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Abstract
Inflectional variation is a common feature of
World Englishes such as Colloquial Singa-
pore English and African American Vernacu-
lar English. Although comprehension by hu-
man readers is usually unimpaired by non-
standard inflections, current NLP systems are
not yet robust. We propose Base-Inflection En-
coding (BITE), a method to tokenize English
text by reducing inflected words to their base
forms before reinjecting the grammatical infor-
mation as special symbols. Fine-tuning pre-
trained NLP models for downstream tasks us-
ing our encoding defends against inflectional
adversaries while maintaining performance on
clean data. Models using BITE generalize bet-
ter to dialects with non-standard inflections
without explicit training and translation mod-
els converge faster when trained with BITE. Fi-
nally, we show that our encoding improves the
vocabulary efficiency of popular data-driven
subword tokenizers. Since there has been no
prior work on quantitatively evaluating vocab-
ulary efficiency, we propose metrics to do so.1

1 Introduction

Large-scale neural models have proven success-
ful at a wide range of natural language process-
ing (NLP) tasks but are susceptible to amplifying
discrimination against minority linguistic commu-
nities (Hovy and Spruit, 2016; Tan et al., 2020)
due to selection bias in the training data and model
overamplification (Shah et al., 2019).

Most datasets implicitly assume a distribution of
error-free Standard English speakers, but this does
not accurately reflect the majority of the global
English speaking population who are either sec-
ond language (L2) or non-standard dialect speakers
(Crystal, 2003; Eberhard et al., 2019). These World
Englishes differ at lexical, morphological, and syn-
tactic levels (Kachru et al., 2009); sensitivity to

1Code will be available at github.com/salesforce/bite.

Figure 1: Base-Inflection Encoding reduces inflected
words to their base forms, then reinjects the grammati-
cal information into the sentence as inflection symbols.

these variations predisposes English NLP systems
to discriminate against speakers of World Englishes
by either misunderstanding or misinterpreting them
(Hern, 2017; Tatman, 2017). Left unchecked, these
biases could inadvertently propagate to future mod-
els via metrics built around pretrained models, such
as BERTScore (Zhang et al., 2020).

In particular, Tan et al. (2020) show that cur-
rent question answering and machine transla-
tion systems are overly sensitive to non-standard
inflections—a common feature of dialects such as
Colloquial Singapore English (CSE) and African
American Vernacular English (AAVE).2 Since peo-
ple naturally correct for or ignore non-standard
inflection use (Foster and Wigglesworth, 2016), we
should expect NLP systems to be equally robust.

Existing work on adversarial robustness for NLP
primarily focuses on adversarial training methods
(Belinkov and Bisk, 2018; Ribeiro et al., 2018; Tan
et al., 2020) or classifying and correcting adversar-
ial examples (Zhou et al., 2019a). However, this
effectively increases the size of the training dataset
by including adversarial examples or training a new
model to identify and correct perturbations, thereby
significantly increasing the overall computational
cost of creating robust models.

These approaches also only operate on either
raw text or the model, ignoring tokenization—an
operation that transforms raw text into a form that
the neural network can learn from. We introduce a

2Examples in Appendix A.
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new representation for word tokens that separates
base from inflection. This improves both model
robustness and vocabulary efficiency by explicitly
inducing linguistic structure in the input to the NLP
system (Erdmann et al., 2019; Henderson, 2020).

Many extant NLP systems use a combination of
a whitespace and punctuation tokenizer followed
by a data-driven subword tokenizer such as byte
pair encoding (BPE; Sennrich et al. (2016)). How-
ever, a purely data-driven approach may fail to find
the optimal encoding, both in terms of vocabulary
efficiency and cross-dialectal generalization. This
could make the neural model more vulnerable to
inflectional perturbations. Hence, we:

• Propose Base-InflecTion Encoding (BITE),
which uses morphological information to help
the data-driven tokenizer use its vocabulary effi-
ciently and generate robust symbol3 sequences.
In contrast to morphological segmentors such
as Linguistica (Goldsmith, 2000) and Morfessor
(Creutz and Lagus, 2002), we reduce inflected
forms to their base forms before reinjecting the
inflection information into the encoded sequence
as special symbols. This approach gracefully
handles the canonicalization of words with non-
concatenative morphology while generally al-
lowing the original sentence to be reconstructed.

• Demonstrate BITE’s effectiveness at making
neural NLP systems robust to non-standard in-
flection use while preserving performance on
Standard English examples. Crucially, simply
fine-tuning the pretrained model for the down-
stream task after adding BITE is sufficient. Un-
like adversarial training, BITE does not enlarge
the dataset and is more computationally efficient.

• Show that BITE helps BERT (Devlin et al., 2019)
generalize to dialects unseen during training and
also helps Transformer-big (Ott et al., 2018) con-
verge faster for the WMT’14 En-De task.

• Propose metrics like symbol complexity to oper-
ationalize and evaluate the vocabulary efficiency
of an encoding scheme. Our metrics are generic
and can be used to evaluate any tokenizer.

2 Related Work

Subword tokenization. Before neural models
can learn, raw text must first be encoded into sym-
bols with the help of a fixed-size vocabulary. Early

3Following Sennrich et al. (2016), we use symbol instead
of token to avoid confusion with the unencoded word token.

models represented each word as a single symbol
in the vocabulary (Bengio et al., 2001; Collobert
et al., 2011) and uncommon words were repre-
sented by an unknown symbol. However, such
a representation is unable to adequately deal with
words absent in the training vocabulary. Therefore,
subword representations like WordPiece (Schus-
ter and Nakajima, 2012) and BPE (Sennrich et al.,
2016) were proposed to encode out-of-vocabulary
(OOV) words by segmenting them into subwords
and encoding each subword as a separate symbol.
This way, less information is lost in the encoding
process since OOV words are approximated as a
combination of subwords in the vocabulary. Wang
et al. (2019) reduce vocabulary sizes by operating
on bytes instead of characters (as in standard BPE).

To make subword regularization more tractable,
Kudo (2018) proposed an alternative method of
building a subword vocabulary by reducing an ini-
tially oversized vocabulary down to the required
size with the aid of a unigram language model, as
opposed to incrementally building a vocabulary as
in WordPiece and BPE variants. However, machine
translation systems operating on subwords still
have trouble translating rare words from highly-
inflected categories (Koehn and Knowles, 2017).

Sadat and Habash (2006), Koehn and Hoang
(2007), and Kann and Schütze (2016) propose to
improve machine translation and morphological
reinflection by encoding morphological features
separately while Sylak-Glassman et al. (2015) pro-
pose a schema for inflectional features. Avraham
and Goldberg (2017) explore the effect of learning
word embeddings from base forms and morpho-
logical tags for Hebrew, while Chaudhary et al.
(2018) show that representing words as base forms,
phonemes, and morphological tags improve cross-
lingual transfer for low-resource languages.

Adversarial robustness in NLP. To harden
NLP systems against adversarial examples, exist-
ing work largely uses adversarial training (Good-
fellow et al., 2015; Jia and Liang, 2017; Ebrahimi
et al., 2018; Belinkov and Bisk, 2018; Ribeiro et al.,
2018; Iyyer et al., 2018; Cheng et al., 2019). How-
ever, this generally involves retraining the model
with the adversarial data, which is computationally
expensive and time-consuming. Tan et al. (2020)
showed that simply fine-tuning a trained model
for a single epoch on appropriately generated ad-
versarial training data is sufficient to harden the
model against inflectional adversaries. Instead of



adversarial training, Piktus et al. (2019) train word
embeddings to be robust to misspellings, while
Zhou et al. (2019b) propose using a BERT-based
model to detect adversaries and recover clean ex-
amples. Jia et al. (2019) and Huang et al. (2019)
use Interval Bound Propagation to train provably
robust pre-Transformer models, while Shi et al.
(2020) propose an efficient algorithm for training
certifiably robust Transformer architectures.

Summary. Popular subword tokenizers operate
on surface forms in a purely data-driven manner.
Existing adversarial robustness methods for large-
scale Transformers are computationally expensive,
while provably robust methods have only been
shown to work for pre-Transformer architectures
and small-scale Transformers.

Our work uses linguistic information (inflec-
tional morphology) in conjunction with data-driven
subword encoding schemes to make large-scale
NLP models robust to non-standard inflections and
generalize better to L2 and World Englishes, while
preserving performance for Standard English. We
also show that our method helps existing subword
tokenizers use their vocabulary more efficiently.

3 Linguistically-Grounded Tokenization

Data-driven subword tokenizers like BPE improve
a model’s ability to approximate the semantics of
unknown words by splitting them into subwords.

Although the fully data-driven nature of such
methods make them language-agnostic, this forces
them to rely only on the statistics of the surface
forms when transforming words into subwords
since they do not exploit any language-specific mor-
phological regularities. To illustrate, the past tense
of go, take, and keep have the inflected forms went,
took, and kept, respectively, which have little to
no overlap with their base forms4 and each other
even though they share the same tense. These six
surface forms would likely have no subwords in
common in the vocabulary. Consequently, the neu-
ral model would have the burden of learning both
the relation between base forms and inflected forms
and the relation between inflections for the same
tense. Additionally, since vocabularies are fixed
before model training, such an encoding does not
optimally use a limited vocabulary.

Even when inflections do not orthographically
alter the base form and there is a significant over-

4Base (no quotes) is synonymous with lemma in this paper.

Algorithm 1 Base-InflecTion Encoding (BITE)
Require: Input sentence S = [w1, . . . , wN ]
Ensure: Encoded sequence S′

S′ ← [∅]
for all i = 1, . . . , |N | do

if POS(wi) ∈ {NOUN, VERB, ADJ} then
base← GETLEMMA(wi, POS(wi))
inflection← GETINFLECTION(wi)
S′ ← S′ + [base, inflection]

else
S′ ← S′ + [wi]

end if
end for
return S′

lap between the base and inflected forms, e.g., the
-ed and -d suffixes, the suffix may be encoded as a
separate subword and base forms / suffixes may not
be consistently represented. To illustrate, encod-
ing danced as [dance, d] and dancing as [danc, ing]
results in two different “base forms” for the same
word, dance. This again burdens the model with
learning the two “base forms” mean the same thing
and makes inefficient use of a limited vocabulary.

When encoded in conjunction with another in-
flected form like entered, which should be encoded
as [enter, ed], this encoding scheme also produces
two different subwords for the same type of inflec-
tion -ed vs -d. As in the first example, the burden
of learning that the two suffixes correspond to the
same tense is transferred to the learning model.

A possible solution is to instead encode danced
as [danc, ed] and dancing as [danc, ing], but there
is no guarantee that a data-driven encoding scheme
will learn this pattern without some language-
specific linguistic supervision. In addition, this
unnecessarily splits up the base form into two sub-
words danc and e; the latter contains no extra se-
mantic or grammatical information yet increases
the encoded sequence length. Although individ-
ually minor, encoding many base words in this
manner increases the computational cost for any
encoder or decoder network.

Finally, although it is theoretically possible to
force a data-driven tokenizer to segment inflected
forms into morphologically logical subwords by
limiting the vocabulary size, many inflected forms
are represented as individual symbols at common
vocabulary sizes (30–40k). We found that the
BERTbase WordPiece tokenizer and BPE5 encoded
each of the above examples as single symbols.

5Trained on Wikipedia+BookCorpus (1M) with a vocabu-
lary size of 30k symbols.



3.1 Base-Inflection Encoding

To address these issues, we propose the Base-
InflecTion Encoding framework (or BITE), which
encodes the base form and inflection of content
words separately. Similar to how existing subword
encoding schemes improve the model’s ability to
approximate the semantics of out-of-vocabulary
words with in-vocabulary subwords, BITE helps
the model better handle out-of-distribution inflec-
tion usage by keeping a content word’s base form
consistent even when its inflected form drastically
changes. This distributional deviation could mani-
fest as adversarial examples, such as those gener-
ated by MORPHEUS (Tan et al., 2020), or sentences
produced by L2 or World Englishes speakers. By
keeping the base forms consistent, BITE provides
adversarial robustness to the model.

BITE (Fig. 1). Given an input sentence S =
[w1, . . . , wN ] where wi is the ith word, BITE gen-
erates a sequence of symbols S′ = [w′

1, . . . , w
′
N ]

such that w′
i = [BASE(wi),INFLECT(wi)] where

BASE(wi) is the base form of the word and
INFLECT(wi) is the inflection (grammatical cat-
egory) of the word (Algorithm 1). If wi is not in-
flected, INFLECT(wi) is NULL and excluded from
the sequence of symbols to reduce the neural net-
work’s computational cost. In our implementation,
we use Penn Treebank tags to represent inflections.

By lemmatizing each inflected word to obtain
the base form instead of segmenting it like in most
data-driven encoding schemes, BITE ensures this
base form is consistent for all inflected forms of
a word, unlike a subword produced by segmen-
tation, which can only contain characters present
in the original word. For example, BASE(took),
BASE(taking), and BASE(taken) all correspond
to the same base form, take, even though it is or-
thographically significantly different from took.

Similarly, encoding all inflections of the same
grammatical category (e.g., verb-past-tense) in a
canonical form should help the model to learn each
inflection’s grammatical role more quickly. This
is because the model does not need to first learn
that the same grammatical category can manifest
in orthographically different forms.

Crucially, the original sentence can usually be
reconstructed from the base forms and grammatical
information preserved by the inflection symbols,
except in cases of overabundance (Thornton, 2019).

Implementation details. We use the BertPreTo-
kenizer from the tokenizers6 library for whites-
pace and punctuation splitting. We use the NLTK
(Bird et al., 2009) implementation of the aver-
aged perceptron tagger (Collins, 2002) with greedy
decoding to generate POS tags, which serve to
improve lemmatization accuracy and as inflec-
tion symbols. For lemmatization and reinflection,
we use lemminflect7, which uses a dictionary
look-up together with rules for lemmatizing and
inflecting words. A benefit of this approach is that
the neural network can now generate orthographi-
cally appropriate inflected forms by generating the
base form and the corresponding inflection symbol.

3.2 Compatibility with Data-Driven Methods

Although BITE has the numerous advantages out-
lined above, it suffers from the same weakness as
regular word-level tokenization schemes when used
alone: a limited ability to handle out-of-vocabulary
words. Hence, we designed BITE to be a gen-
eral framework that seamlessly incorporates exist-
ing data-driven schemes to take advantage of their
proven ability to handle OOV words.

To achieve this, a whitespace/punctuation-based
pretokenizer is first used to transform the input into
a sequence of words and punctuation characters, as
is common in machine translation. Next, BITE is
applied and the resulting sequence is converted into
a sequence of integers by a data-driven encoding
scheme (Fig. 6 in Appendix B). In our experiments,
we use BITE in this manner and refer to the com-
bined tokenizer as “BITE+D”, where D refers to
the data-driven encoding scheme.

4 Model-Based Experiments

We first demonstrate the effectiveness of BITE us-
ing the pretrained cased BERTbase (Devlin et al.,
2019) before training a full Transformer (Vaswani
et al., 2017) from scratch. We do not replace Word-
Piece and BPE but instead incorporate them into
the BITE framework as described in §3.2. The ad-
vantages and disadvantages to this approach will
be discussed in the next section. We do not do any
hyperparameter tuning but use the original models’
in all experiments (detailed in Appendix B).

6github.com/huggingface/tokenizers
7github.com/bjascob/LemmInflect
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SQuAD 2 Ans. (F1) SQuAD 2 All (F1) MNLI (Acc.) MNLI-MM (Acc.)
Encoding Clean MORPHEUS Clean MORPHEUS Clean MORPHEUS Clean MORPHEUS

WordPiece (WP) 74.58 61.37 72.75 59.32 83.44 58.70 83.59 59.75
BITE + WP 74.50 71.33 72.71 69.23 83.01 76.11 83.50 76.64

WP + Adv. FT. 79.07 72.21 74.45 68.23 83.86 83.87 83.86 75.77
BITE + WP (+1 epoch) 75.46 72.56 73.69 70.66 82.21 81.05 83.36 81.04

Table 1: BERTbase results on the clean and adversarial MultiNLI and SQuAD 2.0 examples. We compare
BITE+WordPiece to both WordPiece alone and with one epoch of adversarial fine-tuning. For fair comparison
with adversarial fine-tuning, we trained the BITE+WordPiece model for an extra epoch (bottom) on clean data.

4.1 Adversarial Robustness (Classification)
We evaluate BITE’s ability to improve model ro-
bustness for question answering and natural lan-
guage understanding using SQuAD 2.0 (Rajpurkar
et al., 2018) and MultiNLI (Williams et al., 2018),
respectively. We use MORPHEUS (Tan et al., 2020),
an adversarial attack targeting inflectional mor-
phology, to test the overall system’s robustness to
non-standard inflections. They previously demon-
strated MORPHEUS’s ability to generate plausible
and semantically equivalent adversarial examples
resembling L2 English sentences. We attack each
BERTbase model separately and report F1 scores on
the answerable questions and the full SQuAD 2.0
dataset, following Tan et al. (2020). In addition,
for MNLI, we report scores for both the in-domain
(MNLI) and out-of-domain dev. set (MNLI-MM).

BITE+WordPiece vs. only WordPiece. First,
we demonstrate the effectiveness of BITE at mak-
ing the model robust to inflectional adversaries.
After fine-tuning two separate BERTbase models on
SQuAD 2.0 and MultiNLI, we generate adversarial
examples for them using MORPHEUS. From Ta-
ble 1, we observe that the BITE+WordPiece model
not only achieves similar performance (±0.5) on
clean data, but is significantly more robust to inflec-
tional adversaries (10-point difference for SQuAD
2.0, 17-point difference for MultiNLI).

BITE vs. adversarial fine-tuning. Next, we
compare the BITE to adversarial fine-tuning (Tan
et al., 2020), an economical variation of adversarial
training (Goodfellow et al., 2015) for making mod-
els robust to inflectional variation. In adversarial
fine-tuning, an adversarial training set is generated
by randomly sampling inflectional adversaries k
times from the adversarial distribution found by
MORPHEUS and adding them to the original train-
ing set. Rather than retraining the model on this ad-
versarial training set, the previously trained model
is simply trained for one extra epoch. We follow

Condition Encoding BLEU METEOR

Clean BPE only 29.13 47.80
BITE + BPE 29.61 48.31

MORPHEUS
BPE only 14.71 39.54

BITE + BPE 17.77 41.58

Table 2: Results on newstest2014 for Transformer-big
trained on WMT’16 English-German (En-De).

the above methodology and adversarially fine-tune
the WordPiece-only BERTbase for one epoch with
k set to 4. To ensure a fair comparison, we also
train the BITE+WordPiece BERTbase on the origi-
nal training set for an extra epoch.

From Table 1, we observe that BITE is often
more effective than adversarial fine-tuning at mak-
ing the model more robust against inflectional ad-
versaries and in some cases (SQuAD 2.0 All and
MNLI-MM) even without needing the additional
epoch of training. However, the adversarially fine-
tuned model consistently achieves better perfor-
mance on clean data. This is likely because even
though adversarial fine-tuning requires only a sin-
gle epoch of extra training, the process of generat-
ing the training set increases its size by a factor of k
and hence the number of updates. In contrast, BITE
requires no extra training and is more economical.

Adversarial fine-tuning is also less effective at
inducing model robustness when the adversarial
example is from an out-of-domain distribution (8
point difference between MNLI and MNLI-MM).
This makes it less useful for practical scenarios,
where this is often the case. In contrast, BITE per-
forms equally well on both in- and out-of-domain
data, demonstrating its applicability to practical
scenarios where the training and testing domains
may not match. This is the result of preserving the
base forms, which we investigate further in §5.2.



4.2 Machine Translation
Next, we evaluate BITE’s impact on machine trans-
lation using the Transformer-big architecture (Ott
et al., 2018) and WMT’14 English–German (En–
De) task. We apply BITE+BPE to the English
examples and compare it to the BPE-only baseline.
More details about our experimental setup can be
found in Appendix B.3.

To obtain the final models, we perform early-
stopping based on the validation perplexity and av-
erage the last ten checkpoints. We observe that the
BITE+BPE model converges 28% faster (Fig. 7)
than the baseline (20k vs. 28k updates) in addition
to outperforming it by 0.48 BLEU on the standard
data and 3.06 BLEU on the MORPHEUS adversarial
examples (Table 2). This suggests that explicit en-
coding of morphological information helps models
learn better and more robust representations faster.

4.3 Dialectal Variation
Apart from second languages, dialects are another
common source of non-standard inflections. How-
ever, there is a dearth of task-specific datasets in
English dialects like AAVE and CSE. Therefore,
in this section’s experiments, we use the model’s
pseudo perplexity (pPPL) (Wang and Cho, 2019)
on monodialectal corpora as a proxy for its per-
formance on downstream tasks in the correspond-
ing dialect. The pPPL measures how certain the
pretrained model is about its prediction and re-
flects its generalization ability on the dialectal
datasets. To ensure fair comparisons across dif-
ferent subword segmentations, we normalize the
pseudo log-likelihoods by the number of word to-
kens fed into the WordPiece component of each
tokenization pipeline (Mielke, 2019). This avoids
unfairly penalizing BITE for inevitably generating
longer sequences. Finally, we scale the pseudo log-
likelihoods by the masking probability (0.15) so
that the final pPPLs are within a reasonable range.

Corpora. For AAVE, we use the Corpus of Re-
gional African American Language (CORAAL)
(Kendall and Farrington, 2018), which comprises
transcriptions of interviews with African Ameri-
cans born between 1891 and 2005. For our evalua-
tion, only the interviewee’s speech was used. In ad-
dition, we strip all in-line glosses and annotations
from the transcriptions before dropping all lines
with less than three words. After preprocessing,
this corpus consists of slightly under 50k lines of
text (1,144,803 word tokens, 17,324 word types).
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(a) Colloquial Singapore English (forum threads)
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(b) African American Vernacular English (CORAAL)
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(c) Standard English (Wikipedia+BookCorpus)

Figure 2: Pseudo perplexity of BERTbase on CSE,
AAVE, Standard English corpora. BITEabl refers to the
ablated version without grammatical information.

To obtain a CSE corpus, we scrape the Infotech
Clinics section of the Hardware Zone Forums8, a
forum frequented by Singaporeans and where CSE
is commonly used. Similar preprocessing to the
AAVE data yields a 2.2M line corpus (45,803,898
word tokens, 253,326 word types).

Setup. We take the same pretrained BERTbase
model and fine-tune two separate variants (with and
without BITE) on English Wikipedia and BookCor-
pus (Zhu et al., 2015) using the masked language
modeling (MLM) loss without the next sentence
prediction (NSP) loss. We fine-tune for one epoch
on increasingly large subsets of the dataset, since
this has been shown to be more effective than do-
ing the same number of gradient updates on a fixed
subset (Raffel et al., 2019). Preprocessing steps are
described in Appendix B.1.

Next, we evaluate model pPPLs on the AAVE
and CSE corpora, which we consider to be from

8forums.hardwarezone.com.sg

https://forums.hardwarezone.com.sg


dialectal distributions that differ from the training
data which is considered to be Standard English.
Since calculating the stochastic pPPL requires ran-
domly masking a certain percentage of symbols
for prediction, we also experiment with doing this
for each sentence multiple times before averaging
them. However, we find no significant difference
between doing the calculation once or five times;
the random effects likely canceled out due to the
large sizes of our corpora.

Results. From Fig. 2, we observe that the
BITE+WordPiece model initially has a much
higher pPPL on the dialectal corpora, before con-
verging to 50–65% of the standard model’s pPPL
as the model adapts to the presence of the new in-
flection symbols (e.g., VBD, NNS, etc.). Crucially,
the models are not trained on dialectal corpora,
which demonstrates the effectiveness of BITE at
helping models better generalize to unseen dialects.
For Standard English, WordPiece+BITE performs
slightly worse than WordPiece, reflecting the re-
sults on QA and NLI in Table 1. However, it is
important to note that the WordPiece vocabulary
used was not optimized for BITE; results from §4.2
indicate that training the data-driven tokenizer from
scratch with BITE might improve performance.

CSE vs. AAVE. Astute readers might notice that
there is a large difference in pPPL between the
two dialectal corpora, even for the same tokenizer
combination. One possible explanation is that CSE
differs significantly from Standard English in mor-
phology and syntax due to its Austronesian and
Sinitic influences (Tongue, 1974). In addition, loan
words and discourse particles not found in Standard
English like lah, lor and hor are commonplace in
CSE (Leimgruber, 2009). AAVE, however, gener-
ally shares the same syntax as Standard English due
to its largely English origins (Poplack, 2000) and
is more similar linguistically. These differences
are likely responsible for the significant increase in
pPPL for CSE compared to AAVE.

Another possible explanation is that the Book-
Corpus may contain examples of AAVE since the
BookCorpus’ source, Smashwords, also publishes
African American fiction. We believe the reason
for the difference is a mixture of these two factors.

4.4 Ablation Study
To tease apart the effects of BITE’s two compo-
nents (lemmatization and inflection symbol) on
task performance, we ablate the extra grammatical

Clean MORPHEUS
Dataset BITEabl BITE BITEabl BITE

SQuAD 2 (F1)
Ans. Qns. 68.85 74.50 70.68 71.33
All Qns. 72.90 72.71 69.29 69.23

MNLI (Acc.)
Matched 82.28 83.01 80.17 76.11
Mismatched 83.18 83.50 81.21 76.64

WMT’14 (BLEU) 28.14 29.61 20.91 17.77

Table 3: Effect of reinjecting grammatical information
via inflection symbols. BITEabl refers to the ablation
with the dummy symbol instead of inflection symbols.

information from the encoding by replacing all in-
flection symbols with a dummy symbol (BITEabl).
As expected, BITEabl is significantly more robust
to adversarial inflections (Table 3) and the slight
performance drop is likely due to the POS tagger
being adversarially affected. However, different
tasks likely require different levels of attention to
inflections and BITE allows the network to learn
this for each task. For example, NLI performance
on clean data is only slightly affected by the ab-
sence of morphosyntactic information, while MT
and QA performance is more significantly affected.

In a similar ablation for the pPPL experiments,
we find that both the canonicalizing effect of the
base form and knowledge of each word’s grammat-
ical role contribute to the lower pPPL on dialectal
data (Table 4 in the Appendix). We discuss this in
greater detail in Appendix B.2 and also report the
pseudo log-likelihoods and per-symbol pPPLs in
the spirit of transparency and reproducibility.

5 Model-Independent Analyses

Finally, we analyze WordPiece, BPE, and unigram
LM subword tokenizers that are trained with and
without BITE. Implementation details can be found
in Appendix B.4. Through our experiments, we ex-
plore how BITE improves adversarial robustness
and helps the data-driven tokenizer use its vocab-
ulary more efficiently. We use 1M examples from
Wikipedia+BookCorpus for training.

5.1 Vocabulary Efficiency
We may operationalize the question of whether
BITE improves vocabulary efficiency in numerous
ways. We discuss two vocabulary-level measures
here and a sequence-level measure in Appendix C.

Vocabulary coverage. One measure of vocabu-
lary efficiency is the coverage of a representative
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corpus by a vocabulary’s symbols. We measure
coverage by computing the total number of tokens
(words and punctuation) in the corpus that are rep-
resented in the vocabulary divided by the total num-
ber of tokens in the corpus. We use the 1M subset
of Wikipedia+BookCorpus as our representative
corpus. Since BITE does not require a vocabulary
size to be fixed before training, we set the N most
frequent types (base forms and inflections) to be
our vocabulary. We use the N most frequent types
in the unencoded text as our baseline vocabulary.

From Fig. 3, we observe that the BITE vocabu-
lary achieves a higher coverage of the corpus than
the baseline, hence demonstrating the efficacy of
BITE at improving vocabulary efficiency. Addition-
ally, we note that this advantage is most significant
(5–7%) when the vocabulary contains less than 10k
symbols. This implies that inflected word forms
comprise a large portion of frequently occurring
types, which comports with intuition.

Symbol complexity. Another measure of vocab-
ulary efficiency is the total number of symbols
needed to encode a representative set of word types.
We term this the symbol complexity. Formally,
given N , the total number of word types in the
evaluation corpus; Si, the sequence of symbols
obtained from encoding the ith type; and ui, the
number of unknown symbols in Si, we define:

SymbComp(S1, . . . , SN ) =

N∑
i=1

|Si|+ ui. (1)

While not strictly necessary when comparing vo-
cabularies on the same corpus, normalizing Eq. (1)
by the number of word types in the corpus may be
helpful for cross-corpus comparisons. For simplic-
ity, we define the penalty of each extra unknown
symbol to be double that of a symbol in the vocabu-
lary.9 A general form of Eq. (1) is in Appendix B.4.

9|S| contributes the extra count.
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Figure 5: Mean percentage of symbols that are the
same in the clean and adversarial encoded sequences.

To measure the symbol complexities of our vo-
cabularies, we use WordNet’s single-word lemmas
(Miller, 1995) as our “corpus” (N = 83118). From
Fig. 4, we see that training data-driven tokenizers
with BITE produces vocabularies with lower sym-
bol complexities. Additionally, we observe that
tokenizer combinations incorporating WordPiece
or unigram LM generally outperform the BPE ones.
We believe this to be the result of using a language
model to inform vocabulary creation. It is logical
that a symbol that maximizes a language model’s
likelihood on the training data is also semantically
“denser”, hence prioritizing such symbols produces
efficient vocabularies. We leave the in-depth inves-
tigation of this relationship to future work.

5.2 Adversarial Robustness

BITE’s ability to make models more robust to in-
flectional variation can be directly attributed to its
preservation of consistent, inflection-independent
base forms. We demonstrate this by measuring
the similarity between the encoded clean and ad-



versarial sentences with the Ratcliff/Obershelp al-
gorithm (Ratcliff and Metzener, 1988). We use
the MultiNLI in-domain development set and the
MORPHEUS adversaries generated in §4.1.

We find that clean and adversarial sequences en-
coded by the BITE+D tokenizers were more sim-
ilar (1–2.5%) than those encoded without BITE
(Fig. 5). The decrease in similarity with larger
vocabularies is unsurprising; larger vocabularies
result in shorter sequences, such that the same num-
ber of differing symbols will result in a larger rela-
tive change.

Hence, the improved robustness shown in §4.1
can be directly attributed to the separation of each
content word’s base forms from its inflection and
keeping it consistent as the inflection varies, hence
mitigating any significant symbol-level changes.

5.3 Micro and Error Analysis

Micro analysis. With a vocabulary of 20k sym-
bols, BPE segments climbs as [clim,bs], dream-
ing as [dre,aming], and tumbled as [t,umbled].
WordPiece segments tumbled as [tum,bled] and en-
codes dreaming as a single symbol, but finds a
morphologically accurate segmentation of climbs:
[climb,s]. Unigram LM finds morphologically ac-
curate segmentations for all three examples. When
trained with BITE, all three tokenizers success-
fully find morphologically accurate segmentations
of these examples and represent each correspond-
ing base form as a single symbol.

Error analysis. Although the POS tagger is
highly accurate10, it may occasionally tag an in-
flected form as a base form. An example from the
MultiNLI data is the word turns in “..., it could
turns out even better” being tagged as NN instead
of VBZ. Consequently, this word would not be split
into base form and inflection. Orthographic errors
like misspellings also contribute to the tagger’s in-
accuracy. Some of these errors can be easily fixed
by using a robust POS tagger (Piktus et al., 2019).

6 Limitations

Our BITE implementation relies on an external
POS tagger to assign inflection tags to each word.
This tagger requires language-specific training data,
which can be a challenge for low resource lan-
guages. However, this could be an advantage since
the overall system can be improved by training the

10Accuracy of 97.2% on the Wall Street Journal test set.

tagger on dialect-specific datasets, or readily ex-
tended to other languages given a suitable tagger.
Another drawback of BITE is that it increases the
length of the encoded sequence which may lead to
extremely long sequences if used on morphologi-
cally rich languages. However, this is not an issue
for English Transformer models since the increase
in length will always be<2x, such that the increase
in complexity is a constant factor.

7 Conclusion

The tokenization stage of the modern deep learning
NLP pipeline has not received as much attention as
the modeling stage, with researchers often default-
ing to common subword tokenizers like BPE. We
can do better. By encoding raw text into operable
symbols, we can improve the generalization and
adversarial robustness of resulting systems.

Hence, we guide the data-driven tokenizer by
incorporating linguistic information to learn a
more efficient vocabulary and generate symbol se-
quences that increase the network’s robustness to
inflectional variation. This improves its general-
ization to L2 and World Englishes without requir-
ing explicit training on such data. Since dialectal
data is often scarce or even nonexistent, an NLP
system’s ability to generalize across dialects in a
zero-shot manner is crucial for it to work well for
diverse linguistic communities. A more general,
BITE-like algorithm should enable further gains on
morphologically rich languages.

Finally, given the effectiveness of the com-
mon task framework for spurring progress in NLP
(Varshney et al., 2019), we hope to do the same for
tokenization. As a first step, we propose to evaluate
an encoding scheme’s efficacy by measuring its vo-
cabulary coverage and symbol complexity (which
may have interesting connections to information-
theoretic limits (Ziv and Lempel, 1978)). We have
already shown that Base-Inflection Encoding helps
a data-driven tokenizer use its limited vocabulary
more efficiently by reducing its symbol complexity
when the combination is trained from scratch.
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A Examples of Inflectional Variation in
English Dialects

African American Vernacular English
(Kendall and Farrington, 2018)

• I dreamed about we was over my uh, father
mother house, and then we was moving.

• I be over with my friends.

• And this boy name RD-NAME-3, he was
tryna be tricky, pretend like he don’t do noth-
ing all the time.

Colloquial Singapore English (Singlish)
(Source: forums.hardwarezone.com.sg)

• Anyone face the problem after fresh installed
the Win 10 Pro, under NetWork File sharing
after you enable this function (Auto discov-
ery), the computer still failed to detect our
Users connected to the same NetWork?

• I have try it already, but no solutions appear.

• How do time machine works??

B Implementation/Experiment Details

All models are trained on 8 16GB Tesla V100s.

Figure 6: How BITE fits into the tokenization pipeline.

B.1 Classification Experiments

For our BERT experiments, we build BITE on
top of the BertTokenizer class in Wolf et al.
(2019) and use their BERT implementation and
fine-tuning scripts11. BERTbase has 110M parame-
ters. We do not perform a hyperparameter search
and instead use the example hyperparameters for
the respective scripts.

11github.com/huggingface/transformers/.../examples

Datasets and metrics. MultiNLI (Williams
et al., 2018) is a natural language inference dataset
of 392,702 training examples, 10k in-domain and
10k out-of-domain dev. examples, and 10k in-
domain and 10k out-of-domain test examples span-
ning 10 domains. Each example comprises a
premise, hypothesis, and a label indicating whether
the premise entails, contradicts, or is irrelevant
to the hypothesis. Models are evaluated using
Accuracy = # correct predictions

# predictions .
SQuAD 2.0 (Rajpurkar et al., 2018) is an extrac-

tive question answering dataset comprising more
than 100k answerable questions and 50k unanswer-
able questions (130,319 training examples, 11,873
development examples, and 8,862 test examples).
Each example is composed of a question, a passage,
and an answer. Answerable questions are questions
that can be answered by a span in the passage and
unanswerable questions are questions that cannot
be answered by a span in the passage. Models are
evaluated using the F1 score.

Wikipedia+BookCorpus is a combination of En-
glish Wikipedia and BookCorpus. We use Lample
and Conneau (2019)’s script to download and pre-
process the Wikipedia dump before removing blank
lines, overly short lines (less than three words or
four characters), and lines with doc tags. We also
remove blank and overly short lines from Book-
Corpus before concatenating and shuffling both
datasets.

B.2 Discussion for Perplexity Experiments

Effect of lemmatization and inflection symbols.
We conduct two ablations to investigate the effects
of lemmatization and inflection symbols on the
models’ pseudo perplexities: the first simply lem-
matizes the input before encoding it with Word-
Piece (WordPiece+LEMM) and the second replaces
every inflection symbol generated by BITE with
a dummy symbol (WordPiece+BITEabl). The lat-
ter is the same ablation used in Table 3 and from
Table 4, we see that this condition consistently
achieved the lowest pPPL on all three corpora.
However, we believe that the highly predictable
dummy symbols likely account for the significant
drops in pseudo perplexity.

To test this hypothesis, we perform another ab-
lation, WordPiece+LEMM, where the the dummy
symbols are removed entirely. If the dummy sym-
bols were not truly responsible for the large drops
in pPPL, we should observe similar results for

https://forums.hardwarezone.com.sg
https://github.com/huggingface/transformers/tree/master/examples


WordPiece (WP) WP + LEMM WP + BITE WP + BITEabl

Dataset — (Lemmatize) (+Infl. Symbols) (+Dummy Symbol)

Colloquial Singapore English
Total word tokens before WP 45803898 45803898 51982873 51982873
Pseudo Negative Log-Likelihood 30910290 30558864 31110740 30292923
pPPL (per word token before WP) 92.58 85.43 52.67 48.66
pPPL (per symbol after WP) 49.10 46.39 32.02 30.20

African American Vernacular English
Total word tokens before WP 1144803 1144803 1320730 1320730
Pseudo Negative Log-Likelihood 452269 444021 453031 434621
pPPL (per word token before WP) 13.92 13.27 9.84 8.96
pPPL (per symbol after WP) 12.90 12.41 9.18 8.43

Standard English
Total word tokens before WP 252153 252153 290391 290391
Pseudo Negative Log-Likelihood 77339 78074 90148 75467
pPPL (per word token before WP) 7.72 7.87 7.92 5.65
pPPL (per symbol after WP) 6.34 6.36 6.07 4.86

Table 4: Effect of lemmatization, inflection symbols, and dummy symbol on pseudoperplexity (pPPL). We also
show the effect of normalizing by the word token vs. subword symbol count. Lower is better. Bolded values
indicate lowest row-wise pPPLs, excluding WP+BITEabl due to the confounding effect of the highly predictable
dummy symbols.

both WordPiece+LEMM and WordPiece+BITEabl.
From Table 4 (pPPL per word token before
WP), we see that the decrease in pPPL between
WordPiece+LEMM and WordPiece is less drastic,
thereby lending evidence for rejecting the null hy-
pothesis.

Poorer performance on Standard English. We
observe that lemmatizing all content words and/or
reinjecting the grammatical information appears to
have the opposite effect on Standard English data
compared to the dialectal data. Intuitively, such
an encoding should result in even more significant
reductions in perplexity on Standard English since
the POS tagger and lemmatizer were trained on
Standard English data. A possible explanation for
these results is that the WordPiece tokenizer and
BERT model are overfitted on Standard English,
since they were both (pre-)trained on Standard En-
glish data.

Normalizing log-likehoods. In an earlier ver-
sion of this paper, we computed pseudo perplexity
by normalizing the pseudo log-likehoods with the
number of masked subword symbols (the default).
A reviewer pointed out that per subword symbol
perplexities are not directly comparable across dif-
ferent subword segmentations/vocabularies, but
per word perplexities are (Mielke, 2019; Salazar
et al., 2020). However, using the same denominator
would unfairly penalize models using BITE since
it inevitably increases the symbol sequence length,
which affects the predicted log-likelihoods. In ad-

dition, with the exception of the inflection/dummy
symbols that replaced some unused tokens, the vo-
cabularies of all the WordPiece tokenizers used in
our pseudo perplexity experiments are exactly the
same since we do not retrain them. Therefore, we
attempt to balance these two factors by normalizing
by the number of word tokens fed into the Word-
Piece component of each tokenization pipeline in
Fig. 2. We also report the per subword pPPL and
raw pseudo negative log-likelihood in Table 4.

B.3 Machine Translation Experiments
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Figure 7: Validation perplexity over the course of train-
ing for Transformer-big.

For our Transformer-big experiments, we use the
fairseq (Ott et al., 2019) implementation and
the hyperparameters from Ott et al. (2018):
• Parameters: 210,000,000
• BPE operations: 32,000



• Learning rate: 0.001
• Per-GPU batch size: 3,584 tokens
• Warmup period: 4,000 updates
• Dropout: 0.3
• Gradient Accumulation: 16
Both models took 24.6 hours to complete 45k

updates. We use a fairseq script12 to average
the selected checkpoint with the previous nine.

Dataset and metrics. We use the WMT’16
data13 for training and newstest2013 for develop-
ment and newstest2014 for testing. Although it
is common practice to use the already encoded
WMT’16 data released by Google, BITE requires
raw or whitespace-tokenized text as input. Hence,
we use the raw WMT data and the fairseq pre-
processing script to preprocess our data. After pre-
processing, we obtain a dataset of 4.3M training
examples, 2,996 dev. examples, and 3,003 test ex-
amples. Models are evaluated using BLEU14 (Pa-
pineni et al., 2002) and METEOR15 (Denkowski
and Lavie, 2014), standard MT evaluation metrics.

B.4 Model-Independent Analyses

We use the tokenizers implementation of
WordPiece and BPE and the SentencePiece (Kudo
and Richardson, 2018) implementation of unigram
LM. For ease of comparison across the three en-
coding schemes, we pretokenize the raw text with
tokenizers BertPreTokenizer before encoding
them. For practical applications, users may use
sentencepiece’s method of handling whites-
pace characters instead of the BertPreTokenizer.

General form of Eq. (1).

SymbComp(S1, . . . , SN ) =
N∑
i=1

(|Si| − ui) + λui

(2)
where N is the total number of word types in the
evaluation corpus, Si is the sequence of symbols
obtained from encoding the ith base form, ui is the
number of unknown symbols in Si, and λ is the
weight of the unknown symbol penalty.

Ratcliff/Obershelp algorithm. We use Python’s
difflib implementation.

12github.com/pytorch/fairseq/.../average checkpoints.py
13statmt.org/wmt16/translation-task.html
14Calculated by fairseq.
15cs.cmu.edu/ alavie/METEOR/

C More Measures of Vocabulary
Efficiency
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Figure 8: Relative increase in mean encoded sequence
lengths (%) between BITE-less and BITE-equipped to-
kenizers after training the data-driven subword tokeniz-
ers with varying vocabulary sizes; lower is better. Base-
line (dotted red line) denotes the percentage of inflected
forms in an average sequence; this is equivalent to the
increase in sequence length if BITE had no effect on
the data-driven tokenizers’ encoding efficiency.

Sequence lengths. A possible concern with
BITE is that it may significantly increase the length
of the encoded sequence, and hence the computa-
tional cost for sequence modeling, since it splits all
inflected content words (nouns, verbs, and adjec-
tives) into two symbols. We calculate the percent-
age of inflected words to be 17.89%.16 Therefore,
if BITE did not enhance WordPiece’s and BPE’s
encoding efficiency, we should expect a 17.89%
increase (i.e., upper bound) in their mean encoded
sequence length. However, from Fig. 8, we see
this is not the case as the relative increase (with
and without BITE) in mean sequence length gen-
erally stays below 13%, 5% less than the baseline.
This demonstrates that BITE helps the data-driven
tokenizer make better use of its limited vocabulary.

In addition, we see that the gains are inversely
proportional to the vocabulary size. This is likely
due to the following reasons. For a given sentence,
the corresponding encoded sequence’s length usu-
ally decreases as the data-driven tokenizer’s vo-
cabulary size increases as it allows merging of
more smaller subwords into longer subwords. On
the other hand, BITE is vocabulary-independent,
which means that the encoded sequence length is
always the same for a given sentence. Hence, the
same absolute difference contributes to a larger

16Note that only content words are subject to inflection.

https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-wmt14en2de.sh
https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-wmt14en2de.sh
https://github.com/pytorch/fairseq/blob/master/scripts/average_checkpoints.py
https://statmt.org/wmt16/translation-task.html
http://www.cs.cmu.edu/~alavie/METEOR/


relative increase as the vocabulary size increases.
Additionally, more inflected forms are memorized
as the vocabulary size increases, resulting in an
average absolute increase of 0.4 symbols per se-
quence for every additional 10k vocabulary sym-
bols. Together, these two factors explain the above
phenomenon.


