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Abstract

Capturing associations for knowledge graphs
(KGs) through entity alignment, entity type in-
ference and other related tasks benefits NLP
applications with comprehensive knowledge
representations. Recent related methods built
on Euclidean embeddings are challenged by
the hierarchical structures and different scales
of KGs. They also depend on high embedding
dimensions to realize enough expressiveness.
Differently, we explore with low-dimensional
hyperbolic embeddings for knowledge associa-
tion. We propose a hyperbolic relational graph
neural network for KG embedding and cap-
ture knowledge associations with a hyperbolic
transformation. Extensive experiments on en-
tity alignment and type inference demonstrate
the effectiveness and efficiency of our method.

1 Introduction

Knowledge graphs (KGs) have emerged as the driv-
ing force of many NLP applications, e.g., KBQA
(Hixon et al., 2015), dialogue generation (Moon
et al., 2019) and narrative prediction (Chen et al.,
2019). Different KGs are usually extracted from
separate data sources or contributed by people with
different expertise. Therefore, it is natural for these
KGs to constitute complementary knowledge of the
world that can be expressed in different languages,
structures and levels of specificity (Lehmann et al.,
2015; Speer et al., 2017). Associating multiple
KGs via entity alignment (Chen et al., 2017) or type
inference (Hao et al., 2019) particularly provides
downstream applications with more comprehensive
knowledge representations.

Entity alignment and type inference seek to find
two kinds of knowledge associations, i.e., sameAs
and instanceOf, respectively. An example showing
such associations is given in Figure 1. Specifically,
entity alignment is to find equivalent entities from
different entity-level KGs, such as United States
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Figure 1: Illustration of two kinds of knowledge asso-
ciations (i.e., sameAs and instanceOf ) in KGs.

in DBpedia and United States of America in Wiki-
data. Type inference, on the other hand, associates a
specific entity with a concept describing its type in-
formation, such as United States and Country. The
main difference lies in whether such knowledge
associations express the same level of specificity or
not. Challenged by the diverse schemata, relational
structures and granularities of knowledge repre-
sentations in different KGs (Nikolov et al., 2009),
traditional symbolic methods usually fall short of
supporting heterogeneous knowledge association
(Suchanek et al., 2011; Lacoste-Julien et al., 2013;
Paulheim and Bizer, 2013). Recently, increasing
efforts have been put into exploring embedding-
based methods (Chen et al., 2017; Trivedi et al.,
2018; Jin et al., 2019). Such methods capture
the associations of entities or concepts in a vec-
tor space, which can help overcome the symbolic
and schematic heterogeneity (Sun et al., 2017).

Embedding-based knowledge association meth-
ods still face challenges in the following aspects. (i)
Hierarchical structures. A KG usually consists of
many local hierarchical structures (Hu et al., 2015).
Besides, a KG also usually comes with an ontol-
ogy to manage the relations (e.g., subClassOf ) of
concepts (Hao et al., 2019), which typically forms
hierarchical structures as illustrated in Figure 1. It
is particularly difficult to preserve such hierarchical
structures in a linear embedding space (Nickel et al.,
2014). (ii) High parameter complexity. To enhance
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the expressiveness of KG embeddings, many meth-
ods require high embedding dimensions, which
inevitably cause excessive memory consumption
and intractable parameter complexity. For example,
for the entity alignment method GCN-Align (Wang
et al., 2018), the embedding dimension is selected
to be as large as 1, 000. Reducing the dimensions
can effectively decrease memory cost and training
time. (iii) Different scales. The KGs that we ma-
nipulate may differ in scales. For example, while
the English DBpedia contains 4, 233, 000 entities,
its ontology only contains less than a thousand con-
cepts. Capturing the associations between entities
and concepts has to deal with drastically different
scales of structures and search spaces, while most
existing methods do not consider such difference.

To tackle these challenges, we propose a novel
hyperbolic knowledge association method, namely
HyperKA, inspired by the recent success of hy-
perbolic representation learning (Nickel and Kiela,
2017; Dhingra et al., 2018; Tifrea et al., 2019). Un-
like the Euclidean circle circumference that grows
linearly w.r.t. the radius, the hyperbolic space
grows exponentially with the radius. This property
makes the hyperbolic geometry particularly suit-
able for embedding the hierarchical structures that
drastically span their sizes along with their levels.
It is also capable of achieving superior expressive-
ness at a low dimension. To leverage such merit,
HyperKA employs a hyperbolic relational graph
neural network (GNN) for KG embedding and cap-
tures multi-granular knowledge associations with
a hyperbolic transformation between embedding
spaces. For each KG, HyperKA first incorporates
hyperbolic translational embeddings at the input
layer of the GNN. Then, several hyperbolic graph
convolution layers are stacked over the inputs to
aggregate neighborhood information and obtain the
final embeddings of entities or concepts. On top of
the KG embeddings, a hyperbolic transformation is
jointly trained to capture the associations. We con-
duct extensive experiments on entity alignment and
type inference. HyperKA outperforms SOTA meth-
ods on both tasks at a moderate dimension (e.g., 50
or 75). Even with a small dimension (e.g., 10), our
method still shows competitive performance.

2 Background

2.1 Knowledge Association

Knowledge association aims at capturing the cor-
respondence between structured knowledge that is

described under the same or different specificity.
In this paper, we consider two knowledge asso-
ciation tasks, i.e., entity alignment between two
entity-level KGs and type inference from an entity-
level KG to an ontological one. We define a KG as
a 3-tuple K = {E ,R, T }, where E denotes the set
of objects such as entities or concepts. R denotes
the set of relations and T ⊆ E × R × E denotes
the set of triples. Each triple τ = (h, r, t) records
a relation r between the head and tail objects h
and t. On top of this, the associations between
two entity-level KGs (or between one entity-level
and one ontological KGs) K1 = {E1,R1, T1} and
K2 = {E2,R2, T2} are defined as A = {(i, j) ∈
E1 × E2 | i→ j}, where→ denotes a kind of asso-
ciations, such as the sameAs relationship for entity
alignment or the instanceOf relationship in the case
of type inference. A small subset of associations
A+ ⊂ A are usually given as training data and we
aim at finding the remaining.

2.2 Related Work

Knowledge association tasks and methods. En-
tity alignment or type inference between KGs can
be viewed as a knowledge association task. A typi-
cal method of entity alignment is MTransE (Chen
et al., 2017). It jointly conducts translational em-
bedding learning (Bordes et al., 2013) and align-
ment learning to capture the matches of entities
based on embedding distances or transformations.
As for type inference, JOIE (Hao et al., 2019) de-
ploys a similar framework to learn associations be-
tween entities and concepts. Later studies explore
with three lines of techniques for improvement. (i)
KG embedding. Besides translational embeddings,
some studies employ other relational learning tech-
niques such as circular correlations (Hao et al.,
2019; Shi and Xiao, 2019), recurrent skipping net-
works (Guo et al., 2019), and adversarial learning
(Pei et al., 2019a,b; Lin et al., 2019). Others em-
ploy various GNNs to seize the relatedness of enti-
ties based on neighborhood information, including
GCN (Wang et al., 2018; Cao et al., 2019), GAT
(Zhu et al., 2019; Li et al., 2019; Mao et al., 2020)
and relational GCNs (Wu et al., 2019a,b; Sun et al.,
2020a). These techniques seek to better induce
embeddings with more comprehensive relational
modeling. Other studies for ontology embeddings
(Lv et al., 2018; Dong et al., 2019) consider rela-
tive positions between spheres as the hierarchical
relationships of corresponding concepts. However,
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they are still limited to linear embeddings, hence
may easily fall short of preserving the deep hierar-
chical structures of KGs. (ii) Auxiliary information.
Besides relational structures, some studies char-
acterize entities based on auxiliary information,
including numerical attributes (Sun et al., 2017;
Trisedya et al., 2019), literals (Gesese et al., 2019;
Zhang et al., 2019) and descriptions (Yang et al.,
2019; Chen et al., 2018; Jin et al., 2019). They
capture associations based on alternative resources,
but are also challenged by the less availability of
auxiliary information in many KGs (Speer et al.,
2017; Mitchell et al., 2018). (iii) Semi-supervised
learning. Another group of studies seek to infer as-
sociations with limited supervision, including self-
learning (Sun et al., 2018, 2019; Zhu et al., 2019)
and co-training (Chen et al., 2018). These meth-
ods are competent in inferring one-to-one entity
alignment, without consideration of associations
between entities and concepts. A recent survey by
Sun et al. (2020b) has systematically summarized
all three lines of studies.
Hyperbolic representation learning. Different
from Euclidean embeddings, some studies explore
to characterize structures in hyperbolic embedding
spaces, and use the non-linear hyperbolic distance
to capture the relations between objects (Nickel
and Kiela, 2017; Sala et al., 2018). This technique
has shown promising performance in embedding
hierarchical data, e.g., co-purchase records (Vinh
et al., 2018), taxonomies (Le et al., 2019; Aly et al.,
2019) and organizational charts (Chen and Quirk,
2019). Further work extends hyperbolic embed-
dings to capture relational hierarchies of sentences
(Dhingra et al., 2018), neighborhood aggregation
(Chami et al., 2019; Liu et al., 2019) and missing
triples of a KG (Kolyvakis et al., 2020; Balazevic
et al., 2019). These studies mainly focus on the
scenario of a single independent structure. Learn-
ing associations across multiple KG structures with
hyperbolic embeddings is still an unsolved issue,
which is exactly the focus of this paper.

3 Hyperbolic Geometry

The hyperbolic space is one of the three kinds of
isotropic spaces. Table 1 lists some key proper-
ties of the Euclidean (flat), spherical (positively
curved) and hyperbolic (negatively curved) spaces.
Compared with the Euclidean and spherical spaces,
the amount of space covered by a hyperbolic ge-
ometry increases exponentially rather than poly-

Property
Geometry

Euclidean Spherical Hyperbolic

Curvature 0 > 0 < 0

Parallel lines 1 0 ∞

Shape of triangles

Sum of triangle angles π > π < π

Table 1: Characteristic properties of Euclidean, spheri-
cal and hyperbolic geometries (Krioukov et al., 2010).

nomially w.r.t. the radius. This property allows
us to capture KG structures at a very low dimen-
sion, and particularly suits those forming hierar-
chies. For the hyperbolic geometry, there are sev-
eral important models including the hyperboloid
model (Reynolds, 1993), Klein disk model (Nielsen
and Nock, 2014) and Poincaré ball model (Cannon
et al., 1997). In this paper, we choose the Poincaré
ball model due to its feasibility for gradient op-
timization (Balazevic et al., 2019). Specifically,
the n-dimensional Poincaré ball with a negative
curvature −c (c > 0) is defined by the manifold
Dn,c = {x ∈ Rn | ‖x‖ < 1

c}. For simplicity, we
follow (Ganea et al., 2018) and let c = 1. We
hereby introduce some basic operations of hyper-
bolic geometry, which we use extensively.
Hyperbolic distance. The distance between vec-
tors u and v in the Poincaré ball is given by:

dD(u,v) = arccosh(1+2
‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)
).

When points move from the origin towards the ball
boundary, their distance would increase exponen-
tially, offering a much larger volume of space for
embedding learning.
Vector translation. The vector translation in the
Poincaré ball is defined by the Möbius addition:

u⊕v =
(1 + 2〈u,v〉+ ‖v‖2)u+ (1− ‖u‖2)v

1 + 2〈u,v〉+ ‖u‖2‖v‖2
.

Transformation. A transformation is the back-
bone of both GNNs (Chami et al., 2019; Liu et al.,
2019) and transformation-based associations (Chen
et al., 2017; Hao et al., 2019). The work in (Ganea
et al., 2018) defines the matrix-vector multiplica-
tion between Poincaré balls using the exponential
and logarithmic maps. The hyperbolic vectors are
first projected into the tangent space at 0 using
the logarithmic map (log0 : Dn,1 → T0,nDn,1),
then multiplied the transformation matrix like in
the Euclidean space, and finally projected back
on the manifold with the exponential map (exp0 :
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T0,nDn,1 → Dn,1). Specifically, the two projec-
tions on vector u ∈ Dn,1 are defined as follows:

exp0(u) = tanh(‖u‖) u

‖u‖
, (1)

log0(u) = tanh−1(‖u‖) u

‖u‖
. (2)

Through such inverse projections, theoretically, we
can apply any Euclidean counterpart operations on
hyperbolic vectors. The transformation that maps
a vector u ∈ Dn,c into Dm,c can be done using the
Möbius version of matrix-vector multiplication:

M⊗ u = exp0(M log0(u)). (3)

4 Hyperbolic Knowledge Association

In this section, we introduce the technical details
of HyperKA — the hyperbolic GNN-based rep-
resentation learning method for knowledge asso-
ciation. Different from existing relational GNNs
like R-GCN (Schlichtkrull et al., 2018), AVR-GCN
(Ye et al., 2019) and CompGCN (Vashishth et al.,
2020) that perform a relation-specific transforma-
tion on relational neighbors before aggregation, our
method models relations as translations between
entity vectors at the input layer, and performs neigh-
borhood aggregation on top of them to derive the
final entity embeddings. This allows our method to
benefit from both relation translation and neighbor-
hood aggregation without increasing computation
complexity.

4.1 Hyperbolic Relation Translation
Given a triple from the KG, the translational tech-
nique (Bordes et al., 2013) models a relation as a
translation vector between its head and tail entities.
This technique has shown promising performance
on many downstream tasks such as relation pre-
diction, triple classification and entity alignment
(Bordes et al., 2013; Chen et al., 2017; Sun et al.,
2019). An apparent issue of such translations to
embed hierarchies in the Euclidean space is that it
would require a large space to preserve the succes-
sive relation translations in a hierarchical structure.
The data in a hierarchy grows exponentially w.r.t.
its levels, while the amount of space grows linearly
in a Euclidean space. As a result, the Euclidean em-
beddings usually come with a high dimension so as
to achieve enough expressiveness for the aforemen-
tioned hierarchical structures. However, such mod-
eling can be easily done in the hyperbolic space
with a low dimension, where the distance between

two points increases exponentially as they move
towards to the boundary of the hyper-sphere.

In our method, we seek to migrate the original
translation operation to the hyperbolic space in a
compact way. Accordingly, the following energy
function is defined for a triple τ = (h, r, t):

f(τ) = dD(u
(0)
h ⊕ u(0)

r ,u
(0)
t ), (4)

where u
(0)
h ,u

(0)
r ,u

(0)
t ∈ Dn,c denote the embed-

dings for h, r and t at the input layer, respectively.
Our method is different from some existing meth-
ods (Balazevic et al., 2019; Kolyvakis et al., 2020)
that use hyperbolic relation-specific transforma-
tions on entity representations and may easily cause
high complexity overhead. The parameter complex-
ity of our translation operation remains the same as
TransE. We prefer low energy for positive triples
while high energy for negatives. Hence, we mini-
mize the following contrastive learning loss:

Lrel =
∑

τ∈T1∪T2

f(τ) +
∑
τ ′∈T −

[λ1 − f(τ ′)]+, (5)

where T − denotes the set of negative triples gener-
ated by corrupting positive triples (Sun et al., 2018).
λ1 is the margin where we expect f(τ ′) > λ1.

4.2 Hyperbolic Neighborhood Aggregation
GNNs (Kipf and Welling, 2017) have recently be-
come the paradigm for graph representation learn-
ing. Particularly, for the entity alignment task, the
main merit of GNN-based methods lies in captur-
ing the high-order proximity of entities based on
their neighborhood information (Wang et al., 2018).
Inspired by the recent proposal of hyperbolic GNNs
(Liu et al., 2019; Chami et al., 2019), we seek to
use the hyperbolic graph convolution to learn em-
beddings for knowledge association. The typical
message passing process of GNNs consists of two
phases, i.e., aggregating neighborhood features

u
(l)
N (i) = agg({u(l−1)

j |j ∈ N (i)}), (6)

and combining node and neighborhood information

u
(l)
i = comb(u(l−1)

i ,u
(l)
N (i)), (7)

where u
(l)
N (i) denotes the representation of central

object i by aggregating its neighborhood informa-
tion N (i) at the l-th layer. u(l)

i denotes the repre-
sentation of object i by combining its representa-
tion from the last layer u(l−1)

i and the aggregated
representation of its neighborhood u

(l)
N (i).
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Different aggregation and combination functions
lead to different variants of GNNs. We choose the
message passing technique that highlights the rep-
resentations of central objects, to benefit from the
translational embeddings at the input layer. Specif-
ically, the message passing process of our hyper-
bolic GNN from the (l−1)-th layer to the l-th layer
is defined as follows:

u
(l)
i = u

(l−1)
i ⊕ σ(W(l) ⊗ u

(l−1)
N ′(i) ⊕ b(l)), (8)

where W(l) is the transformation matrix and b(l)

is the bias vector at the l-th layer. σ is an activa-
tion function. We adopt mean-pooling to compute
u
(l−1)
N ′(i) based on the representations of entity i and

its neighbors from the (l − 1)-th layer. Generally,
we can use the output representation of the final
layer ui = u

(L)
i to represent object i, where L is

the number of GNN layers. To further benefit from
relation translation, we can also combine the input
and output representations ui = u

(0)
i ⊕u

(L)
i as the

final embeddings for knowledge association.

4.3 Hyperbolic Knowledge Projection
Once each KG is embedded in a hyperbolic space,
the next step is to capture the associations between
different KGs. Many previous studies jointly em-
bed different KGs into a unified space (Sun et al.,
2017; Wang et al., 2018; Li et al., 2019), and infer
the associations based on similarity of entity em-
beddings. However, pursing similar embeddings
in a shared space is ill-posed for KGs with incon-
sistent structures, especially under the cases with
different scales of knowledge representations. We
hereby tackle the challenge with a knowledge pro-
jection technique in the hyperbolic space. Given
a pair of seed knowledge association (i, j) ∈ A+,
we use the Möbius multiplication to project ui to
find the target uj in the other space. The transfor-
mation error is defined as the hyperbolic distance
between projected embeddings:

π(i, j) = dD(M⊗ ui,uj), (9)

where M ∈ Rn×m serves as the linear transforma-
tion from the hyperbolic space Dn,c of K1 to Dm,c
of K2. The two hyperbolic spaces are not neces-
sarily of the same dimension, i.e., we usually have
n 6= m. The projection loss is defined as follows:

Lproj =
∑

(i,j)∈A+

π(i, j)+
∑

(i′,j′)∈A−
[λ2−π(i′, j′)]+, (10)

A− thereof is the set of negative samples of knowl-
edge associations, and λ2 > 0 is a margin.

4.4 Training
The overall loss of the proposed method is the com-
bination of relation translation learning and knowl-
edge projection learning, which is given by:

L = Lrel + Lproj. (11)

The embedding vectors are initialized using the
Xavier normal initializer. Then, we can use the
exponential map to project vectors to the Poincaré
ball. We adopt the Riemannian SGD algorithm
(Bonnabel, 2013) to optimize the loss function. Let
θ be the trainable parameters. The Riemannian
gradient∇H at θt is computed as follows:

∇H =
(1− ‖θt‖2)2

4
∇E, (12)

where ∇E denotes the Euclidean gradient. We use
Adam (Kingma and Ba, 2015) as the optimizer.

5 Experiments

We evaluate the proposed method HyperKA on two
tasks of knowledge association, i.e. entity align-
ment (Section 5.1) and entity type inference (Sec-
tion 5.2). The source code is publicly available1.

5.1 Entity Alignment
Entity alignment aims at matching the counterpart
entities that describe the same real-world identity
across two entity-level KGs. The inference of entity
alignment is based on the embedding distances.

5.1.1 Experimental Setup
Datasets. We use the widely-adopted entity align-
ment dataset DBP15K (Sun et al., 2017) for evalua-
tion. It is extracted from DBpedia (Lehmann et al.,
2015) and consists of three settings, namely ZH-EN
(Chinese-English), JA-EN (Japanese-English) and
FR-EN (French-English). Each setting contains
15 thousand pairs of entity alignment. The dataset
splits are consistent with those in previous studies
(Sun et al., 2017, 2018), which result in 30% of en-
tity alignment being used in training. The statistics
of DBP15K are reported in Appendix A.
Baselines. We compare HyperKA with nine re-
cent structure-based entity alignment methods, in-
cluding five relation-based methods, i.e., MTransE
(Chen et al., 2017), IPTransE (Zhu et al., 2017),
AlignE (Sun et al., 2018), SEA (Pei et al., 2019a)
and RSN4EA (Guo et al., 2019), as well as four

1https://github.com/nju-websoft/
HyperKA

https://github.com/nju-websoft/HyperKA
https://github.com/nju-websoft/HyperKA
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Methods Dimensions
ZH-EN JA-EN FR-EN

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MTransE (Chen et al., 2017) 75 0.308 0.614 0.364 0.279 0.575 0.349 0.244 0.556 0.335
IPTransE (Zhu et al., 2017) 75 0.406 0.735 0.516 0.367 0.693 0.474 0.333 0.685 0.451
AlignE (Sun et al., 2018) 75 0.472 0.792 0.581 0.448 0.789 0.563 0.481 0.824 0.599
SEA (Pei et al., 2019a) 75 0.424 0.796 0.548 0.385 0.783 0.518 0.400 0.797 0.533
RSN4EA (Guo et al., 2019) 300 0.508 0.745 0.591 0.507 0.737 0.590 0.516 0.768 0.605

GCN-Align (Wang et al., 2018) 1000, 1000, 1000 0.413 0.744 0.549 0.399 0.745 0.546 0.373 0.745 0.532
MuGNN (Cao et al., 2019) 128, 128, 128 0.494 0.844 0.611 0.501 0.857 0.621 0.495 0.870 0.621
KECG (Li et al., 2019) 128, 128, 128, 128 0.478 0.835 0.598 0.490 0.844 0.610 0.486 0.851 0.610
AliNet (Sun et al., 2020a) 500, 400, 300 0.539 0.826 0.628 0.549 0.831 0.645 0.552 0.852 0.657

HyperKA (w/o relation) 75, 75, 75 0.518 0.814 0.623 0.535 0.834 0.640 0.529 0.859 0.645
HyperKA 75, 75, 75 0.572 0.865 0.678 0.564 0.865 0.673 0.597 0.891 0.704

Table 2: Entity alignment results on DBP15K. For the dimension of GNN-based methods, we report the output di-
mensions of their input layer and GNN layers. The best scores are in bold and the second-best ones are underlined.

neighborhood-based methods, i.e., GCN-Align
(Wang et al., 2018), MuGNN (Cao et al., 2019),
KECG (Li et al., 2019) and AliNet (Sun et al.,
2020a). We omit here several methods that require
auxiliary entity information that are not used by
others (see Section 2). We also do not involve two
related methods MMEA (Shi and Xiao, 2019) and
MRAEA (Mao et al., 2020) because their bidirec-
tional alignment setting is different from ours and
other baselines. For ablation study, we evaluate a
variant of our method without relation translation,
i.e., HyperKA (w/o relation). The main results
are reported in Section 5.1.2. Besides, we further
consider semi-supervised entity alignment meth-
ods BootEA (Sun et al., 2018), NAEA (Zhu et al.,
2019) and TransEdge (Sun et al., 2019) as they
achieve high performance by bootstrapping from
unlabeled entity pairs. We describe the implemen-
tation of the semi-supervised HyperKA variant and
experimental results shortly in Section 5.1.5.

Model configuration. In the main experiment, we
use two GNN layers, and set the dimension of all
layers in HyperKA to 75. The dimensions for the
two KGs are the same, i.e., n = m = 75. This
is the smallest dimension adopted by any baseline
methods. Note that, we also evaluate our method
with a range of dimensions from 10 to 150, to as-
sess its robustness. We report in Appendix B the im-
plementation details of HyperKA and the selected
values for hyper-parameters, including the learning
rate, the batch size, margin values λ1 and λ2, etc.
Following convention, we report three metrics on
entity alignment, i.e., H@1 (precision), H@10 (the
proportion of correct alignment ranked within the
top 10) and MRR (mean reciprocal rank). Higher
scores of those metrics indicate better performance.

Datasets
Dimensions

10 25 35 50 75 150

ZH-EN 0.370 0.487 0.532 0.554 0.572 0.587
JA-EN 0.391 0.510 0.551 0.563 0.564 0.583
FR-EN 0.368 0.528 0.574 0.585 0.597 0.611

Table 3: H@1 performance of HyperKA on DBP15K
using different dimensions.

5.1.2 Main Results
We report the entity alignment results on DBP15K
in Table 2. Note that the embedding dimension for
HyperKA is set to 75 (the smallest setting among
baseline methods). We can observe that HyperKA
consistently outperforms all baseline methods on
all three datasets, especially GNN-based methods.
For example, on DBP15K FR-EN, the H@1 score
of HyperKA reaches 0.597, surpassing MuGNN by
0.102 and AliNet by 0.045, even though HyperKA
uses a smaller dimension than these methods. Com-
pared against the baselines with dimension of 75,
HyperKA also achieves much better performance.
For instance, on the ZH-EN dataset, it surpasses
AlignE by 0.1 in H@1. Overall, HyperKA signifi-
cantly outperforms the SOTA Euclidean methods,
while using the same or much smaller dimension
settings. This shows that the hyperbolic embed-
dings have superior expressiveness than the linear
embeddings. As for the comparison between two
variants of HyperKA, we can see that the one with
relation embedding performs notably better. This
demonstrates the effectiveness of incorporating re-
lation translation into GNNs.

5.1.3 Analysis on Dimensions
We further analyze the effect of different dimen-
sions on performance and training efficiency. We
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Figure 2: GPU memory cost and running time of each
epoch w.r.t. different dimensions on DBP15K ZH-EN.

0 5,000 10,000

HyperKA

HyperKA (Euc.)

AliNet

GPU memory (MiB)

Figure 3: GPU memory cost of training HyperKA and
its Euclidean counterpart HyperKA (Euc.) as well as
AliNet (Sun et al., 2020a) on DBP15K ZH-EN when
they achieve similar performance. The dimension set-
tings that they need are respectively (35, 35, 35), (200,
200, 200) and (500, 400, 300), and their H@1 scores
are 0.532, 0.549 and 0.539, respectively.

report the H@1 results of different dimensions in
Table 3. We observe that the H@1 scores of Hy-
perKA drop along with the decrease of embedding
dimensions. This observation is generally in line
with our expectations because a small dimension
limits the expressiveness of KG embeddings. How-
ever, HyperKA still exhibits satisfying performance
at very small dimensions in comparison to other
methods, such as under the dimensions of 10 and
25. Specifically, HyperKA with 25 dimension even
outperforms a number of methods in Table 2 with
much higher dimensions, e.g., AlignE, GCN-Align
and KECG. Note that, HyperKA with 35 dimension
achieves very similar results to AliNet with layer di-
mensions of (500, 400, 300) and also outperforms
other baseline methods. HyperKA with dimension
of 150 establishes a new SOTA performance for
structure-based entity alignment. Overall, the low-
dimension hyperbolic representations of HyperKA
demonstrate more precise and robust inference of
counterpart entities across KGs.

We report in Figure 2 the GPU memory costs for
training HyperKA in 64-bit precision settings w.r.t.
various dimensions on ZH-EN, together with the
average training time per epoch2. A larger dimen-

2The experiments are conducted on a workstation with an
Intel Xeon Gold 5117 CPU and a NVIDIA Tesla V100 GPU.

Datasets Dimensions H@1 H@10 MRR

ZH-EN 200, 200, 200 0.549 0.827 0.650
JA-EN 200, 200, 200 0.527 0.813 0.631
FR-EN 200, 200, 200 0.567 0.864 0.675

ZH-EN 300, 300, 300 0.581 0.857 0.683
JA-EN 300, 300, 300 0.563 0.844 0.666
FR-EN 300, 300, 300 0.605 0.896 0.711

Table 4: Entity alignment results of HyperKA (Euc.).

Methods ZH-EN JA-EN FR-EN
H@1 MRR H@1 MRR H@1 MRR

BootEA (Sun et al., 2018) 0.629 0.703 0.622 0.701 0.653 0.731
NAEA (Zhu et al., 2019) 0.650 0.720 0.641 0.718 0.673 0.752
TransEdge (Sun et al., 2019) 0.735 0.801 0.719 0.795 0.710 0.796
HyperKA (semi) 0.743 0.805 0.727 0.793 0.741 0.813

Table 5: H@1 and MRR results of semi-supervised en-
tity alignment on DBP15K. Their dimension is 75.

sion leads to more GPU memory costs and training
time, although it also leads to better performance as
shown in Table 3. HyperKA can achieve satisfying
performance with limited GPU memory costs.

5.1.4 Analysis on Expressiveness
To further understand the expressiveness of our
hyperbolic KG embeddings, we compare a small
dimension along with their GPU memory costs of
HyperKA and its Euclidean counterpart HyperKA
(Euc.) with AliNet, when those three achieve simi-
lar performance. HyperKA (Euc.) is implemented
by replacing hyperbolic operations with their cor-
responding Euclidean operations. For example,
the Möbius addition ⊕ is replaced with vector ad-
dition +. We select the dimension of HyperKA
(Euc.) in {75, 100, 150, 200, 300, 500} and its best-
performing model under the dimension of 200 can
achieve similar performance to AliNet. By contrast,
HyperKA only needs a dimension of 35 as shown
in Table 3. Their GPU memory costs on ZH-EN
are shown in Figure 3. We observe similar results
on JA-EN and FR-EN. Specifically, HyperKA only
costs about 45.09% memory of HyperKA (Euc.)
and 29.97% of AliNet to achieve similar perfor-
mance. This shows that hyperbolic embeddings
can achieve satisfying expressiveness with a small
dimension and efficient memory costs.

We report in Table 4 the entity alignment re-
sults of HyperKA (Euc.) on DBP15K. We can find
that HyperKA (Euc.) with a high dimension (e.g.,
300) can also achieve similar performance with
HyperKA at a low dimension of 75. This is be-
cause the Euclidean embeddings also have enough
expressiveness to represent hierarchical structures
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Methods
Dimensions YAGO26K-906 DB111K-174

Entity Concept H@1 H@3 MRR H@1 H@3 MRR

TransE (Bordes et al., 2013) 300 50 0.732 0.353 0.144 0.437 0.608 0.503
DistMult (Yang et al., 2015) 300 50 0.361 0.553 0.411 0.498 0.680 0.551
HolE (Nickel et al., 2016) 300 50 0.348 0.548 0.395 0.448 0.654 0.504
MTransE (Chen et al., 2017) 300 50 0.609 0.776 0.689 0.599 0.813 0.672
JOIE (Hao et al., 2019) 300 50 0.856 0.959 0.897 0.756 0.959 0.857
HyperKA 75 15 0.863 0.946 0.908 0.778 0.918 0.854
HyperKA 150 30 0.871 0.948 0.913 0.789 0.927 0.863

Table 6: Type inference results on YAGO26K-906 and DB111K-174.

if given a large dimension. However, hyperbolic
embeddings only need a small dimension, bringing
along the substantial advantage in saving memory.

5.1.5 Semi-supervised Entity Alignment
Semi-supervised entity alignment methods use self-
training or co-training techniques to augment train-
ing data by iteratively finding new alignment la-
bels (Sun et al., 2018; Zhu et al., 2019; Sun et al.,
2019). Following BootEA (Sun et al., 2018), we
use the self-training strategy to iteratively propose
more aligned entity pairs to augment training data,
denoted as A′ = {(i, j) ∈ E1 × E2 |π(i, j) < ε},
where ε is a distance threshold. As these pairs in-
evitably contains errors (Sun et al., 2018), we apply
a small weight µ when using such proposed data
for training, resulting in the following loss:

Lsemi = µ
∑

(i,j)∈A′
π(i, j). (13)

Accordingly, the semi-supervised HyperKA vari-
ant minimizes the joint loss L+Lsemi. The selected
settings are ε = 0.25, µ = 0.05, and the training
takes 800 epochs. Table 5 lists the H@1 and MRR
results, where HyperKA shows drastic improve-
ment over BootEA and NAEA. It also achieves no-
ticeably better H@1 than the latest semi-supervised
method TransEdge, especially on the FR-EN set-
ting. The good performance of TransEdge comes
with prohibitive memory overhead. Its parameter
complexity is O(2Nen+Nrn) (Sun et al., 2019),
where Ne and Nr denote the numbers of entities
and relations in KGs, respectively. n is the dimen-
sion. By contrast, the complexity of our method is
O(Nen+Nrn+ Ln2) and we have Ne � Ln in
practice, where L is the number of GNN layers. In
this case, HyperKA outclasses TransEdge in both
effectiveness and efficiency. Compared with our
results in Table 2, we find that the self-training,
being an optional and compatible technique, brings
an improvement of more than 0.14 on H@1.

Figure 4: Visualization of the embeddings generated by
HyperKA for two related concepts “Film” and “Album”
along with their entities in DB111K-174. The black up
triangle denotes “Film” and the surrounding red ones
are its entities. The black down triangle denotes “Al-
bum” and the blue ones are its entities.

5.2 Type Inference

The main difference between type inference and
entity alignment lies in that the knowledge to asso-
ciate in the former scenario differs much in scales
and specificity. This causes many related methods
based on shared embedding spaces to fall short.

5.2.1 Experimental Setup
Datasets. The experiments for this task are con-
ducted on datasets YAGO26K-906 and DB111K-
174 (Hao et al., 2019), which are extracted from
YAGO and DBpedia, respectively. Each dataset
has an entity-level KG and an ontological KG for
concepts (types). Their statistics are reported in Ap-
pendix A. To compare with the previous work (Hao
et al., 2019), we use the original data splits, and
report H@1, H@3 and MRR results. The hyper-
parameter settings are listed in Appendix B.
Baselines. So far, only a few methods have been
applied to the type inference task in KGs. We com-
pare with the SOTA method JOIE (Hao et al., 2019),
and four other baseline methods TransE (Bordes
et al., 2013), DistMult (Yang et al., 2015), HolE
(Nickel et al., 2016) and MTransE (Chen et al.,
2017) that are reported in the same paper. For JOIE,
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we choose its best-performing variant based on the
translational encoder with cross-view transforma-
tion. A related method (Jin et al., 2019) is not taken
into comparison as it requires entity attributes that
are unavailable in our problem setting.

5.2.2 Main Results
In this task, the embedding dimensions for entities
and concepts are different, i.e., n > m, as an entity-
level KG usually contains much more entities than
concepts in a related ontological (or concept-level)
KG. For HyperKA, we evaluate two dimension set-
tings: n = 75,m = 15 and n = 150,m = 30.
Both are much smaller than the dimensions of base-
line methods. The results are reported in Table 6.
We can observe that HyperKA (75, 15) outperforms
JOIE in terms of H@1 on both datasets, especially
on DBP111K-174, although HyperKA uses a much
smaller dimension. For example, the H@1 score of
HyperKA (75, 15) on DB111K-174 reaches 0.778,
with a gain of 0.022 over JOIE in its best setting.
HyperKA (150, 30) achieves the best performance
over H@1 and MRR. We also try the dimension
setting of (300, 50), but no longer observe further
improvement. We believe this is because the dimen-
sion setting (150, 30) is enough for type inference
as the concept-level KG is small. Meanwhile, once
we apply the same small-dimension setting (75, 15)
as HyperKA to baseline methods, the performance
of those methods become much worse. For exam-
ple, MTransE achieves no more than 0.357 in H@1
using this small dimension.

5.2.3 Case Study
For case study, we visualize the embeddings of two
related concepts “Film” and “Album” in DBP111K-
174 along with their associated entities in the PCA-
projected space in Figure 4. Despite these two
groups of entities are closely relevant, the embed-
dings learned by HyperKA are able to clearly dis-
tinguish between these two. We can see that the
entities of the same type are embedded closely after
transformation, while the two clusters are generally
well differentiated by a clear margin (with only a
few exceptions). This displays how the hyperbolic
transformation is able to capture the multi-granular
associations, while preserves the gap between the
entities associated with different concepts.

6 Conclusion and Future Work

We propose a method to capture knowledge asso-
ciations with a new hyperbolic GNN-based repre-

sentation learning model. The proposed HyperKA
method extends translational and GNN-based tech-
niques to hyperbolic spaces, and captures associa-
tions by a hyperbolic transformation. Our method
outperforms SOTA baselines using lower embed-
ding dimensions on both entity alignment and type
inference. For future work, we plan to incorporate
hyperbolic RNNs (Ganea et al., 2018) to encode
auxiliary information for zero-shot entity and con-
cept representations. Another meaningful direction
is to use HyperKA to infer the associations be-
tween snapshots in temporally dynamic KGs (Xu
et al., 2020). We also seek to investigate the use of
HyperKA for cross-domain representations of bio-
logical and medical knowledge (Hao et al., 2020).
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embeddings for learning hierarchical representa-
tions. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NeurIPS),
pages 6338–6347.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso A.
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI), pages 1955–
1961.

Frank Nielsen and Richard Nock. 2014. Visualizing
hyperbolic voronoi diagrams. In Proceedings of the
International Symposium on Computational Geome-
try (SoCG), page 90.

Andriy Nikolov, Victoria S. Uren, Enrico Motta, and
Anne N. De Roeck. 2009. Overcoming schema het-
erogeneity between linked semantic repositories to
improve coreference resolution. In Proceedings of
the Asian Semantic Web Conference (ASWC), pages
332–346.

Heiko Paulheim and Christian Bizer. 2013. Type infer-
ence on noisy RDF data. In Proceedings of the Inter-
national Semantic Web Conference (ISWC), pages
510–525.

Shichao Pei, Lu Yu, Robert Hoehndorf, and Xiangliang
Zhang. 2019a. Semi-supervised entity alignment via
knowledge graph embedding with awareness of de-
gree difference. In Proceedings of The Web Confer-
ence (WWW), pages 3130–3136.

Shichao Pei, Lu Yu, and Xiangliang Zhang. 2019b. Im-
proving cross-lingual entity alignment via optimal
transport. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages
3231–3237.

William F. Reynolds. 1993. Hyperbolic geometry on a
hyperboloid. The American Mathematical Monthly,
100(5):442–455.

Frederic Sala, Christopher De Sa, Albert Gu, and
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A Dataset Statistics

Table 7 lists the statistics of the entity alignment
dataset DBP15K3 (Sun et al., 2017), as well as
two type inference datasets YAGO26K-906 and
DB111K-1744 (Hao et al., 2019). For a fair com-
parison, we reuse the original splits of associations
in these datasets for training and evaluation, i.e.,
30% alignment in DBP15K as well as around 60%
associations in YAGO26K-906 and DB111K-174
as training data. We can see that the two KGs of
type inference datasets differs much more in terms
of the scales of objects and triples than those in
entity alignment datasets, which also bring along
more challenges to knowledge association.

Datasets #Objects #Rel. #Triples #Assoc.

D
B

P1
5K

ZH-EN
ZH 66,469 2,830 153,929

15,000
EN 98,125 2,317 237,674

JA-EN
JA 65,744 2,043 164,373

15,000
EN 95,680 2,096 233,319

FR-EN
FR 66,858 1,379 192,191

15,000
EN 105,889 2,209 278,590

YAGO26K-906
Ent. 26,078 34 390,738

9,962
Ont. 906 30 8,962

DB111K-174
Ent. 111,762 305 863,643

99,748
Ont. 174 20 763

Table 7: Statistics of the datasets used in this paper.

B Hyper-parameter Settings

In this section, we report the implementation de-
tails and hyper-parameter settings of HyperKA on
the two knowledge association tasks. We select
each hyper-parameter setting within a wide range
of values as follows:

• Learning rate: {0.0001, 0.0002, 0.0005, 0.001}
• Batch size: {2000, 5000, 10000, 20000, 50000}
• # GNN layers: {1, 2, 3, 4, 5}
• # Negative samples: {1, 10, 20, 30, 40, 50, 100}
• λ1: {0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4}
• λ2: {0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4}

Table 8 lists the selected hyper-parameter settings
for the best-performing models (measured by H@1
scores) of HyperKA with 75 dimension for entity
alignment on DBP15K, as well as (75, 15) dimen-
sions for type inference on YAGO26K-906 and
DB111K-174. We use truncated negative sampling

3https://github.com/nju-websoft/JAPE
4https://github.com/JunhengH/

joie-kdd19

and cross-domain similarity local scaling for the en-
tity alignment task. The training takes 800 epochs
on DBP15K, 60 epochs on YAGO26K-906 and 100
epochs on DB111K-174. The activation function
used in our method is tanh.

Parameters DBP15K YAGO26K-906 DB111K-174

Learning rate 0.0002 0.0005 0.0005
Batch size 20,000 2,000 20,000
# GNN layers 2 3 3
# Neg. samples 40 40 30
λ1 0.1 0.2 0.2
λ2 0.4 0.1 0.1

Table 8: Selected values for hyper-parameters.
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