
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 5596–5607,
November 16–20, 2020. c©2020 Association for Computational Linguistics

5596

Inducing Target-Specific Latent Structures for
Aspect Sentiment Classification

Chenhua Chen, Zhiyang Teng and Yue Zhang
School of Engineering, Westlake University, China

Institute of Advanced Technology, Westlake Institute for Advanced Study
{chenchenhua, tengzhiyang}@westlake.edu.cn, yue.zhang@wias.org.cn

Abstract

Aspect-level sentiment analysis aims to rec-
ognize the sentiment polarity of an aspect or
a target in a comment. Recently, graph con-
volutional networks based on linguistic de-
pendency trees have been studied for this
task. However, the dependency parsing ac-
curacy of commercial product comments or
tweets might be unsatisfactory. To tackle
this problem, we associate linguistic depen-
dency trees with automatically induced aspect-
specific graphs. We propose gating mech-
anisms to dynamically combine information
from word dependency graphs and latent
graphs which are learned by self-attention net-
works. Our model can complement supervised
syntactic features with latent semantic depen-
dencies. Experimental results on five bench-
marks show the effectiveness of our proposed
latent models, giving significantly better re-
sults than models without using latent graphs.

1 Introduction

Aspect-level sentiment analysis aims to classify the
sentiment polarities towards specific aspect terms
in a given sentence (Jiang et al., 2011; Dong et al.,
2014; Vo and Zhang, 2015). Aspects are also called
opinion targets, which can typically be product or
service features in customer reviews. For example,
in the user comment “The environment is roman-
tic, but the food is horrible”, the sentiments of the
two aspects “environment” and “food” are posi-
tive and negative, respectively. The main challenge
of aspect-level sentiment analysis is to effectively
model the interaction between the aspect and its
surrounding contexts. For example, identifying
that “romantic” instead of “horrible” as the opinion
word is the key to correctly classifying the senti-
ment of “environment”.

Recently, graph convolutional networks (GCNs;
Kipf and Welling (2017)) over dependency

i complained to the manager , but he was not even apologetic

(a) An example dependency tree from Stanford CoreNLP parser2.

the portions are small but being that the food was so good makes up for that .

(b) A latent graph for the aspect term “portion”.

the portions are small but being that the food was so good makes up for that .

(c) A latent graph for the aspect term “food”.

trees (Marcheggiani and Titov, 2017; Zhang et al.,
2019; Sun et al., 2019b; Wang et al., 2020) have re-
ceived much research attention. It has been shown
to be more effective for learning aspect-specific
representations than traditional sentence encoders
without considering graph structures (Tang et al.,
2016a,b; Liu and Zhang, 2017; Li et al., 2018a).
Intuitively, dependency trees allow a model to bet-
ter represent the correlation between aspect terms
and their relevant opinion words. However, the
existing methods suffer from two potential limi-
tations. First, dependency parsing accuracies can
be relatively low on noisy texts such as tweets,
blogs and review comments, which are the main
sources of aspect-level sentiment data. Second, de-
pendency syntax according to a treebank may not
be the most effective structure for capturing inter-
action between aspect terms and opinion words.
Take Figure 1(a) for example. The aspect term
“manager” is syntactically related to “not apolo-
getic” through complained → manager and
complained → not apologetic, though seman-
tically they are directly related.

One intuitive solution to the aforementioned
problems is to automatically induce semantic struc-
tures during the optimization process for sentiment

5597

classification. To this end, existing work has inves-
tigated latent structures sentence-level sentiment
classification (Yogatama et al., 2016; Kim et al.,
2017; Choi et al., 2017; Zhang et al., 2018; Corro
and Titov, 2019), but no existing work has con-
sidered aspect-level sentiment classification. For
the aspect-level task, a different structure should
be ideally learned for each aspect. As shown in
Figure 1(b) and 1(c), when given the sentence “the
portions are small but being that the food was so
good makes up for that.”, ideal structures for the
aspects “portions” and “food” can consist of links
relevant to the terms and their opinion words only,
without introducing additional information.

We empirically investigate three different meth-
ods for inducing semantic dependencies, including
attention (Vaswani et al., 2017), sparse attention
(Correia et al., 2019) and hard Kuma discrete struc-
tures (Bastings et al., 2019). In particular, attention
has been used as a soft alignment structure for
tasks such as machine translation (Bahdanau et al.,
2014), and sparse attention has been used for text
generation (Martins et al., 2020). The Hard Ku-
maraswamy distribution has been used to induce
discrete structures with full differentiability (Bast-
ings et al., 2019). We build a unified self-attentive-
network (SAN) framework (Vaswani et al., 2017)
for investigating the three structure induction meth-
ods, using a graph convolutional network on top
of the induced aspect-specific structure for aspect
level sentiment classification. In addition, to ex-
ploit mutual benefit with dependency syntax, we
further consider a novel gate mechanism for merg-
ing multiple tree structures during GCN encoding.

Experiments on five benchmarks including Twit-
ter, laptop and restaurant comments show the ef-
fectiveness of our proposed latent variable models.
Our final methods give the state-of-the-art results
in the literature, achieving significantly better ac-
curacies than models without using latent graphs.
To our knowledge, we are the first to investigate
automatically inducing tree structures for targeted
sentiment classification. We release our code at
https://github.com/CCSoleil/latent graph atsc.

2 Related Work

Aspect-level sentiment analysis Aspect-level
sentiment analysis includes three main sub-
tasks, namely aspect term sentiment classification
(ATSC) (Jiang et al., 2011; Dong et al., 2014),
aspect category sentiment classification (ACSC)

(Jo and Oh, 2011; Pontiki et al., 2015, 2016) and
aspect-term or opinion word extractions (Li et al.,
2018b; Fan et al., 2019; Wan et al., 2020). In this
paper, we focus on ATSC. To model relationships
between the aspect terms and the context words, Vo
and Zhang (2015) designed target-aware pooling
functions to extract discriminative contexts. Tang
et al. (2016a) modeled the interaction of targets and
context words by using target-dependent LSTMs.
Tang et al. (2016b) used multi-hop attention and
memory networks to correlate an aspect with its
opinion words. Zhang et al. (2016) design gating
mechanisms to select useful contextual informa-
tion for each target. Attention networks are further
explored by sequent work (Ma et al., 2017; Liu
and Zhang, 2017). Li et al. (2018a) used target-
specific transformation networks to learn target-
specific word representations. Liang et al. (2019)
used aspect-guided recurrent transition networks to
generate aspect-specific sentence representations.
Sun et al. (2019a) constructed aspect related aux-
iliary sentences as inputs to BERT (Devlin et al.,
2019) for strong contextual encoders. Xu et al.
(2019) proposed BERT-based post training for en-
hancing domain-specific contextual representations
for aspect sentiment analysis.

Recently, there is a line of work considering
dependency tree information for ATSC. Lin et al.
(2019) proposed deep mask memory network based
on dependency trees. Zhang et al. (2019) and
Sun et al. (2019b) encoded dependency tree using
GCNs for aspect-level sentiment analysis. Zhao
et al. (2019) used GCNs to model fully connected
graphs between aspect terms, so that all targets can
be classified using a shared representation. Huang
and Carley (2019) proposed graph attention net-
works based on dependency trees for modeling
structural relations. Wang et al. (2020) used re-
lational graph attention networks to incorporate
dependency edge type information, and construct
aspect-specific graph structures by heuristically re-
shaping dependency trees.

Latent graph induction Latent graphs can be in-
duced to learn task-specific structures by end-to-
end models jointly with downstream tasks. Kim
et al. (2017) proposed structural attention networks
to introduce latent dependency graphs as intermedi-
ate layers for neural encoders. Niculae et al. (2018)
used SparseMAP to obtain a sparse distribution
over latent dependency trees. Peng et al. (2018)
implemented a differentiable proxy to the argmax

https://github.com/CCSoleil/latent_graph_atsc

5598

Figure 1: Model architecture.

operator over latent dependency trees, which can
be regarded as a special case of introducing spar-
sity constraints into the softmax function (Nicu-
lae et al., 2018; Peters et al., 2019; Correia et al.,
2019). Bastings et al. (2019) used HardKuma
to sample stochastic interpretable discrete graphs
for interpreting the classification results. Corro
and Titov (2018) induced dependency structure for
unsupervised parsing with a differentiable perturb-
and-parsing method. While previous work obtains
different structures using different methods, we
investigate multiple methods for ATSC.

More in line with our work, Yogatama et al.
(2016) and Zhang et al. (2018) considered rein-
forcement learning for inducing latent structures
for text classification. Our work is in line but dif-
fers in two main aspects. First, we consider aspect-
based sentiment, learning a different structure for
each aspect term in the same sentence. Second, we
empirically compare different methods for latent
graph induction, and investigate complementary ef-
fects with dependency trees. To our knowledge, we
are the first to consider inducing structures automat-
ically for aspect-based sentiment classification.

3 Model

The overall model structure is shown in Figure 1.
The model consists of four main components, in-
cluding a sequence encoder layer for the input sen-
tence, a structural representation layer that learns
a latent induced structure A, a GCN network that
represents the latent structure and an aspect ori-
ented classification layer. Below we discuss each
component in detail in the bottom-up direction.

3.1 Sentence Encoder
We separately explore two sentence encoders, in-
cluding a bidirectional long short-term memory
networks (BiLSTM) encoder and a BERT encoder.
Given an input sentence s = w1w2 . . . wn, we first
obtain the embedding vector xi of each wi using a
lookup table E ∈ R|V |×dw (where |V | is the vocab-
ulary size and dw is the dimension of word vectors)
and then use a standard BiLSTM encoder to obtain
the contextual vectors of the input sentence. For
the BERT encoder, we follow the standard practice
by feeding the input “[CLS] w1 w2 . . .wn [SEP]
wf wf+1 . . .we” to BERT to obtain aspect specific
representations, where c = wf wf+1 . . .we is the
corresponding aspect sequence in s. Since BERT
uses a subword encoding mechanism (Sennrich
et al., 2015), we apply average pooling over the
subword-level representations to obtain the corre-
sponding word-level representations. The output
vectors from the sentence encoder are denoted as
ce0i for each wi.

Aspect mask In order to make the encoder learn
aspect-specific representations, we use distance-
based masks on the word representation ce0i . For-
mally, given an aspect wfwf+1 . . . we, the masked
ce0i is h0

i = mice
0
i , where mi is given by,

mi =

 1− f−i
n 1 ≤ i < f,

0 f ≤ i ≤ e,
1− i−e

n e < i ≤ n.
(1)

In this way, the more similar the context words
are to the aspect, the higher their weights are.
We denote the sentence representation as H =
[h0

i ,h
0
1, . . . ,h

0
n], which is used for inducing latent

graphs later.

3.2 Dependency Tree Representation
Given a sentence s = w1w2 . . . wn and the corre-
sponding dependency tree t over s (obtained us-
ing parser), an undirected graph G is built by tak-
ing each word as a node and representing head-
dependent relations in t as edges. Each head-
dependent arc is converted into two undirected
edges. In addition, self loops are included for each
word. Formally, the adjacent matrix Adep is given
by

Adep[i, j] =


1 if i→ j or i← j,
1 if i = j,
0 otherwise.

(2)

Adep represents the syntactic dependencies be-
tween word pairs.

5599

3.3 Latent Graph

We propose to learn latent graphs Alat for each
aspect, investigating three methods, namely self-
attention, sparse self-attention and hard kuma.

Self-attention-based latent graph Self-
attention networks (SANs) compute similarity
scores between two arbitrary nodes in a graph.
Formally, given a sentence representation H,
the similarity score αij can be regarded as the
interaction strength between node i and node j.
Alat is given by

Alat = softmax
((QWq)(KWk)

T

√
d

)
(3)

where Q and K are two copies of H, representing
the query and key vectors, respectively. Wq ∈
Rd×d and Wk ∈ Rd×d are model parameters. The
denominator

√
d is a scale constant for controlling

the magnitude of the dot-product operation. The
softmax function normalizes the similarity scores
by the column so that the sum of each row in Alat

equals to 1.
Multi-head SANs partition the graph representa-

tion H into multiple non-overlapping heads H =
[H1,H2, . . . ,HK], where K is the number of
heads and Hi ∈ Rn× d

K . For the i-th head, Eq
3 is independently applied to generate Ai

head. The
final latent graph averages the latent graphs of all
heads,

Alat =

∑K
i=1A

i
head

K
. (4)

Sparse-self-attention-based latent graph
SANs learn a fully connected latent graph, where
dense attention weights can bring noise from
irrelevant context. To address this issue, sparse
SANs potentially enables each node to attend
to highly relevant contextual nodes. To achieve
this goal, we replace the softmax operation in Eq
3 with the 1.5-entmax function (Niculae et al.,
2018; Peters et al., 2019; Correia et al., 2019),
which can project a real-valued vector into a sparse
probability simplex. Formally,

Alat = 1.5-entmax
((QWq)(KWk)

T

√
d

)
, (5)

where 1.5-entmax3 is applied to each row of
the resulted matrix, with 1.5-entmax(x) =

3We use the implementation of 1.5-entmax from https:
//github.com/deep-spin/entmax.

argmaxp∈4d pTx + HT
1.5(p). Here

HT
1.5(p) is an entropy function and

HT
1.5(p) = 1

1.5×(1.5−1)
∑d

j=1(pj − p1.5j). For
more details, readers can refer to Peters et al.
(2019).

Similar to Eq 4, multi-head SANs are used for
sparse latent graph learning.

HardKuma-based latent graph Hard-
Kuma (Bastings et al., 2019) is a method
which can produce stochastic graphs by sampling.
Suppose that each edge αij ∈ [0, 1] between
nodes i and j is a stochastic random variable
and αij ∼ HardKuma(a, b, l, r), where Hard-
Kuma is a rectified Kumaraswamy distribution
which includes both 0 and 1 in the support of
Kumaraswamy distribution4, a > 0 and b > 0
are parameters to control the shape of the Hard
Kumaraswamy probability distribution, l < 0
and r > 1 define the supporting open interval
(l, r). A sample of αij can be obtained by gradient
reparameterization tricks (Kingma and Welling,
2013; Jang et al., 2016),

s1 = F−1Kuma(u; a, b),

s2 = l + (r − l)× s1,
z = min(1,max(0, s2)),

where u is a uniform random variable and u ∼
U(0, 1) which replaces the HardKuma sample,
F−1Kuma is the inverse c.d.f. of the Kumaraswamy
distribution and F−1Kuma(u, a, b) = (1 − (1 −
u)1/b)1/a. s1 is a sample of the Kumaraswamy
distribution, s2 is a stretched sample for the sup-
porting interval after shift and scale operations. s2
is converted to z by a hard-sigmoid function, which
can ensure that the value of z falls into [0, 1]. z is
differentiable with respect to the shape parameters
a and b.

Denote the shape parameters for all edges as a
and b. With reparameterization, the sampling is
independent of the model and the main goal is to
represent a and b using neural networks. Specifi-
cally, a and b can be calculated by SANs. Formally,

4For more details, refer to Bastings et al. (2019).

https://github.com/deep-spin/entmax
https://github.com/deep-spin/entmax

5600

a ∈ Rn×n for the whole graph is given by

Ha = MHSAN(H,H,H),

Ca = LN(FFN(Ha) +Ha),

sa = CaC
T
a ,

na =
sa −mean(sa)

std(sa)
,

a = softplus(na),

Alat ∼ HardKuma(a,b, l, r),

(6)

where MHSAN, LN and FFN denote multi-head
self attention networks, layer normalization and
position-wise feed-forward networks, respectively.
In our model, the particular networks of MHSAN,
LN and FFN are taken from Transformer (Vaswani
et al., 2017). b is defined in a similar way, but with
different parameters. Here Ha is the initial result of
MHSAN, Ca considers residual connections and
feature transformations, sa is the initial similarity
score calculated by self attention, na denotes the
normalized similarity scores and a is ensured to
be non-negative by applying the softplus activation
function over na.

3.4 Graph Convolutional Networks
Graph convolutional networks (GCNs) (Kipf and
Welling, 2017) encode graph-structured data with
convolution operations. The representation of each
node v in a graph G is aggregated from its neigh-
bors. Suppose that the node set is V = {vi}ni=1,
where n is the number of nodes and the graph is
G = {V,A}. A ∈ Rn×n is the adjacent matrix
between nodes. Let the representation vector of
vi at the l-th layer be hl

i and hl
i ∈ Rd, where d

is the node vector dimension. The whole graph
representation of the l-th layer Hl is the concate-
nation of all the node vectors of this layer, namely
Hl = [hl

1,h
l
2, ...,h

l
n] and Hl ∈ Rn×d. The graph

convolution for Hl is given by:

Hl = ρ(AHl−1Wl + bl), (7)

where Wl ∈ Rd×d and bl ∈ Rd are model param-
eters for the l-th layer. ρ is an activation function
over the input graph representation Hl−1 and typi-
cally set to be the ReLU function. The initial input
H0 is the sentence representation H.

3.5 Gated Combination
Given two graphs Adep and Alat, we design gating
mechanisms to combine the strengths of both. For-
mally, suppose that the input graph representation

is Hin, the graph convolution weight matrix and
bias are W and b respectively, we propose a gated
GCN to output Hout by considering both Adep and
Alat,

Idep = AdepHinW,

Ilat = AlatHinW,

g = σ(Ilat),

Icom = (1− λg)� Idep + λg � Ilat,

Hout = ρ(Icom + b),

(8)

where g is a gating function learned automatically
from data and 0 ≤ λ ≤ 1 is a hyper-parameter for
prior knowledge. The graph convolutional matrix
W is the same for Adep and Alat, which suggests
that our model does not introduce any additional
parameters. AHW in Eq 8 can be replaced with
Icom, which is a gated combination of AdepHW
and AlatHW. This combination equals that we
first merge Adep and Alat into a single graph Acom

using dynamic gating mechanisms and then directly
use Acom as A in Eq 7 to obtain the graph repre-
sentations.

Gated GCN blocks In practice, we stack N
GCN layers. For different layers, the convolution
parameters are different. A highway network is
used to combine the feature representations in ad-
jacent layers. Formally, given the input represen-
tation of the l-th block Hl−1, the input to the first
block is the aspect-aware sentence representation
H0, the output of the l-th block Hl is given by,

gl = σ(Hl−1),

Hl
com = gatedcombine(Hl−1,Adep,Alat),

Hl = gl �Hl
com + (1− gl)�Hl−1,

where gatedcombine is the GCN function defined
in Eq 8. We apply the highway gate to all the GCN
blocks except for the last one.

3.6 Sentiment Classifier
Aspect-specific attention Based on the output
of the last GCN block HN , we obtain the rep-
resentations for the aspect wfwf+1 . . . we using
HN

f ,H
N
f+1 . . . ,H

N
e . The final aspect-specific fea-

ture representation z is given by an attention net-
work over the sentence representation vectors ce0i

γt =
e∑

i=f

ce0tH
N
i ,

α = softmax(γ),

z = αC,

(9)

5601

where C = [ce01, ce
0
2, . . . , ce

0
n] is the contextu-

alized representations produced by the sentence
coder, γt is the attention scores of the t-th context
word with respect to the aspect term, α denotes
the normalized attention scores and z is the final
aspect-specific representation.

Softmax classifier The aspect-specific represen-
tation vector z is then used to calculate the senti-
ment score by a linear transformation. A softmax
classifier is used to predict the probability of the
sentimental class according to the learned senti-
ment scores. Formally,

p = softmax(Woz+ bo), (10)

where Wo and bo are model parameters and p is
the predicted sentiment probability distribution.

3.7 Training
The classifier is trained by maximizing the negative
log-likelihood of a set of training samples D =
{xi, yi}Ni=1, where each xi contains a set of aspects
ci,j . Formally, the loss function is given by

L(θ) = −
N∑
i=1

∑
ci,j

logpyi,j +
λ′

2
||θ||2,

where N is the number of training instances, θ is
the set of model parameters, λ′ is a regularization
hyperparameter, yi,j is the training label of the j-th
aspect ci,j in xi and pyi,j is the aspect classification
probability for ci,j , which is given by Eq 10.

4 Experiments

We conduct experiments on five benchmark
datasets for aspect-level sentiment analysis, in-
cluding twitter posts (TWITTER) from Dong et al.
(2014), laptop comments (LAP14) provided by
Pontiki et al. (2014), restaurant reviews of SemEval
2014 task 4 (REST14; Pontiki et al. 2014), Se-
mEval 2015 task 12 (REST15; Pontiki et al. 2015)
and SemEval 2016 task 5 (REST16; Pontiki et al.
2016). We pre-process these dataset in the same
way as Tang et al. (2016b) and Zhang et al. (2019).
Table 1 shows the statistics.

Settings. We initialize word embeddings with
300-dimensional pretrained GloVe (Pennington
et al., 2014) embeddings5. The number of gated
GCN blocks is 2. The head number is 8. The hid-
den dimension is 300. We parse the data using

5http://nlp.stanford.edu/data/glove.840B.300d.zip

Dataset #Pos. #Neu. #Neg.

TWITTER Train/Test 1,561/173 3,127/346 1,560/173

LAP14 Train/Test 994/341 464/169 870/128

REST14 Train/Test 2,164/728 637/196 807/196

REST15 Train/Test 912/326 36/34 256/182

REST16 Train/Test 1,240/469 69/30 439/117

Table 1: Dataset statistics.

Model depGCN sanGCN sparseGCN kumaGCN

full -latent -dep

Acc. 88.99 88.64 89.29 89.39 89.12 89.23
F1 67.48 69.37 72.14 73.19 70.89 72.04

Table 2: Model performances on REST16.

Stanza (Qi et al., 2020). No dependency labels are
used. For the other settings, we follow Zhang et al.
(2019). Following previous conventions, we repeat
each model three times and average the results,
reporting accuracy (Acc.) and macro-f1 (F1).

4.1 Development Results

Effect of latent graphs Table 2 shows the per-
formances on REST16. We enhance dependency
tree based graphs with self-attention based la-
tent graph models (sanGCN), sparse self-attention
based latent graph models (sparseGCN) and
hard kuma based latent graph models (kumaGCN).
sparseGCN significantly outperforms depGCN.
sanGCN is also better than depGCN in terms of
F1 scores. kumaGCN performs the best, achieving
89.39 accuracy scores and 73.19 F1 scores, which
empirically shows the importance of introducing
stochastic semantic directly related connections be-
tween aspect word and the context words.

We additionally test two model variants,
−latent and −dep, which denote kumaGCN mod-
els without using latent graphs or dependency trees,
respectively. Both underperform the full model,
which demonstrates the strength of combining the
two graphs for learning better aspect-specific graph
representations. Additionally, −latent is worse
than −dep especially in terms of F1, which shows
that the automatically induced latent graph can be
better than the dependency graph. As a result, we
use kumaGCN as our final model.

Effect of λ To investigate how the trade-off be-
tween using automatically latent graphs and de-
pendency tree may affect the ATSC performance,
we vary λ in Eq 8 from 0 to 1 using a step size
0.1. Figure 2 shows the F1 scores achieved by ku-
maGCN on REST16 and REST15 with different

5602

0.0 0.2 0.4 0.6 0.8 1.0

0.62

0.64

0.66

0.68

0.70

0.72

F1

REST16

REST15

Figure 2: Effect of λ on REST16 and REST15 using
kumaGCN.

λ. When λ = 0, the model degrades to depGCN;
when λ = 1 the model relies solely on automat-
ically learned latent graphs. λ = 0.2 gives the
best results, which shows that the structures are
complementary to each other. We thus set λ =0.2.

4.2 Main Results

We compare our models with:

• LSTM. Tang et al. (2016a) present target-
dependent LSTMs to model the interaction
of the target and the context words.
• MemNet. Tang et al. (2016b) leverage multi-

hops of attention layers on the context word
embeddings for sentence representation.
• IAN. Ma et al. (2017) use interactive attention

networks to interactively learn the relationship
between the targets and their contexts.
• TNet-LF. Li et al. (2018a) adopt context-

preserving transformations on a convolutional
neural network enhanced model.
• depGCN. Zhang et al. (2019) apply aspect-

specific GCNs based on dependency trees to
extract syntactic features.
• BERT-SPC6. This is a simple baseline by

fine-tuning BERT for sentence classification.
• AEN BERT. Song et al. (2019) employ an

attentional encoder network and apply pre-
trained BERT to the task.
• RGAT+BERT. Wang et al. (2020) use rela-

tional graph attention networks to incorporate
the dependency edge type information.

Without BERT, using Glove embeddings Ta-
ble 3 shows the results. KumaGCN outperforms
all the baselines in terms of both averaged accu-
racy scores and averaged F1 scores. In particular, it

6We adopt the widely used implementation https://github.
com/songyouwei/ABSA-PyTorch.

improves the performance by 2.77 F1 points com-
pared with the depGCN method. The performance
gain compared to depGCN can empirically demon-
strate the effectiveness of introducing latent graphs
for aspect sentiment analysis tasks. Considering
the running time, the self-attention module and the
gated combination module can make our model
slower compared to depGCN. In practice, we com-
pare our model with depGCN on the Rest16 test
dataset (616 examples). The inference time costs
are 0.32s and 0.48s for depGCN and our model
respectively, which shows that our model does not
add too much computation overhead.

Our model also significantly outperforms the
state-of-the-art non-depGCN model TNet-LF7 on
all the datasets except for Twitter. On Twitter,
sparseGCN gives 72.64 accuracy, which is com-
parable to the performances of TNet-LF (72.98),
which applies a topmost convolution 2D layer over
a BiLSTM encoder to capture local n-grams and is
thus less sensitive to informal texts without strong
sequential patterns. We believe that the slight
performance deficiency compared to TNet-LF is
because of specific network settings. In particu-
lar, TNet-LF applies an attention-based context-
preserving transformation to enhance the contex-
tual representations produced by the BiLSTM en-
coder. For fair comparison with baselines, we do
not use such modules8. To our knowledge, our
model gives the best results without using BERT.

Comparison with Sun et al. (2019b)’s model
Sun et al. (2019b) also proposed a GCN model
based on dependency trees for aspect sentiment
analysis similar to depGCN of Zhang et al. (2019).
Sun et al. (2019b) use aspect-specific pooling
over the dependency tree nodes to obtain the fi-
nal representation vector, instead of using aspect
mask and aspect-specific attention of Zhang et al.
(2019). The data settings of Sun et al. (2019b)’s
model are different from ours. For example,
the positive/negative/neutral examples of their set-
tings on LAP14 are 976/851/455, while ours are
994/870/464. In addition, they include POS tags
in the input. A direct comparison without reimple-

7The results of TNet-LF does not match the original pa-
per because the original paper of TNet-LF potentially fil-
ters out some training examples. For example, the posi-
tive/negative/neutral examples of TNet-LF on Laptop14 are
980/858/454, while ours are 994/870/464, respectively.

8If it were used for kumaGCN, the ACC/F1 scores are
73.51/72.06 on the twitter dataset, which are better than the
performance of TNet-LF (72.98/71.43).

https://github.com/songyouwei/ABSA-PyTorch
https://github.com/songyouwei/ABSA-PyTorch

5603

Model TWITTER LAP14 REST14 REST15 REST16 AVERAGE

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

LSTM 69.56 67.70 69.28 63.09 78.13 67.47 77.37 55.17 86.80 63.88 76.23 63.46
MemNet 71.48 69.90 70.64 65.17 79.61 69.64 77.31 58.28 85.44 65.99 76.90 65.80

IAN 72.50 70.81 72.05 67.38 79.26 70.09 78.54 62.65 84.74 55.21 77.42 65.23
TNet-LF 72.98 71.43 74.61 70.14 80.42 71.03 78.47 59.47 89.07 70.43 79.11 68.50

depGCN 72.15 70.40 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48 79.47 68.57
sparseGCN 72.64 71.02 75.91 71.89 81.30 72.68 80.57 65.52 89.29 72.14 79.94 70.65
kumaGCN 72.45 70.77 76.12 72.42 81.43 73.64 80.69 65.99 89.39 73.19 80.02 71.20

Table 3: Main results on five benchmark datasets: averaged accuracy (Acc.) and F1 score.

Model TWITTER LAP14 REST14 REST15 REST16

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

AEN BERT (Song et al., 2019) 75.14 74.15 76.96 73.67 84.29 77.22 - - - -
RGAT+BERT (Wang et al., 2020) 76.15 74.88 78.21 74.07 86.60 81.35 - - - -

BERT-SPC (Devlin et al., 2019) 73.41 72.38 80.56 77.20 84.55 75.74 83.03 63.92 90.75 74.00
depGCN + BERT 75.58 74.58 81.19 77.67 85.00 78.79 85.23 70.13 91.56 77.31
kumaGCN + BERT 77.89 77.03 81.98 78.81 86.43 80.30 86.35 70.76 92.53 79.24

Table 4: Main results on five benchmark datasets when BERT is used.

Model REST14 LAP14 TWITTER REST16

Re-run of Sun’s code 71.92 70.16 71.71 67.29
Our kumaGCN model 72.31 71.91 74.24 70.96

Table 5: F1 comparisons between Sun et al. (2019b)’s
model and our kumaGCN model using their settings.

mentation is unfair. Preliminary results show that
the results of Sun et al. (2019b) is slightly worse
than that of depGCN based on the Zhang et al.
(2019)’s data settings.

We also add a head-to-head comparison with
Sun et al. (2019b) as shown in Table 5 using their
data settings. It can be seen that our model can still
achieve better F1 scores on all the datasets.

With BERT We compare our kumaGCN +
BERT models with the state-of-the-art BERT-based
models, and also implement the depGCN+BERT
model as baseline. Table 4 shows the re-
sults. depGCN+BERT generally performs bet-
ter than BERT-SPC. Our model outperforms both
depGCN+BERT and BERT-SPC on all the datasets.
Compared to the current state-of-the-art depen-
dency tree based models RGAT+BERT, our model
is better on TWITTER and LAP14. On REST14,
the accuracy score of our model is comparable
to RGAT+BERT without using dependency la-
bel information. In addition, our model gives
86.35/70.76 (REST15) and 92.53/79.24 (REST16)
Acc./F1 scores, which are the best results on the
datasets to our knowledge.

Model\Target REST14 REST15 REST16

BERT-SPC 49.46/43.54 44.10/39.69 45.45/33.67

depGCN+BERT 63.12/55.83 56.83/47.68 62.99/45.73

kumaGCN+BERT 72.14/61.77 65.31/52.31 71.10/49.67

Table 6: Results for transfer learning from Twitter to
the three datasets.

4.3 Parameter-based Transfer Learning

We further perform experiments using parameter-
based transfer learning by training one source
model on the Twitter dataset, and testing the trained
model on the restaurant datasets. Table 6 shows
the results. Our model outperforms BERT-SPC on
all the target domains, which empirically demon-
strates the strong aspect-specific semantic represen-
tation abilities of our proposed model. Compared
to depGCN+BERT, our model gives improved re-
sults on the three datasets by about 10.0 accuracy
points, which suggests that the induced latent struc-
tures have strong robustness for capturing aspect-
opinion interactions.

4.4 Attention Distance

Figure 3 shows the distribution of the averaged at-
tention weights of the context words according to
the aspect terms on the test sentences of REST16.
In both cases, the attention scores defined in Eq
9 are shown. kumaGCN makes the distribution
sharper than depGCN, focusing more on the con-
text within 1 or 2 words. This observation also
confirms data bias in the training set, where many

5604

0 1 2 3 4 5 6 7 8 9 10 11-20 21-30 31-40 41-50 51-60 >61
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 kumaGCN

depGCN

Figure 3: Attention distance distribution. x-axis: dis-
tance to the aspect terms; y-axis: attention scores.

opinion words are close to the aspect term (Tang
et al., 2016b). Though depGCN can assign high
weights to words far away from the target by us-
ing syntactic path dependencies, it may also bring
in more noise. kumaGCN potentially circumvents
this problem.

4.5 Case Study

To gain more insights into our model’s behavior,
we show one case study in Figure 4 using the ex-
ample “when i got there i sat up stairs where the
atmosphere was cozy & the service was horrible
!”. This example contains two aspects “atmosphere”
and “service”. Both depGCN and kumaGCN can
correctly classify the sentiment of “service” as neg-
ative. However, depGCN cannot recognize the pos-
itive sentiment of “atmosphere” while kumaGCN
can. Figure 4(a) compares the attention weights α
defined in Eq 9 of each context word with respect
to “atmosphere” between depGCN and kumaGCN.
For the target “atmosphere”, depGCN assigns the
highest weight to the word “terrible”, which is an
irrelevant sentiment word to this target, leading to
an incorrect prediction. In contrast, our model as-
signs the largest weight to the key sentiment word
“cozy”, classifying it correctly.

Figure 4(b) shows pruned dependency trees by
only keeping dependency edges related to these
two aspects. We observe that the current parse
contains an edge between “cozy” and “horrible”,
which might mislead depGCN to produce inappro-
priate representations. For further comparisons, we
also extract the links of each target word i from
the latent graph Alat (Eq 6) by only keeping edges
between i and j if and only if j = argmaxj′ Ai,j′ .
If j is not unique, we return all the indices which
correspond to the same highest value. Figure 4(c)
and Figure 4(d) show the two latent graphs for “at-
mosphere” and “service”, respectively. First, we
observe that the two latent graphs are significantly
different. Second, each of them contains only a

(depGCN) when0.03 i0.02 got0.02 there0.01 i 0.03 sat0.05 up0.03 stairs0.04
where0.09 the0.07 atmosphere0.01 was0.02 cozy0.03 &0.07 the0.07
service0.02 was0.11 horrible0.25 !0.03
(kumaGCN) when0.00 i0.00 got0.00 there0.00 i0.00 sat0.00 up0.00
stairs0.00 where0.09 the0.10 atmosphere0.14 was0.31 cozy0.35 &0.00 the0.00
service0.00 was0.00 horrible0.00 !0.00

(a) Attention comparsions between depGCN and kumaGCN.
Subscript numbers indicate the attention weights with respect
to the underlined target words.

when I got there i sat up stairs where the atomoshpere was cozy the service was horrible !&

(b) Pruned dependency graph for “atmosphere” and “service”.

when I got there i sat up stairs where the atomoshpere was cozy the service was horrible !&

(c) Latent graph for “atmosphere”.

when I got there i sat up stairs where the atomoshpere was cozy the service was horrible !&

(d) Latent graph for “service”.

Figure 4: Comparisons of graph representations.

few edges related to the semantic contexts for sen-
timent classification. We also verify that there is
no edge between “cozy” and “horriable” when in-
ducing the latent graph of “atmosphere”. This can
be an example to show that our model can learn
aspect-specific latent graphs. With these automat-
ically induced graphs, our model can learn better
aspect-aware representations, providing better at-
tention weights than depGCN.

5 Conclusion

We considered latent graph structures for aspect
sentiment classification by investigating a variety
of neural networks for structure induction, and
novel gated mechanisms to dynamically combine
different structures. Compared with dependency
tree GCN baselines, the model does not introduce
additional model parameters, yet significantly en-
hances the representation power. Experiments on
five benchmarks show effectiveness of our model.
To our knowledge, we are the first to investigate
latent structures for aspect level sentiment classi-
fication, achieving the best-reported accuracy on
five benchmark datasets.

Acknowledgments

Yue Zhang is the corresponding author. Thanks to
anonymous reviewers for their insightful comments
and suggestions. This project is supported by the
Westlake-BrightDreams Robotics research grant
and a research grant from Rxhui Inc.

5605

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Joost Bastings, Wilker Aziz, and Ivan Titov. 2019. In-
terpretable neural predictions with differentiable bi-
nary variables. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2963–2977, Florence, Italy. Associa-
tion for Computational Linguistics.

Jihun Choi, Kang M. Yoo, and Sang-goo Lee. 2017.
Learning to compose task-specific tree structures. In
AAAI.

Gonçalo M. Correia, Vlad Niculae, and André F. T.
Martins. 2019. Adaptively sparse transformers. In
Proc. of EMNLP-IJCNLP, pages 2174–2184, HK,
China.

Caio Corro and Ivan Titov. 2018. Differentiable
perturb-and-parse: Semi-supervised parsing with a
structured variational autoencoder. arXiv preprint
arXiv:1807.09875.

Caio Corro and Ivan Titov. 2019. Learning latent trees
with stochastic perturbations and differentiable dy-
namic programming. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5508–5521, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proc. of NAACL-HLT, pages 4171–4186,
USA.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment clas-
sification. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 49–54, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Zhifang Fan, Zhen Wu, Xin-Yu Dai, Shujian Huang,
and Jiajun Chen. 2019. Target-oriented opinion
words extraction with target-fused neural sequence
labeling. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 2509–2518, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Binxuan Huang and Kathleen Carley. 2019. Syntax-
aware aspect level sentiment classification with
graph attention networks. In Proc. of EMNLP-
IJCNLP, pages 5468–5476, HK, China.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categor-
ical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and
Tiejun Zhao. 2011. Target-dependent twitter senti-
ment classification. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
151–160, Portland, Oregon, USA. Association for
Computational Linguistics.

Yohan Jo and Alice H. Oh. 2011. Aspect and sentiment
unification model for online review analysis. In Pro-
ceedings of the fourth ACM international conference
on Web search and data mining, pages 815–824.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M. Rush. 2017. Structured attention networks.
CoRR, abs/1702.00887.

Diederik P. Kingma and Max Welling. 2013. Auto-
encoding variational bayes.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Proc. of ICLR.

Xin Li, Lidong Bing, Wai Lam, and Bei Shi. 2018a.
Transformation networks for target-oriented senti-
ment classification. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 946–
956, Melbourne, Australia. Association for Compu-
tational Linguistics.

Xin Li, Lidong Bing, Piji Li, Wai Lam, and Zhimou
Yang. 2018b. Aspect term extraction with history at-
tention and selective transformation. arXiv preprint
arXiv:1805.00760.

Yunlong Liang, Fandong Meng, Jinchao Zhang, Jinan
Xu, Yufeng Chen, and Jie Zhou. 2019. A novel
aspect-guided deep transition model for aspect based
sentiment analysis. In Proc. of EMNLP-IJCNLP,
pages 5568–5579, HK, China.

Peiqin Lin, Meng Yang, and Jianhuang Lai. 2019.
Deep mask memory network with semantic depen-
dency and context moment for aspect level sentiment
classification. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intel-
ligence, IJCAI-19, pages 5088–5094. International
Joint Conferences on Artificial Intelligence Organi-
zation.

Jiangming Liu and Yue Zhang. 2017. Attention mod-
eling for targeted sentiment. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2,
Short Papers, pages 572–577, Valencia, Spain. As-
sociation for Computational Linguistics.

Dehong Ma, Sujian Li, Xiaodong Zhang, and
Houfeng Wang. 2017. Interactive attention net-
works for aspect-level sentiment classification. In
arXiv:1709.00893.

https://doi.org/10.18653/v1/P19-1284
https://doi.org/10.18653/v1/P19-1284
https://doi.org/10.18653/v1/P19-1284
https://doi.org/10.18653/v1/P19-1551
https://doi.org/10.18653/v1/P19-1551
https://doi.org/10.18653/v1/P19-1551
https://doi.org/10.3115/v1/P14-2009
https://doi.org/10.3115/v1/P14-2009
https://doi.org/10.3115/v1/P14-2009
https://doi.org/10.18653/v1/N19-1259
https://doi.org/10.18653/v1/N19-1259
https://doi.org/10.18653/v1/N19-1259
https://www.aclweb.org/anthology/P11-1016
https://www.aclweb.org/anthology/P11-1016
http://arxiv.org/abs/1702.00887
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.18653/v1/P18-1087
https://doi.org/10.18653/v1/P18-1087
https://doi.org/10.24963/ijcai.2019/707
https://doi.org/10.24963/ijcai.2019/707
https://doi.org/10.24963/ijcai.2019/707
https://www.aclweb.org/anthology/E17-2091
https://www.aclweb.org/anthology/E17-2091

5606

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506–1515, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Pedro Henrique Martins, Zita Marinho, and Andr? F. T.
Martins. 2020. Sparse text generation.

Vlad Niculae, André F. T. Martins, and Claire Cardie.
2018. Towards dynamic computation graphs via
sparse latent structure. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 905–911, Brussels, Bel-
gium. Association for Computational Linguistics.

Hao Peng, Sam Thomson, and Noah A. Smith. 2018.
Backpropagating through structured argmax using a
SPIGOT. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1863–1873, Mel-
bourne, Australia. Association for Computational
Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proc. of EMNLP, pages 1532–1543,
Qatar.

Ben Peters, Vlad Niculae, and André F. T. Martins.
2019. Sparse sequence-to-sequence models. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1504–
1519, Florence, Italy. Association for Computational
Linguistics.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Moham-
mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphee De Clercq, Veronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Núria Bel,
Salud Marı́a Jiménez-Zafra, and Gülşen Eryiğit.
2016. Semeval-2016 task 5 : aspect based senti-
ment analysis. In Proc. of the Workshop on SemEval,
pages 19–30.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
Semeval-2015 task 12: Aspect based sentiment anal-
ysis. In Proc. of the Workshop on SemEval, pages
486–495.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. Semeval-2014 task 4: As-
pect based sentiment analysis. In Proc. of the Work-
shop on SemEval, pages 27–35.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many

human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Youwei Song, Jiahai Wang, Tao Jiang, Zhiyue Liu, and
Yanghui Rao. 2019. Attentional encoder network
for targeted sentiment classification. arXiv preprint
arXiv:1902.09314.

Chi Sun, Luyao Huang, and Xipeng Qiu. 2019a. Uti-
lizing BERT for aspect-based sentiment analysis via
constructing auxiliary sentence. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 380–385, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Kai Sun, Richong Zhang, Samuel Mensah, Yongyi
Mao, and Xudong Liu. 2019b. Aspect-level senti-
ment analysis via convolution over dependency tree.
In Proc. of EMNLP-IJCNLP, pages 5678–5687, HK,
China.

Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu.
2016a. Effective lstms for target-dependent senti-
ment classification. In Proc. of COLING, pages
3298–3307, Japan.

Duyu Tang, Bing Qin, and Ting Liu. 2016b. Aspect
level sentiment classification with deep memory net-
work. In Proc. of EMNLP, pages 214–224, USA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv:1706.03762.

Duy-Tin Vo and Yue Zhang. 2015. Deep learning for
event-driven stock prediction. In Proc. of IJCAI, Ar-
gentina.

Hai Wan, Yufei Yang, Jianfeng Du, Yanan Liu, Kunxun
Qi, and Jeff Z Pan. 2020. Target-aspect-sentiment
joint detection for aspect-based sentiment analysis.
In Proceedings of the Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence.

Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan,
and Rui Wang. 2020. Relational graph attention
network for aspect-based sentiment analysis. arXiv
preprint arXiv:2004.12362.

Hu Xu, Bing Liu, Lei Shu, and Philip Yu. 2019. BERT
post-training for review reading comprehension and
aspect-based sentiment analysis. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2324–2335, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
http://arxiv.org/abs/2004.02644
https://doi.org/10.18653/v1/D18-1108
https://doi.org/10.18653/v1/D18-1108
https://doi.org/10.18653/v1/P18-1173
https://doi.org/10.18653/v1/P18-1173
https://doi.org/10.18653/v1/P19-1146
https://academic.microsoft.com/paper/2465978385
https://academic.microsoft.com/paper/2465978385
https://academic.microsoft.com/paper/2251294039
https://academic.microsoft.com/paper/2251294039
https://academic.microsoft.com/paper/2251648804
https://academic.microsoft.com/paper/2251648804
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://doi.org/10.18653/v1/N19-1035
https://doi.org/10.18653/v1/N19-1035
https://doi.org/10.18653/v1/N19-1035
https://academic.microsoft.com/paper/2626778328
https://academic.microsoft.com/paper/2626778328
https://doi.org/10.18653/v1/N19-1242
https://doi.org/10.18653/v1/N19-1242
https://doi.org/10.18653/v1/N19-1242

5607

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2016. Learning to
compose words into sentences with reinforcement
learning. arXiv preprint arXiv:1611.09100.

Chen Zhang, Qiuchi Li, and Dawei Song. 2019.
Aspect-based sentiment classification with aspect-
specific graph convolutional networks. In Proc. of
EMNLP-IJCNLP, pages 4567–4577, HK, China.

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2016.
Gated neural networks for targeted sentiment anal-
ysis. In Proc. of AAAI, page 3087–3093.

Tianyang Zhang, Minlie Huang, and Li Zhao. 2018.
Learning structured representation for text classifi-
cation via reinforcement learning. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Pinlong Zhao, Linlin Hou, and Ou Wu. 2019. Mod-
eling sentiment dependencies with graph convolu-
tional networks for aspect-level sentiment classifica-
tion. In arXiv:1906.04501.

