untranscribed Data
As discussed in Section 3, given the effort in-
volved, we transcribe only a subset of the pages in
each scanned book. Nonetheless, we leverage the
remaining unannotated pages for pretraining our
model. We use the upstream OCR tool to get a first
pass transcription on all the unannotated pages.

We then create “pseudo-target” transcriptions for
the endangered language text as described below:

• Denoising rules Using a small fraction of
the available annotated pages, we compute

the edit distance operations between the first
pass OCR and the gold transcription. The
operations of each type (insertion, deletion,
and replacement) are counted for each char-
acter and divided by the number of times that
character appears in the first pass OCR. This
forms a probability of how often the operation
should be applied to that specific character.

We use these probabilities to form rules, such
as p(replace d with d.) = 0.4 for Griko and
p(replace ? with P)= 0.7 for Yakkha. These
rules are applied to remove errors from, or
“denoise”, the first pass OCR transcription.

• Sentence alignment We use Yet Another
Sentence Aligner (Lamraoui and Langlais,
2013) for unsupervised alignment of the en-
dangered language and translation on the
unannotated pages.

Given the aligned first pass OCR for the endan-
gered language text and the translation along with
the pseudo-target text, x, t and ŷ respectively, the
pretraining steps, in order, are:

• Pretraining the encoders We pretrain both
the forward and backward LSTMs of each
encoder with a character-level language model
objective: the endangered language encoder
on x and the translation encoder on t.

• Pretraining the decoder The decoder is
pretrained on the pseudo-target ŷ with a
character-level language model objective.

• Pretraining the seq-to-seq model The
model is pretrained withx and t as the sources
and the pseudo-target ŷ as the target transcrip-
tion, using the post-correction loss function L
as defined in Equation 4.

6 Experiments

This section discusses our experimental setup and
the post-correction performance on the three en-
dangered languages on our dataset.

6.1 Experimental Setup

Data Splits We perform 10-fold cross-validation
for all experimental settings because of the small
size of the datasets. For each language, we divide
the transcribed data into 11 segments — we use one
segment for creating the denoising rules described
in the previous section and the remaining ten as the
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Character Error Rate Word Error Rate
Ainu Griko Yakkha Ainu Griko Yakkha

Model Multi Single Multi Single Multi Single Multi Single Multi Single Multi Single

FP-OCR – 1.34 – 3.27 – 8.90 – 6.27 – 15.63 – 31.64

BASE 1.56 1.41 6.78 5.95 70.39 71.71 8.56 7.88 15.13 13.67 98.15 99.10

COPY 2.04 1.99 2.54 2.28 14.77 12.30 9.48 8.57 9.33 8.90 30.36 27.81

OURS 0.92 0.80 1.66 1.70 7.75 8.44 5.75 5.19 7.46 7.51 20.95 21.33

Table 2: Our method improves performance over all baselines (10-fold cross-validation averaged over five ran-
domly seeded runs). We present multi- and single-source variants and highlight the best model for each language.

folds for cross-validation. In each cross-validation
fold, eight segments are used for training, one for
validation and one for testing.

We divide the dataset at the page-level for the
Ainu and Griko documents, resulting in 11 seg-
ments of three pages each. For the Yakkha docu-
ments, we divide at the paragraph-level, due to the
small size of the dataset. We have 33 paragraphs
across the three books in our dataset, resulting in 11
segments that contain three paragraphs each. The
multi-source results for Yakkha reported in Table 2
use the English translations. Results with Nepali
are similar and are included in Appendix A.

Metrics We use two metrics for evaluating our
systems: character error rate (CER) and word error
rate (WER). Both metrics are based on edit distance
and are standard for evaluating OCR and OCR post-
correction (Berg-Kirkpatrick et al., 2013; Schulz
and Kuhn, 2017). CER is the edit distance between
the predicted and the gold transcriptions of the doc-
ument, divided by the total number of characters
in the gold transcription. WER is similar but is
calculated at the word level.

Methods In our experiments, we compare the
performance of our proposed method with the first
pass OCR and with two systems from recent work
in OCR post-correction. All the post-correction
methods have two variants – the single-source
model with only the endangered language encoder
and the multi-source model that additionally uses
the high-resource translation encoder.

• FP-OCR: The first pass transcription obtained
from the Google Vision OCR system.

• BASE: This system is the base sequence-to-
sequence architecture described in Section 5.1.
Both the single-source and multi-source vari-
ants of this system are used for English OCR
post-correction in Dong and Smith (2018).

• COPY: This system is the base architecture
with a copy mechanism as described in Sec-
tion 5.2. The single-source variant of this
model is used for OCR post-correction on Ro-
manized Sanskrit in Krishna et al. (2018).8

• OURS: The model with all the adaptations
proposed in Section 5.2 and Section 5.3.

Implementation The post-correction models are
implemented using the DyNet neural network
toolkit (Neubig et al., 2017), and all reported re-
sults are the average of five training runs with dif-
ferent random seeds. We assume knowledge of
the entire alphabet of the endangered language for
all the methods, which is straightforward to ob-
tain for most languages. The decoder’s vocabulary
contains all these characters, irrespective of their
presence in the training data, with corresponding
randomly-initialized character embeddings.

6.2 Main Results
Table 2 shows the performance of the baselines and
our proposed method for each language. Overall,
our method results in an improved CER and WER
over existing methods across all three languages.

The BASE system does not improve the recog-
nition rate over the first pass transcription, apart
from a small decrease in the Griko WER. The per-
formance on Yakkha, particularly, is significantly
worse than FP-OCR: likely because the data size
of Yakkha is much smaller than that of Griko and
Ainu, and the model is unable to learn a reasonable
distribution. However, on adding a copy mecha-
nism to the base model in the COPY system, the
performance is notably better for both Griko and
Yakkha. This indicates that adaptations to the base
model that cater to specific characteristics of the

8Although Krishna et al. (2018) use BPE tokenization,
preliminary experiments showed that character-level models
result in much better performance on our dataset, likely due
to the limited data available for training the BPE model.



5938

Errors fixed by post-correction
(a) Griko (b) Yakkha

[Image]

exi  i  kaddinàra!

eχi  i  kaḍḍinàra!

_खारिनङ्गो
ङ्खाॽिनङ्गो

exi  i  kaddinàra!

eχi  i  kaḍḍinàra!

_खा!िनङ् गो
"#   खा$िनङ् गो

è ffacilo
è ffaćilo हाङ् चाङ्  %&'(

हाङ्चाङ्चाङ्

ÈÈ↓ ÈÈ↓
[First pass OCR] exi i kaddinàraexi  i  kaddinàra!

eχi  i  kaḍḍinàra!

_खा!िनङ् गो
"#   खा$िनङ् गो

ÈÈ↓ ÈÈ↓
[Post-corrected] eχi i kad. d. inàra

exi  i  kaddinàra!

eχi  i  kaḍḍinàra!

_खा!िनङ् गो
"#   खा$िनङ् गो

Errors introduced by post-correction
(c) Griko (d) Yakkha

exi  i  kaddinàra!

eχi  i  kaḍḍinàra!

_खा!िनङ् गो
"#   खा$िनङ् गो

è ffacilo
è ffaćilo हाङ् चाङ्  %&'(

हाङ्चाङ्चाङ्

exi  i  kaddinàra!

eχi  i  kaḍḍinàra!

_खा!िनङ् गो
"#   खा$िनङ् गो

è ffacilo
è ffaćilo हाङ् चाङ्  %&'(

हाङ्चाङ्चाङ्ÈÈ↓ ÈÈ↓
è ffacilo

exi  i  kaddinàra!

eχi  i  kaḍḍinàra!

_खा!िनङ् गो
"#   खा$िनङ् गो

è ffacilo
è ffaćilo हाङ् चाङ्  %&'(

हाङ्चाङ्चाङ्
ÈÈ↓ ÈÈ↓

è ffaćilo

exi  i  kaddinàra!

eχi  i  kaḍḍinàra!

_खा!िनङ् गो
"#   खा$िनङ् गो

è ffacilo
è ffaćilo हाङ् चाङ्  %&'(

हाङ्चाङ्चाङ्

Figure 4: Our model fixes many mixed script and uncommon diacritics errors such as (a) and (b). In rare cases, it
“over-corrects” the first pass OCR transcription, introducing errors such as (c) and (d).
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Word Error Rate

Yakkha

Figure 5: WER with model component ablations on
the best model setting in Table 2. “all” includes all the
adaptations we propose. Each ablation removes a sin-
gle component from the “all” model, e.g. “-pretr. s2s”
removes the seq-to-seq model pretraining.

post-correction task can alleviate some of the chal-
lenges of learning from small amounts of data.

The single-source and the multi-source variants
of our proposed method improve over the baselines,
demonstrating that our proposed model adaptations
can improve recognition even without translations.
We see that using the high-resource translations
results in better post-correction performance for
Griko and Yakkha, but the single-source model
achieves better accuracy for Ainu. We attribute
this to two factors: the very low error rate of the
first pass transcription for Ainu and the relatively
high error rate (based on manual inspection) of the
OCR on the Japanese translation. Despite being
a high-resource language, OCR is difficult due to
the complexity of Japanese characters and low scan
quality. The noise resulting from the Japanese OCR
errors likely hurts the multi-source model.

6.3 Ablation Studies

Next, we study the effect of our proposed adapta-
tions and evaluate their benefit to the performance
of each language. Figure 5 shows the word error
rate with models that remove one adaptation from
the model with all the adaptations (“all”).

For Ainu and Griko, removing any single compo-
nent increases the WER, with the complete (“all”)
method performing the best. There is little variance
in the Ainu ablations, likely due to the high-quality
first pass transcription.

Our proposed adaptations add the most benefit
for Yakkha, which has the fewest training data and
relatively less accurate first pass OCR. The copy
mechanism is crucial for good performance, but re-
moving the decoder pretraining (“pretr. dec”) leads
to the best scores among all the ablations. The de-
noising rules used to create the pseudo-target data
for Yakkha are likely not accurate since they are
derived from only three paragraphs of annotated
data. Consequently, using it to pretrain the decoder
leads to a poor language model.

6.4 Error Analysis

We systematically inspect all the recognition errors
in the output of our post-correction model to deter-
mine the sources of improvement with respect to
the first pass OCR. We also examine the types of
errors introduced by the post-correction process.

We observe a 91% reduction in the number of
errors due to mixed scripts and a 58% reduction
in the errors due to uncommon characters and dia-
critics (as defined in Section 4). Examples of these
are shown in Figure 4 (a) and (b): mixed script
errors such as the χ character in Griko and the
glottal stop P in Yakkha are successfully corrected
by the model. The model is also able to correct
uncommon character errors like d. in Griko and ङ्
in Yakkha.
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Examples of errors introduced by the model are
shown in Figure 4 (c) and (d). Example (c) is in
Griko, where the model incorrectly adds a diacritic
to a character. We attribute this to the fact that the
first pass OCR does not recognize diacritics well;
hence, the model learns to add diacritics frequently
while generating the output. Example (d) is in
Yakkha. The model inserts several incorrect char-
acters, and can likely be attributed to the lack of a
good language model due to the relatively smaller
amount of training data we have in Yakkha.

7 Related Work

Post-correction for OCR is well-studied for high-
resource languages. Early approaches include lexi-
cal methods and weighted finite-state methods (see
Schulz and Kuhn (2017) for an overview). Re-
cent work has primarily focused on using neural
sequence-to-sequence models. Hämäläinen and
Hengchen (2019) use a BiLSTM encoder-decoder
with attention for historical English post-correction.
Similar to our base model, Dong and Smith (2018)
use a multi-source model to combine the first pass
OCR from duplicate documents in English.

There has been little work on lower-resourced
languages. Kolak and Resnik (2005) present a
probabilistic edit distance based post-correction
model applied to Cebuano and Igbo, and Krishna
et al. (2018) show improvements on Romanized
Sanksrit OCR by adding a copy mechanism to a
neural sequence-to-sequence model.

Multi-source encoder-decoder models have been
used for various tasks including machine transla-
tion (Zoph and Knight, 2016; Libovický and Helcl,
2017) and morphological inflection (Kann et al.,
2017; Anastasopoulos and Neubig, 2019). Perhaps
most relevant to our work is the multi-source model
presented by Anastasopoulos and Chiang (2018),
which uses high-resource translations to improve
speech transcription of lower-resourced languages.

Finally, Bustamante et al. (2020) construct cor-
pora for four endangered languages from text-
based PDFs using rule-based heuristics. Data cre-
ation from such unstructured text files is an impor-
tant research direction, complementing our method
of extracting data from scanned images.

8 Conclusion

This work presents a first step towards extracting
textual data in endangered languages from scanned
images of paper books. We create a benchmark

dataset with transcribed images in three endan-
gered languages: Ainu, Griko, and Yakkha. We
propose an OCR post-correction method that facili-
tates learning from small amounts of data, which
results in a 34% average relative error reduction in
both the character and word recognition rates.

As future work, we plan to investigate the effect
of using other available data for the three languages
(for example, word lists collected by documentary
linguists or the additional Griko folk tales collected
by Anastasopoulos et al. (2018)).

Additionally, it would be valuable to examine
whether our method can improve the OCR on high-
resource languages, which typically have much
better recognition rates in the first pass transcription
than the endangered languages in our dataset.

Further, we note our use of the Google Vi-
sion OCR system to obtain the first pass OCR
for our experiments, primarily because it provides
script-specific models as opposed to other general-
purpose OCR systems that rely on language-
specific models (as discussed in Section 4). Future
work that focuses on overcoming the challenges of
applying language-specific models to endangered
language texts would be needed to confirm our
method’s applicability to post-correcting the first
pass transcriptions from different OCR systems.

Lastly, given the annotation effort involved, this
paper explores only a small fraction of the en-
dangered language data available in linguistic and
general-purpose archives. Future work will focus
on large-scale digitization of scanned documents,
aiming to expand our OCR benchmark on as many
endangered languages as possible, in the hope of
both easing linguistic documentation and preserva-
tion efforts and collecting enough data for NLP sys-
tem development in under-represented languages.
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A Appendix

A.1 Implementation Details
The hyperparameters used are:

• Character embedding size = 128

• Number of LSTM layers = 1

• Hidden state size of the LSTM = 256

• Attention size = 256

• Beam size = 4

• For the diagonal loss, j = 3

• Minibatch size for training = 1

• Maximum number of epochs = 150

• Patience for early stopping = 10 epochs

• Pretraining epochs for encoder/decoder = 10

• Pretraining epochs for seq-to-seq model = 5

We use the same values of the hyperparameters for
each language and all the systems. We select the
best model with early stopping on the character
error rate of the validation set.

A.2 Additional Experimental Results
Performance on Yakkha with Nepali Table 3
shows the performance for the Yakkha dataset
when using Nepali as the high-resource translation
input to the multisource model. The performance
is similar to those of the experiments using the
English translations, as presented in Table 2.

Standard deviation on the main results Ta-
ble 4 and Table 5 show the character error rate and
word error rate respectively including the standard
deviation over five randomly seeded runs, corre-
sponding to the systems described in Table 2.

Model CER WER

FP-OCR 8.90 31.64
BASE 70.89 100.00
COPY 11.60 26.74
OURS 7.95 20.83

Table 3: Character error rate (CER) and word error
rate (WER) for the Yakkha dataset with the multi-
source model that uses the OCR on Nepali as the high-
resource translation. The table shows the mean over
five random runs.

(a) Ainu
Model Multi Single

FP-OCR – 1.34
BASE 1.56 ± 0.23 1.41 ± 0.16
COPY 2.04 ± 0.62 1.99 ± 0.41
OURS 0.92 ± 0.05 0.80 ± 0.07

(b) Griko
Model Multi Single

FP-OCR – 3.27
BASE 6.78 ± 0.62 5.95 ± 0.52
COPY 2.54 ± 0.31 2.28 ± 0.28
OURS 1.66 ± 0.03 1.70 ± 0.21

(c) Yakkha
Model Multi Single

FP-OCR – 8.90
BASE 70.39 ± 0.49 71.71 ± 0.71
COPY 14.77 ± 0.97 12.30 ± 2.39
OURS 7.75 ± 0.46 8.44 ± 0.90

Table 4: Mean and standard deviation of the character
error rate with 10-fold cross-validation over five ran-
dom seeds. The results presented are the same as Ta-
ble 2 with the added information of standard deviation.
The best models for each language are highlighted.

(a) Ainu
Model Multi Single

FP-OCR – 6.27
BASE 8.56 ± 1.01 7.88 ± 0.64
COPY 9.48 ± 3.07 8.57 ± 1.45
OURS 5.75 ± 0.24 5.19 ± 0.31

(b) Griko
Model Multi Single

FP-OCR – 15.63
BASE 15.13 ± 0.99 13.67 ± 1.17
COPY 9.33 ± 0.49 8.90 ± 0.51
OURS 7.46 ± 0.09 7.51 ± 0.31

(c) Yakkha
Model Multi Single

FP-OCR – 31.64
BASE 98.15 ± 1.55 99.10 ± 2.20
COPY 30.36 ± 1.39 27.81 ± 1.65
OURS 20.95 ± 1.04 21.33 ± 0.53

Table 5: Mean and standard deviation of the word er-
ror rate with 10-fold cross-validation over five random
seeds. The results presented are the same as Table 2
with the added information of standard deviation. The
best models for each language are highlighted.


