
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 5774–5782,
November 16–20, 2020. c©2020 Association for Computational Linguistics

5774

Inference Strategies for Machine Translation with Conditional Masking

Julia Kreutzer and George Foster and Colin Cherry
Google Research

{jkreutzer,fosterg,colincherry}@google.com

Abstract

Conditional masked language model (CMLM)
training has proven successful for non-
autoregressive and semi-autoregressive se-
quence generation tasks, such as machine
translation. Given a trained CMLM, however,
it is not clear what the best inference strategy
is. We formulate masked inference as a factor-
ization of conditional probabilities of partial
sequences, show that this does not harm per-
formance, and investigate a number of simple
heuristics motivated by this perspective. We
identify a thresholding strategy that has advan-
tages over the standard “mask-predict” algo-
rithm, and provide analyses of its behavior on
machine translation tasks.

1 Introduction

The widely successful masked language model-
ing paradigm popularized by BERT (Devlin et al.,
2019) has recently been adapted to conditional
masked language model (CMLM) training for semi-
autoregressive sequence generation (Ghazvinine-
jad et al., 2019), where model predictions are con-
ditioned on the complete input sequence and the
observed (non-masked) portion of the output se-
quence. The CMLM’s simplicity and its clear
links to the very active field of linguistic repre-
sentation learning are advantages over its semi-
autoregressive competitors, such as iterative re-
finement of token sequences (Lee et al., 2018),
refinement of non-linguistic intermediate represen-
tations (Kaiser et al., 2018; Shu et al., 2020) and
learning to predict parallel edit operations (Stern
et al., 2019; Gu et al., 2019).

It is not obvious how to best perform inference
with the CMLM. Starting from a partially-observed
output sequence, the optimal choice to complete
it within a single step would be to generate the
most likely token at each unobserved (masked) po-
sition independently. However, it is less clear how

to progress from an initial, completely masked se-
quence to a final hypothesis semi-autoregressively
over a number of steps, with each successive step
unmasking new context for the next. This requires
not only ordering the tokens for generation, but
also making decisions about how many tokens to
simultaneously predict in each step.

Ghazvininejad et al. (2019) propose the mask-
predict algorithm, which iteratively generates fresh
model predictions for all masked positions, and
then unmasks a predefined number of the most
likely predictions. Given a fixed number of itera-
tions, a decaying schedule determines how many
predictions to unmask in each iteration. Each suc-
cessive iteration provides mode-breaking (Gu et al.,
2018) context for the next. By fixing the number of
iterations, this approach allows for constant-time
semi-autoregressive decoding.

The fixed-iteration strategy is very practical and
has yielded empirical success in a range of machine
translation experiments, but there is no guarantee
that it is optimal. The tokens to be unmasked on
a given iteration are all predicted independently,
and therefore might contain repeated words, or
words with low model confidence. These issues can
be mitigated by later re-masking a token to repair
it (Ghazvininejad et al., 2019) or by adapting the
model to incorrect contexts (Ghazvininejad et al.,
2020).

We instead adopt a fully probabilistic view of
the masked prediction sequence, which we enable
by simply disallowing the re-masking of previ-
ously unmasked tokens. This view guides us to
a heuristic inference schedule that selects sets of
unmasked tokens according to a threshold on the
product of their conditionally independent model
probabilities. This heuristic naturally slows down
in the situations mentioned above, and speeds up
in the presence of high confidence, which allows
us to achieve favorable quality-to-speed trade-offs.
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We focus on strengthening the CMLM inference
(Section 3) while leaving its training algorithm un-
changed (Section 2), and maintaining much of the
structure of the original inference strategy. For our
experiments on machine translation (Section 4),
we compare inference heuristics in terms of their
quality-speed trade-offs. We analyze the devel-
opment of quality over iterations, and the influ-
ence of sentence length. With examples of unmask-
ing schedules we furthermore illustrate the role of
mode breaking through choosing the right contexts.

2 CMLM Model and Training

The CMLM is a model for p(Ymask|Yobs, X),
the probability of masked tokens Ymask given
a partially observed output sequence Yobs and
an input sequence X . Ymask and Yobs are sets
of tokens at specified positions that together
form a complete output sequence Y : Ymask =
Y \ Yobs. The model is implicitly conditioned
on output sequence length N = |Y |, and the
tokens in Ymask are conditionally independent:
p(Ymask|Yobs, X) =

∏
yi∈Ymask

p(yi|Yobs, X,N).
During training, masks are placed randomly: First,
the mask size S ∈ {1, . . . , N} is sampled from
a uniform distribution, then S positions are ran-
domly chosen to define the subsets Yobs and Ymask.
Cross-entropy loss is incurred via p(yi|Yobs, X) for
each yi ∈ Ymask. An additional classifier on top
of encoder representations is trained to predict the
output length N .

3 CMLM Inference

Inference starts with a context of only MASK to-
kens. Until a stop condition is met, decoder predic-
tions iteratively replace a subset of these in selected
positions (“unmasking”). With a single iteration,
inference is non-autoregressive; when the number
of iterations T is less than the sentence length N it
is semi-autoregressive; and when N = T it is fully
autoregressive. Due to the use of a uniform distri-
bution over reference contexts, training is agnostic
to these different regimes.

In general, we seek to minimize T without trad-
ing off too much quality. The challenge in doing
so is to identify the subset of predictions that are
most likely to provide suitable conditioning con-
text for future iterations (Mansimov et al., 2019).
Structural or linguistic dependencies in the output
may also play an important role for resolving lin-
guistic ambiguities (Martins and Kreutzer, 2017).

t M (t) Y (t) p(Y (t)|Y (<t),M (≤t), X)

0 {1,2,3} {} –
1 {} {a,b,c} p(a|X) p(b|X) p(c|X)
0 {1,2,3} {} –
1 {2,3} {a} p(a|X)
2 {3} {b} p(b|a,X)
3 {} {c} p(c|a,b,X)
0 {1,2,3} {} –
1 {2} {a,c} p(a|X) p(c|X)
2 {} {b} p(b|a,c,X)

Figure 1: Computations for p(Y,M |X), where Y =
{a, b, c}, for various masking sequences M . The first
sequence is fully non-autoregressive, and the second is
the standard left-to-right autoregressive factorization.

For example, in German it might be harder to first
generate the determiner before knowing the gram-
matical gender of the head word (see examples in
Figure 6).

The length predictor first predicts b different
lengths, then one hypothesis is decoded for each
length independently using the iterative process just
outlined. The hypothesis with the highest length-
normalized model score is selected as the output.
We refer to b as the length beam in the following.

3.1 Update Strategies
The CMLM can make predictions at all positions,
whether they correspond to masked input or not.
This lends itself to various strategies for choosing
how to update current predictions and masks:1

• update-all: update tokens and scores at all
positions, no constraint on new mask2

• update-masked: update tokens at masked po-
sitions only, no constraint on new mask3

• update-masked-sub: update tokens at masked
positions only, new mask must be a subset of
the current one

In this paper we focus on the update-masked-sub
strategy. It is empirically competitive (Section 4.1),
and interesting because it corresponds to a valid
probabilistic factorization of the target sequence,
governed by a latent variable M = M (0) . . .M (T )

1In all cases we assume predictions to be the most likely
words at each position, and scores to be the corresponding
probabilities.

2This corresponds to a masked version of iterative refine-
ment (Lee et al., 2018).

3This is the strategy used by Ghazvininejad et al. (2019).
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which represents the sequence of masking deci-
sions:

p(Y,M |X) =
T∏
t=1

p(Y (t)|Y (<t),M (≤t), X)×

p(M (t)|Y (<t),M (<t), X), (1)

where M (0) = {1, . . . , N}, M (T ) = {}, M (t) ⊂
M (t−1), and Y (t) is the set of tokens unmasked on
the tth iteration. Figure 1 illustrates this computa-
tion for various choices of M .4

The class of inference strategies we explore can
thus be seen as greedy search for the mostly likely
factorization, subject to a constraint on the num-
ber of iterations: at each iteration, we choose a
subset of tokens to add to the current hypothesis,
balancing high model probabilities with the risk of
making an error and degrading future predictions.
Because tokens are predicted independently, the
risk of an error grows with the size of the subset.

3.2 Unmasking Heuristics
Under the update-masked-sub constraint, the role
of greedy inference heuristics is to choose which
positions to unmask, given a full set of predic-
tions for all currently-masked positions. The mask-
predict strategy of Ghazvininejad et al. (2019)
chooses the dN/T e highest-probability tokens, in
order to finish in a constant T iterations, regard-
less of N . This generates more tokens per iteration
for long sentences, which may not be ideal for
sentences with complex structure. To measure its
effect, we propose a variant that unmasks a con-
stant K tokens per iteration, in order to achieve
approximately K-fold speedup over autoregressive
performance, independent of hypothesis length.

Unmasking highest-ranked tokens according to
probability is reasonable, but it ignores the magni-
tude of the probabilities, creating the potential for
selecting tokens in which the model has low confi-
dence, and vice versa. To address this, we design
several simple thresholding strategies that vary the
number of tokens per iteration, ideally generating
more when the conditioning context licences many
confident predictions, and fewer otherwise.

1. The most straightforward strategy, thresh, un-
masks all tokens with probabilities greater
than a given threshold τ .

4Note that a probabilistic interpretation enables an un-
constrained search for the most probable output, or for the
unmasking sequence that assigns highest probability to a ref-
erence output, options we do not pursue in this paper.

2. The comb-thresh strategy unmasks the largest
set of highest-ranked tokens Y whose joint
probability p(Y ) > τ .

3. Finally, in order to account for lower-ranked
predictions, the fcomb-thresh strategy un-
masks the largest set Y for which p(Y ) ∗ (1−
p(Ȳ )) > τ , where Y consists of the highest-
ranked tokens, and Ȳ is its complement.

All threshold strategies unmask the single highest-
ranked token in contexts where the threshold crite-
rion is not met.

4 Experiments

Our CMLM is implemented with a base Trans-
former (Vaswani et al., 2017) built on a Tensor-
Flow implementation of (Ghazvininejad et al.,
2019). The input to the decoder is Yobs, with
MASK tokens at masked positions, and the out-
put is Ymask, predictions for all masked positions
without future attention masking. We use data from
WMT14 en↔de (Bojar et al., 2014) and WMT17
zh↔en (Bojar et al., 2017) with a sentence piece
vocabulary of 32k, focusing mainly on en→de, and
providing results for all pairs in appendix A. The
CMLM is trained on distilled training data from an
autoregressive Transformer and initialized with its
parameters.

4.1 Update Strategies

Figure 2: Performance of update strategies

Figure 2 shows the performance of the update
strategies described in section 3.1 versus length
beam b. All strategies use the mask-predict heuris-
tic with a fixed 10-iteration limit. As beam size
increases past 2, the update-masked strategies in-
creasingly dominate, indicating that their scores are
more reliable for choosing among length hypothe-
ses. There is no significant difference between the
two variants of update-masked. This suggests that
our probabilistic factorization constraint (update-
masked-sub) does not hurt in practice.
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Figure 3: Heuristics with length-beam=5. The top
border of the graph represents the performance of an
autoregressive Transformer with beam=5. Different
points in the graph correpond to different hyperparame-
ter settings, varying the hyperparameter which controls
the speed for each heuristic (T for fixed-iteration mask-
predict, K for variable-iteration mask-predict, and τ
for thresholding heuristics).

Figure 4: Number of iterations on the test set in relation
to (oracle) sentence length (tokens) when generating on
average ca. 5 tokens per iteration. Error bars indicate
the standard deviation.

4.2 Heuristics

To compare the speed-quality trade-off of dif-
ferent heuristics on an equal footing, we vary
the values of the hyper-parameter that controls
speedup: T for fixed-iteration mask-predict, K for
variable-iteration mask-predict, and τ for thresh-
olding strategies. In each case, we measure the
resulting speedup as the total number of tokens in
the test set divided by the total number of iterations
required for all sentences,5 and corpus BLEU on
the output of the last iteration.

5This is theoretical speedup, and we make no claims that
it can be attained in practice, an objective that would likely
require significant engineering effort.

Figure 5: Development of BLEU over iterations com-
paring heuristics for two different generation speeds.
The generation speed is expressed in average number of
tokens per iteration, e.g. comb-thresh:3.5 stands
for the comb-thresh heuristic with a threshold value set
so that 3.5 tokens are generated per iteration on aver-
age.

Figure 3 compares heuristics using 5 length
candidates. First of all, fixed-K mask-predict
beats fixed-T by a substantial margin (especially at
higher speeds), indicating that it is worth allocat-
ing more iterations for longer sentences. Second,
the comb-thresh strategy has a small but consis-
tent advantage over fixed-K mask-predict across
all speeds. This strategy exhibits a roughly 4x gain
while sacrificing less than 0.3 BLEU relative to
the equivalent autoregressive Transformer (27.6
BLEU).

Both thresh and fcomb-thresh underperform. De-
spite their superficial similarity to comb-thresh,
they perform much worse; this holds for other lan-
guage pairs as well (Figure 7 in Appendix A). For
thresh, the poor performance as speedup increases
reflects many relatively low-probability tokens ex-
ceeding lower thresholds, a condition that is penal-
ized by all other heuristics, which take rank into
account. For fcomb-thresh the effect is more sub-
tle; we believe that it is due to the probabilities
of lower-ranked tokens having worse calibration,
leading to less reliable unmasking decisions.

A practical impediment to a thresholding strat-
egy is that it does not provide direct control over
desired speedup: this must be identified by tuning
τ appropriately on a development set. However,
we found that dev and test speedups were well cor-
related across speedups ranging from 1 to 11, with
the largest absolute error being 0.8 (11.1 speedup
on dev versus 10.3 on test), and the average error
being 0.3.
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Figure 6: Unmasking over iterations for source sentence "A job like this is not something you achieve overnight,"
said Gerster in praise of the annual financial statement. with reference "So ein Werk schüttelt man nicht einfach aus
dem Ärmel", lobte Gerster mit Blick auf die Jahresrechnung. for mask-predict with T = 5 above and comb-thresh
with τ = 0.1 below. Predicted tokens are shown when they differ from the previous iteration. Their background
color indicates the model score, with yellow indicating high scores, and dark blue low scores.

4.3 Analysis
Having freed the heuristics from a globally im-
posed iteration limit for constant-time decoding
as in the original mask-predict inference heuris-
tic, we observed better quality-speed trade-offs in
the above discussed results. Intuitively, we would
expect the heuristics to allocate more iterations
for longer sentences and save iterations on shorter
sentences. Figure 4 shows how many iterations
the models spend on sentences in relation to their
length. For a fair comparison, the generation is
constrained to oracle output lengths, and we set
the hyperparameters such that they result in the
same generation speed (5 tokens per iteration on
average). We see that flexible-iteration strategies
spend fewer iterations on sentences up to a length
of around 30 when compared to a fixed-iteration
strategy. comb-thresh spends on average the largest
number of iterations on longer sentences (which
pays off in terms of quality, see Figure 3), while
thresh spends even fewer iterations on longer sen-
tences than the mask-predict model.

The development of BLEU over iterations for
comparable generation speeds across heuristics is
shown in Figure 5.6 We can see that speedier
generation gives a faster initial increase in transla-
tion quality over iterations in exchange for slightly
lower final quality (dashed vs solid lines). Mask-
predict levels off early after reaching its fixed num-
ber of iterations, but climbs quickly before that
point due to an averaging effect over short sen-
tences. Fixed-K mask-predict and comb-thresh
both extract useful work out of each iteration, with
comb-thresh maintaining a slight edge over all iter-
ations, especially at higher generations speeds.

Figure 6 shows an example for generation strate-
6Each line on this graph is produced by doing inference

with a particular hyperparameter setting, and recording BLEU
for the greedily predicted tokens after each iteration.

gies under mask-predict and comb-thresh (see ap-
pendix B). They illustrate the workings of iterative
decoding and main differences between strategies:
Iterative decoding is crucially needed to resolve
subject-verb agreement (e.g. “man [. . . ] erreichen”
(generic “you”) vs. “Sie [. . . ] erreichen” (formal
“you”) in ex. 2) and rough sentence structure (e.g.
placement of the comma), and offers room for less
literal translations (“von heute auf morgen” (liter-
ally “from today to tomorrow”) rather than “über
Nacht” (literally “over night”) in ex. 1). The two
tokens “Ger” and “ster” (a name) show how the
correct conditioning changes model scores in both
cases: After the former token is predicted, the prob-
ability for the latter increases drastically, since its
only valid position in the sentence is there. While
both strategies use the same number of iterations to
generate this translation, one can see that it pays off
for comb-thresh to unmask certain tokens earlier
(“ab”, “Lob”), which allows a valid resolution of
neighboring tokens (“bschluss”, “zum”).7

5 Conclusion

We investigated inference strategies for machine
translation based on CMLM with a focus on the
trade-off between generation speed and quality. We
introduce a perspective which views generation se-
quences as probabilistic factorizations of the final
output sequence, and use it to analyze and extend
previous heuristics. Our new heuristics achieve
better speed/quality balance by flexibly adjusting
the number of total iterations, and by taking the
probabilities of sets of tokens into account. For
future work we would like to explore if their suc-
cess transfers to other generation tasks with MLMs
where inference efficiency is a concern.

7A typo (“abbschluss” vs “abschluss”) is introduced by
choosing the “ab” sub-word rather than “a”, likely contributing
to the model uncertainty in this area.
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A Experiments on different languages

Pre-processing for all data sets follows the proce-
dure described in (Vaswani et al., 2017).

Figure 7 shows the results for heuristics on all
language pairs. As in our main experiments, qual-
ity is measured with tokenized BLEU, except for
en→zh, where we use SacreBLEU (Post, 2018). In
three of the language pairs, we observe a similar
pattern to en→de: comb-thresh has a slight but con-
sistent advantage over mask-predict, with the fixed
tokens/iteration version of mask-predict doing con-
sistently better than the fixed iteration version. On
en→zh, all three methods perform similarly.

B Examples

Figure 8 provides more examples for mask-predict
(Figure 8a) and comb-thresh (Figure 8b) heuristics
under different hyperparameter settings, comple-
menting the ones displayed in Figure 6. The source
sentence is "A job like this is not something you
achieve overnight," said Gerster in praise of the an-
nual financial statement., and the reference "So ein
Werk schüttelt man nicht einfach aus dem Ärmel",
lobte Gerster mit Blick auf die Jahresrechnung..
Predicted tokens are printed out when they differ
from the previous iteration. Their background color
indicates the model score, with yellow indicating
high scores, and dark blue low scores.
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Figure 7: Results on all language pairs, with length-beam 5. The top border of each graph represents performance
of the equivalent autoregressive Transformer.
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(a) Configurations of mask predict with fixed number of iterations: (1) T = 3, (2) T = 5, (3) T = 10.

(b) Configurations of comb-thresh: (1) τ = 0.002, (2) τ = 0.1, (3) τ = 0.4.

Figure 8: Example unmasking schedules. Predicted tokens are shown when they differ from the previous iteration.
Their background color indicates the model score, with yellow indicating high scores, and dark blue low scores.


