
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 5495–5510,
November 16–20, 2020. c©2020 Association for Computational Linguistics

5495

Widget Captioning: Generating Natural Language Description for Mobile
User Interface Elements

Yang Li∗, Gang Li∗, Luheng He, Jingjie Zheng, Hong Li†, Zhiwei Guan

Google Research, Mountain View, CA 94043, USA

Georgia Tech, Atlanta, GA 30332, USA†

{liyang, leebird, luheng, jingjiezheng, zguan}@google.com

Abstract

Natural language descriptions of user interface

(UI) elements such as alternative text are cru-

cial for accessibility and language-based inter-

action in general. Yet, these descriptions are

constantly missing in mobile UIs. We pro-

pose widget captioning, a novel task for auto-

matically generating language descriptions for

UI elements from multimodal input including

both the image and the structural representa-

tions of user interfaces. We collected a large-

scale dataset for widget captioning with crowd-

sourcing. Our dataset contains 162,859 lan-

guage phrases created by human workers for

annotating 61,285 UI elements across 21,750

unique UI screens. We thoroughly analyze the

dataset, and train and evaluate a set of deep

model configurations to investigate how each

feature modality as well as the choice of learn-

ing strategies impact the quality of predicted

captions. The task formulation and the dataset

as well as our benchmark models contribute a

solid basis for this novel multimodal caption-

ing task that connects language and user inter-

faces.

1 Introduction

Mobile apps come with a rich and diverse set of

design styles, which are often more graphical and

unconventional compared to traditional desktop ap-

plications. Language descriptions of user interface

(UI) elements—that we refer to as widget captions—

are a precondition for many aspects of mobile UI

usability. For example, accessibility services such

as screen readers, e.g., Talkback (2019), rely on

widget captions to make UI elements accessible to

visually impaired users via text-to-speech technolo-

gies. Importantly, widget captions are an enabler

for many language-based interaction capabilities

∗ Equal contribution
† Participated in the project during an internship at Google

Research.

View Hierarchy

Structures

play song

add a new

playlist
Model

Widget Captions

Element

Pixels

Mobile UI

Figure 1: Widget captioning is a task to generate lan-

guage descriptions for UI elements that miss captions,

given multimodal input of UI structures and screenshot

images. These captions are crucial for accessibility and

language-based interaction in general.

such as voice commands and general screen under-

standing efforts.

However, a significant portion of mobile apps

today lack widget captions in their user interfaces,

which have stood out as a primary issue for mo-

bile accessibility (Ross et al., 2018, 2017). More

than half of image-based elements have missing

captions (Ross et al., 2018). Beyond image-based

ones, our analysis of a UI corpus here showed that

a wide range of elements have missing captions.

Existing tools for examining and fixing missing

captions (AccessibilityScanner, 2019; AndroidLint,

2019; Zhang et al., 2018, 2017; Choo et al., 2019)

require developers to manually compose a language

description for each element, which imposes a sub-

stantial overhead on developers.

We propose widget captioning, a novel task to

automatically generate captions for UI elements1

based on their visual appearance, structural proper-

ties and context (see Figure 1). This task is analo-

gous to image captioning that generates language

descriptions for images, e.g., Xu et al. (2015);

Lin et al. (2014). However, widget captioning

1We use widgets and elements interchangeably.

5496

raises several unique challenges. User interfaces

are highly structural while traditional image cap-

tioning mostly focus on raw image pixels. Wid-

get captioning is concerned with describing indi-

vidual elements in the UI rather than the entire

UI screen, while the entire screen provides useful

contextual information for widget captioning. We

target language generation for a broad set of UI

elements, rather than only image-based ones. As

we will show in our data analysis, many non-image

elements also suffer the lack of captions. These

challenges give rise to several interesting modeling

questions such as how to combine both structural

and image input and how to effectively represent

each modality.

We start by processing and analyzing a mo-

bile UI corpus. We then create a large dataset

for widget captioning by asking crowd workers

to annotate a collection of UI elements in the cor-

pus. Based on this dataset, we train and evaluate

a set of model configurations to investigate how

each feature modality and the choice of learning

strategies would impact caption generation qual-

ity. Our champion model that is based on a Trans-

former (Vaswani et al., 2017) to encode structural

information and a ResNet (He et al., 2015) for im-

age input is able to produce accurate captions for

UI elements based on both automatic and human

evaluation. In summary, the paper makes the fol-

lowing contributions:

• We propose widget captioning as a task for au-

tomatically generating language descriptions

for UI elements in mobile user interfaces; The

task raises unique challenges for modeling

and extends the popular image captioning task

to the user interface domain.

• We create a dataset for widget captioning via

crowdsourcing2. It contains 162,859 captions

created by human workers for 61,285 UI el-

ements across 21,750 unique screens from

6,470 mobile apps. Our analysis on the miss-

ing captions and the linguistic attributes of

collected captions contribute new knowledge

for understanding the problem.

• We investigate a set of model configurations

and learning strategies for widget captioning;

our benchmark models leverage multimodal

input including both structural information

2Our dataset is released at https://github.com/google-
research-datasets/widget-caption.

and images of user interfaces3. They are able

to generate accurate captions for UI elements,

and yet leave enough room for improvement

for future research.

2 Related Work

The lack of captions or alternative text has been a

universal problem in user interfaces, ranging from

mobile apps to web pages (Ross et al., 2018, 2017;

Gleason et al., 2019; Guinness et al., 2018). Based

on an analysis of an Android UI corpus (Deka et al.,

2017), Ross et al. (2018) revealed that a significant

portion of image-based buttons lack alternative text.

By examining a broader set of UI elements, we

found missing captions is a general issue across UI

element categories.

Automatic image captioning has been a classic

task where a model learns to generate language

descriptions for images, which has gained sub-

stantial progress with the advance of deep learn-

ing (Hodosh et al., 2013; Donahue et al., 2017;

Karpathy and Li, 2014; Xu et al., 2015; Lin et al.,

2014), and the availability of datasets such as

Flickr30K (Young et al., 2014) and MS-COCO (Lin

et al., 2014). In contrast to image captioning, wid-

get captioning that we propose is concerned with

describing individual elements in the context of

the UI screen. In addition to image input, widget

captioning has access to UI structures such as view

hierarchies. These raise unique modeling opportu-

nities for multimodal captioning.

Many image captioning models (Xu et al., 2015;

Sharma et al., 2018) involve an encoding net and

a language generation net. The encoding net is

typically a deep Convolutional Neural Network

(CNN) (Krizhevsky et al., 2012) that encodes the

image input as a collection of latent vector repre-

sentations. The generation net is often an auto-

regressive decoding model, enhanced with neural

attention. For widget captioning, the encoding net

needs to encode multimodal input that include both

images and UI structures. For UI structure encod-

ing, recent work (Li et al., 2020) investigated both

Graph Convolutional Network (GCN) (Niepert

et al., 2016) and Transformer (Vaswani et al., 2017)

and showed that a Transformer encoder gives better

performance on the task, which we will use in this

work.

Our learning strategy is akin to BERT (Devlin

3Our model code is released at https://github.com/google-
research/google-research/tree/master/widget-caption.

5497

et al., 2019) that uses the words in the same sen-

tence to predict those missing using Transformer,

to learn a contextual word representation. In our

case, we use the information of elements in the

same screen context to predict those with miss-

ing captions. To generate captions, based on the

encoder output, we run multiple instances of the

decoding model in parallel, one for each element

to be captioned.

3 Creating the Widget Caption Dataset

We first create a mobile UI corpus, and then ask

crowd workers to create captions for UI elements

that have missing captions, which is followed by a

thorough analysis of the dataset.

3.1 Creating a Mobile UI Corpus

We create a mobile UI corpus based on RICO, a

public dataset of Android user interfaces, which

has 66K screens collected from human users inter-

acting with Android devices (Deka et al., 2017),

which include top apps selected broadly from vari-

ous categories in Google Play Store. We expanded

the dataset using a crawling robot to perform ran-

dom clicks on mobile interfaces, which added 12K

novel screens to our corpus. Each screen comes

with both a screenshot JPG/PNG image and a view

hierarchy4 in JSON. The view hierarchy is a struc-

tural tree representation of the UI where each node

has a set of properties such as content description,

class information, visibility, and bounding boxes.

3.1.1 Preprocessing the UI Corpus

We first exclude UI screens with missing or inac-

curate view hierarchies, which could occur when

Android logging is out of sync. This filtering step

was conducted by asking crowd workers to visually

examine each UI and confirm that the bounding

boxes of all the leaf nodes in the hierarchy match

the UI elements shown on the screenshot image.

We focus on leaf nodes because most interactive

elements are leaf nodes. The filtering process re-

sulted in 24,571 unique screens from 6,853 mobile

apps.

We then select UI elements that are visible and

clickable because they are responsible for many of

the interaction tasks. Similar to previous work, we

consider an element missing captions when both

its contentDescription and text proper-

ties in the view hierarchy are missing, according to

4https://developer.android.com/

reference/android/view/View

the Android accessibility guideline5. Screen read-

ers such as the TalkBack service1 rely on these

fields to announce the widget. Overall, in our

dataset, there are 74,379 UI elements with missing

captions, across 10 categories of UI elements (see

Figure 3).

3.1.2 Understanding Missing Captions

Previous work analyzed missing captions for

image-based elements (Ross et al., 2018). We in-

clude all types of elements in our dataset and anal-

ysis (see Appendix A). The results from analyzing

image-based elements in our corpus are compa-

rable to previous analysis, i.e., 95% of Floating

Action Buttons, 83% of Image Views, and 57%

of Image Buttons have missing captions. Beyond

these image-based elements, we found that missing

captions is a serious issue for other types of el-

ements as well (see Figure 3). More than 50%

of the Switch, Compound Button, Check

Box and Toggle Button have missing cap-

tions. 24.3% of the screens have none pre-existing

captions.

3.2 Crowdsourcing Widget Captions

To best match the target scenario of predicting for

elements with missing captions, we asked crowd

workers to created captions for these elements,

which are used as labels for training and testing.

Because pre-existing captions in the corpus are not

always correct, they are used as model input, to

provide the context, but not as output.

We developed a web interface for crowd work-

ers to create language descriptions for UI elements

that have missing captions. The interface shows

a screenshot of the mobile interface, with the UI

element that needs to be captioned highlighted (see

Appendix B). Workers can input the caption us-

ing a text field, or indicate that they cannot de-

scribe the element. In the annotation guidelines,

we asked the workers to caption the element for

vision-impaired users to understand its functionali-

ties and purposes. The captions need to be concise

but more descriptive than generic words such as

“button” or “image”. We recruited over 5,454 work-

ers from Amazon Mechanical Turk6 over multiple

batches. While the elements to be labeled by each

worker are randomly selected, we instrumented the

task in the way such that a worker can only label

5https://developer.android.com/guide/

topics/ui/accessibility/apps
6mturk.com

https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/View
https://developer.android.com/guide/topics/ui/accessibility/apps
https://developer.android.com/guide/topics/ui/accessibility/apps

5498

each unique element once, and each element is

labeled by 3 different workers.

3.3 Data Analyses

Human workers can skip elements when they were

not sure how to describe them. For all the elements

of each type given to workers, the percentage of

elements being captioned ranges from 75% to 94%

(see Figure 3). In particular, the View type has

the lowest labeling ratio of 75%, which we suspect

that elements with the View type, a generic wid-

get type, tend to be quite arbitrary and are difficult

for the workers to understand. We only kept the

elements that received at least 2 captions (from dif-

ferent workers). On average, each element received

2.66 captions. In total, we collected 162,859 cap-

tions for 61,285 UI elements across 21,750 unique

screens, from 6,470 mobile apps.

Figure 2: The distribution of precision and recall for

the top 6K words of the collected captions.

To measure inter-annotator agreement, we com-

puted the word-level precision and recall for all

the words with two or more occurrences in the

collected captions (see Figure 2), as in the COCO

image captioning dataset (Chen et al., 2015). The

results were generated on about 6K words, which

amount to 98.6% of all the word occurrences in the

captions. Figure 2 shows that our corpus has rea-

sonable word-level agreement among the captions

of the same widget. Specifically, for the 6K words,

we report the mean precision and recall of every

10 consecutive words in the vocabulary. Therefore,

we have 600 data points, each representing preci-

sion/recall of 10 words. The ranks of the words

in the vocabulary sorted by word frequency are

used to color the data points. Lower rank indicates

higher word frequencies in the corpus.

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%
Button (28830)

Radio Button (2759)
View (53061)

Image Button (26203)

Toggle Button (1135)
Check Box (3756)

Compound Button (716)

Image View (30336)Switch
 (442)

Floating Actio
n Button (1729)

Elements missing captions
Labeled elements of missing captions

Figure 3: The percentage of elements that have missing

captions (red) for each category and elements labeled

by MTurk workers (green). The numbers in parenthe-

ses are total counts of the elements.

3.3.1 Caption Phrase Analysis

We analyzed the distribution of caption lengths

created by human workers (see Figure 9). We found

most captions are brief, i.e., two to three words. But

a significant number of captions have more words,

which are often long-tail captions. The average

length of captions from human workers is 2.72.

Overall, the length distribution of captions created

by human workers is similar to those preexisting in

the UI corpus, which are from app developers (see

Appendix C). The latter will be used as a feature

input to the model, which we will discuss later.

The captions in our dataset include a diverse set

of phrases. The most frequent caption is “go back”

that amounts to 4.0% of the distribution. Other pop-

ular captions among the top 5 are “advertisement”

(2.4%), “go to previous” (0.8%), “search” (0.7%)

and “enter password” (0.6%).

A common pattern of the phrases we observe

is Predicate + Object. Table 1 lists the 7 com-

mon predicates and their most frequent objects. As

we can see, the phrases describe highly diverse

functionalities of the UI elements. It is difficult to

classify them into a few common categories. This

linguistic characteristics motivated us to choose se-

quence decoding for caption generation instead of

classification based on a predefined phrase vocab-

ulary. The diversity of caption phrases indicates

that widget captioning is a challenging machine

learning task.

Furthermore, these examples in Table 1 show

that, to distinguish different objects for the same

predicate, it is necessary to take into account the

screen context that the element belongs to. For ex-

ample, Figure 5 shows two examples of the “search”

predicate. The two UI elements have very similar

5499

Predicate Object

search location, contact, app, music, map, image, people, recipe, flight, hotel

enter password, email, username, phone, last name, first name, zip code, location, city, birthday

select image, ad, color, emoji, app, language, folder, location, ringtone, theme

toggle autoplay, favorite, menu, sound, advertisement, power, notification, alarm, microphone, vibration

share (to) article, facebook, twitter, image, app, video, instragram, recipe, location, whatsapp

download app, sound, song, file, image, video, theme, game, wallpaper, effect

close window, ad, screen, tab, menu, pop-up, notification, file, settings, message

Table 1: In our dataset, the popular predicates are often associated with a diverse set of objects that are contextually

determined.

Worker-Created Captions

0 2 4 6 8

Number of captions 10
4

1

2

3

4

5

6

7

8

9

>=10

C
a

p
ti
o

n
 l
e

n
g

th

Figure 4: The length distribution of captions created

by human workers. The X axis shows the number of

captions and the Y axis is the lengths from 1 to ≥ 10.

images (magnifiers) although they are for search-

ing different objects. Thus context information is

critical for models to decode the correct objects.

Figure 5: Two UI elements (outlined in red) of “search”

predicate. Left: search contact; Right: search music.

3.3.2 View Hierarchy Complexities

A unique modality in widget captioning is UI struc-

tures as represented by view hierarchy trees. To

better understand the complexity of the UI struc-

tures, we analyze the size and depth of the view

hierarchy of each UI. The size of a view hierar-

chy is the total number of nodes in the hierarchy

tree, including both non-terminal nodes, i.e., layout

containers, and leaf nodes. The size distribution is

highly skewed and with a long tail towards large

view hierarchies (see the left of Figure 6). The

median size of view hierarchies is 61, with a mini-

mum of 6 and a maximum of 1,608 nodes. Many

view hierarchies have a large depth with a median

depth of 11, a minimum of 3 and a maximum of 26

(see the right of Figure 6). These show that view

hierarchies are complex and contain rich structural

information about a user interface.

0.5 1 1.5 2 2.5 3 3.5

Log10(size)

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30

Depth

0

1000

2000

3000

4000

5000

6000

7000

Figure 6: The histogram of log
10

transformed view

hierarchy sizes on the left, and the histogram of tree

depths on the right.

4 Widget Captioning Models

To understand the challenges and feasibility of auto-

matic widget captioning, we investigate deep mod-

els for this task. Captioning models are often de-

signed based on an encoder-decoder architecture.

We formulate widget captioning as a multimodal

captioning task where the encoder takes both the

structural information and the pixel appearance of

the UI element, and the decoder outputs the caption

based on the encodings (see Figure 7).

5500

Structural
Encoder

Element
Embedding

text
type
click

 bounds
dom

View Hierarchy
of the UI
Screen

Decoder

?

type
click

bounds
dom

text
type
click

 bounds
dom

text
type
click

 bounds
dom

?

type
click

bounds
dom

Element
Structural
Encoding

<START>

go

go

forward

forward

<EOS>

<START>

add

add

to

to

cart

cart

<EOS>

Element
Image

Image
Encoder

Element
Encoding

text
type
click

 bounds
dom

CNNCNN

Figure 7: Our widget captioning model takes both view

hierarchy structures and element image input, and per-

forms parallel decoding for multiple elements on the

screen missing captions. The shaded nodes represent

the elements missing captions.

4.1 Encoding the Structural Information

We hypothesize that the relationship of UI elements

on the screen provides useful contextual informa-

tion for representing each object thus benefits cap-

tioning. We use a Transformer model (Vaswani

et al., 2017) to encode the set of elements on a

screen, which learns how the representation of an

element should be affected by the others on the

screen using multi-head neural attention. The input

to a Transformer model requires both the content

embedding and positional encoding. Similar to

previous work (Li et al., 2020), we derive these

embeddings for each element on the screen in the

following manner.

Each UI element in the view hierarchy consists

of a tuple of properties. The widget text prop-

erty includes a collection of words possessed by

the element. We acquire the embedding of the

widget text property of the i-th element on

the screen, eXi , by max pooling over the embed-

ding vector of each word in the property. When

the widget text property is empty, i.e., the

element is missing a caption, a special embed-

ding, e∅, is used. With eTi , the embedding of the

widget type property (see Figure 3), and eCi ,

the embedding of whether the widget is clickable,

[eXi ; eTi ; e
C
i] form the content embedding of the

element.

The widget bounds property contains four

coordinate values on the screen: left, top,

right and bottom, which are normalized to the

range of [0, 100). The widget dom property con-

tains three values describing the element tree posi-

tion in the view hierarchy: the sequence position

in the preorder and the postorder traversal,

and the depth in the view hierarchy tree. These

are all treated as categorical values and represented

as embedding vectors. The sum of these coordinate

embeddings form the positional embedding vector

of the element, eBi .

The concatenation of all these embeddings

forms the representation of a UI element: ei =
[eXi ; eTi ; e

C
i ; e

B
i]W

E , where WE is the parameters

to linearly project the concatenation to the dimen-

sion expected by the Transformer model. The

output of the Transformer encoder model, hi, is

the structural encoding of the i-th element on the

screen.

4.2 Encoding Element Images

The image of an element is cropped from the UI

screenshot and rescaled to a fixed dimension, which

results in a 64x64x1 tensor, where 64x64 are

the spatial dimensions and 1 is the grayscale color

channel. The image dimension strikes a good bal-

ance for representing both small and large elements,

which preserves enough details for large elements

after scaled down and enables a memory footprint

good for model training and serving.

We use a ResNet (CNN) (He et al., 2015) to

encode an element image. Each layer in the image

encoder consists of a block of three sub layers with

a residual connection—the input of the 1st sub

layer is added to the input of the 3rd sub layer.

There are no pooling used, and instead, the last

sub layer of each block uses stride 2 that halves

both the vertical and horizontal spatial dimensions

5501

after each layer. At the same, each layer doubles

the channel dimension, starting from the channel

dimension 4 of the first layer. Most sub layers

use a kernel size of 3 × 3 except the initial and

ending sub layers in the first layer that use a kernel

size of 5 × 5. We will discuss further details of

model configuration for the image encoder in the

experiment section. The output of the multi-layer

CNN is the encoding vector of the element image,

which we refer to as gi for the i-th element.

4.3 Decoding Captions

We form the latent representation of the ith element

on the screen by combining its structural and im-

age encoding: zi = σ([hLi ; gi], θ
z)W z , where σ(·)

is the non-linear activation function parameterized

by θz and W z is the trainable weights for linear

projection. Based on the encoding, we use a Trans-

former (Vaswani et al., 2017) decoder model for

generating a varying-length caption for the element.

ali,1:M = Masked ATTN(xli,1:M ,W
Q
d ,WK

d ,W V
d)

xl+1

i,1:M = FFN(ali,1:M + zi, θd)

where 0 ≤ l ≤ L is the layer index and M is the

number of word tokens to decode. x0i,1:M , the in-

put to the decoder model, is the token embedding

with the sequence positional encoding. W
Q
d , WK

d ,

and W V
d are trainable parameters for computing

the queries, keys, and values. Masked ATTN in a

Transformer decoder allows multi-head attention

to only attend to previous token representations.

The element encoding, zi, is added to the attention

output of each decoding step, ali,1:M , before feed-

ing into the position-wise, multi-layer perception

(FFN), parameterized by θd. The probability distri-

bution of each token of the caption is finally com-

puted using the softmax over the output of the last

Transformer layer: yi,1:M = softmax(xLi,1:MW
y
d)

where W
y
d is trainable parameters.

There is one instance of the decoder model for

each element to be captioned. The captions for all

the elements with missing captions on the same

screen are decoded in parallel. The entire model,

including both the encoder and decoder, is trained

end-to-end, by minimizing Lscreen, the average

cross entropy loss for decoding each token of each

element caption over the same screen.

Lscreen =
1

|∇|

∑

i∈∇

1

M

M∑

j=1

Cross Entropy(y
′

i,j , yi,j)

where ∇ is the set of elements on the same screen

with missing captions and y
′

i,j is the groundtruth

token. Training is conducted in a teacher-forcing

manner where the groundtruth caption words are

fed into the decoder. During prediction time, the

model decodes autoregressively.

5 Experiments

We first discuss the experimental setup, and then

report the accuracy of our model as well as an

analysis of the model behavior.

5.1 Datasets

We split our dataset into training, validation and

test set for model development and evaluation, as

shown in Table 2. The UIs of the same app may

have a similar style. To avoid information leaks, the

split was done app-wise so that all the screens from

the same app will not be shared across different

splits. Consequently, all the apps and screens in

the test dataset are unseen during training, which

allow us to examine how each model configuration

generalizes to unseen conditions at test.

Our vocabulary includes 10,000 most frequent

words (that covers more than 95% of the words

in the dataset), and the rest of the words encoun-

tered in the training dataset is assigned a special

unknown token <UNK>. During validation and test-

ing, any <UNK> in the decoded phrase is removed

before evaluation. Since each element has more

than one caption, one of its captions is randomly

sampled each time during training. For testing, all

the captions of an element constitute its reference

set for computing automatic metrics such as CIDEr.

Split Apps Screens Widgets Captions

Training 5,170 18,394 52,178 138,342

Validation 650 1,720 4,548 12,242

Test 650 1,636 4,559 12,275

Total 6,470 21,750 61,285 162,859

Table 2: Dataset statistics.

The training, validation and test datasets have a

similar ratio of 40% for caption coverage, i.e., the

number of elements with preexisting captions with

respect to the total number of elements on each

screen, with no statistical significance (p > 0.05).

Screens with none preexisting captions exist in all

the splits.

5502

5.2 Model Configurations

We based our experiments on Transformer as it out-

performed alternatives such as GCNs and LSTMs

in our early exploration. We tuned our model ar-

chitectures based on the training and validation

datasets. We initialize the word embeddings with

pre-trained 400K-vocab 300-dimensional GLOVE

embeddings (Pennington et al., 2014), which are

then projected onto a 128-dimensional vector space.

To reduce the number of parameters needed in

the model, the embedding weights are shared by

both the structural encoder and the decoder. Both

the Transformer structural encoder and the Trans-

former decoder use 6 Transformer layers with a

hidden size of 128 and 8-head attention. We used a

7-layer ResNet for encoding the pixels of a target

element, where each layer consists of 3 sub layers

as discussed earlier, which in total involves 21 con-

volutional layers and the output of the final layer

is flattened into a 256-sized vector. We used batch

normalization for each convolutional layer. The fi-

nal encoding zi of an element is a 128-dimensional

vector that is used for decoding. See Appendix E

for training details.

5.3 Metrics & Results

We report our accuracy based on BLEU (uni-

gram and bigram) (Papineni et al., 2002), CIDEr

(Vedantam et al., 2015), ROUGE-L (Lin and Och,

2004) METOER (Denkowski and Lavie, 2014)

and SPICE (Anderson et al., 2016) metrics (see

Table 3). For all these metrics, a higher number

means better captioning accuracy—the closer dis-

tances between the predicted and the groundtruth

captions.

We investigate how model variations impact the

overall accuracy of captioning (Table 3). Template

Matching is an obvious baseline, which predict the

caption of an element based on its image similarity

with elements that come with a caption. We use

pixel-wise cosine similarity to compare the element

images. Although this heuristic-based method is

able to predict captions for certain elements, it

performs poorly compared to the rest of the mod-

els that use deep architectures. Pixel Only model,

which only uses the image encoding of an element,

performs significantly better than Template Match-

ing, which indicates that image encoding, gi, is a

much more efficient representation than raw pixels.

Pixel+Local, which uses both image encoding,

gi, and the structural representation computed only

based on the properties of the element, offers fur-

ther improvement on the accuracy. Our full model,

Pixel+Local+Context, uses both image encoding,

gi, and the screen context encoding, hi. It achieves

the best results, which indicate that screen con-

text carries useful information about an element

for generating its caption. Among all the structural

features, the widget text property plays an im-

portant role (see the ablation study in Appendix F).

In addition to examining the impact of input

modality on captioning quality, we compare strate-

gies of caption generation: sequence decoding

based on word tokens versus classification based

on common caption phrases. PLC Classification

model uses the same input modality and encoding

as Pixel+Local+Context but decodes a single pre-

defined phrase based on a vocabulary of top 10K

caption phrases—the same size as the token vocab-

ulary for decoding. It performed poorly compared

to the decoding-based approach.

To further validate the usefulness of the con-

text and the information from view hierarchy, we

evaluate the models on a subset of UI elements

with one of their reference caption phrases is of

the Predicate + Object pattern (see Table 1). This

subset consists of about 40% of the UI elements

from the test set (see Appendix D for details). All

the models achieve better accuracy because the

predicate-object subset consists of more common

words. Pixel+Local+Context remains the cham-

pion model, and more importantly, acquired the

most significant gain across all the metrics (see

Table 3). This indicates that context information

plays a crucial role for generating this type of

captions whose object parts need to be contextu-

ally determined. In contrast, PLC Classification

still performs worse than the champion decoding-

based model. While the subset contains more com-

mon words, their combination can form long-tail

phrases. A classification-based method such as

PLC Classification is more vulnerable to the data

sparsity of long-tail phrases.

5.4 Human Evaluation

To assess the quality of the generated phrases by

human, we asked another group of crowd workers

to manually verify the model generated captions

for the entire test set, by presenting each human

rater a caption and its corresponding element in

a UI screenshot. For each phrase, we asked three

raters to verify whether the caption phrase correctly

5503

Model Configuration BLEU-1 BLEU-2 ROUGE CIDEr METOER SPICE

Full Test Set

Template Matching 20.2 11.2 20.9 38.0 13.2 6.5
Pixel Only 35.6 24.6 35.6 71.3 24.9 11.2
Pixel+Local 42.6 29.4 42.0 87.3 29.4 15.3
Pixel+Local+Context (PLC) 44.9 32.2 44.7 97.0 31.7 17.6
PLC Classification 36.2 25.7 36.9 78.9 26.0 13.6

Predicate-Object Subset

Template Matching 20.8 11.2 21.3 34.5 12.6 7.5
Pixel Only 39.4 27.2 39.1 69.6 25.8 14.2
Pixel+Local 48.5 34.8 47.4 94.7 32.3 19.9
Pixel+Local+Context (PLC) 52.0 38.8 51.3 110.1 36.4 23.3
PLC Classification 38.5 27.0 38.4 78.9 26.3 16.8

Table 3: The accuracy of each model configuration on the full set and the predicate-object subset of the test dataset.

describes the functionality and purpose of the el-

ement. We compared two of our models and the

results are listed in Table 4. The overall endorse-

ment of raters for generated captions is 78.64%

for the full model and 62.42% for the Pixel Only

model. These results indicate that our model can

generate meaningful captions for UI elements. We

found shorter captions tend to receive more rater

endorsements than longer ones. The model with

context still outperforms the one without context,

which is consistent with automatic evaluation. See

examples of captions generated by our model in

Appendix G.

Model 1+ 2+ 3+

Pixel Only 81.9 61.7 43.6
Pixel+Local+Context 93.9 81.1 61.0

Table 4: The human evaluation results. N+ in the

header refers to N or more raters judge that the caption

correctly describes the element.

5.5 Error Analysis

To identify opportunities for improvements, we

conducted error analysis on 50 widgets sampled

from the validation set whose captions generated

by the model share no words with their references.

We classify these errors into the following types.

• Nearby Elements (21): The model is confused

by nearby elements on the screen, e.g., out-

putting “enter phone number” for “write street

address” on a sign-up screen.

• Similar Appearance (10): The model is con-

fused by elements with a similar appearance,

e.g., predicting “delete” for an X-shaped im-

age that is labeled as “close”.

• Too Generic (9): the model generate captions

that are too generic, e.g., “toggle on” instead

of “flight search on/off”.

• Model Correct (10): The model produces se-

mantically correct captions but treated as er-

rors due to the limitation of automatic evalua-

tion, e.g., “close” for “exit”.

There are two directions for future improvement.

One is to improve encoders for UI images and view

hierarchies to better represent UI elements. The

other is to improve data sparsity, which we want

to better address long-tail phrases by expanding

the dataset and having more elements and screens

labeled.

6 Conclusion

We present widget captioning, a novel task for au-

tomatically generating language description for UI

elements. The task is important because missing

captions is a major issue for mobile accessibility

and addressing the issue can improve accessibility

and empower language-based mobile interaction in

general. We created a large-scale dataset for this

novel task by asking human annotators to create

widget captions for a mobile UI corpus via crowd-

sourcing. We formulate widget captioning as a

multimodal captioning task where both structural

and image input are available. We experimented

with a set of models based on the dataset. The

winner configuration—a Transformer structural en-

coder coupled with a ResNet CNN—can generate

semantically meaningful captions for sparsely la-

beled elements on the screen, which shows the

feasibility of this task and opportunities for future

research.

Acknowledgements

We would like to thank Jason Baldridge for his

valuable feedback, and our anonymous reviewers

for their insightful comments that improved the

paper.

5504

References

AccessibilityScanner. 2019. Apple acces-
sibility scanner. https://developer.

apple.com/library/archive/

documentation/Accessibility/

Conceptual/AccessibilityMacOSX/

OSXAXTestingApps.html.

Peter Anderson, Basura Fernando, Mark Johnson,
and Stephen Gould. 2016. SPICE: semantic
propositional image caption evaluation. CoRR,
abs/1607.08822.

Android. 2019a. Android widgets. https:

//developer.android.com/reference/

kotlin/android/widget/package-summary.

Android. 2019b. android.support.v4.app.
https://developer.android.com/

reference/android/support/v4/app/

package-summary.

AndroidLint. 2019. Improve your code with lint.
Https://developer.android.com/studio/write/lint.html.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollar, and
C Lawrence Zitnick. 2015. Microsoft COCO cap-
tions: Data collection and evaluation server.

Kenny Tsu Wei Choo, Rajesh Krishna Balan, and
Youngki Lee. 2019. Examining augmented virtual-
ity impairment simulation for mobile app accessibil-
ity design. In Proceedings of the 2019 CHI Con-
ference on Human Factors in Computing Systems,
CHI ’19, pages 375:1–375:11, New York, NY, USA.
ACM.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hi-
bschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. 2017. Rico: A mobile app
dataset for building data-driven design applications.
In Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology, UIST
’17, pages 845–854, New York, NY, USA. ACM.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the Ninth
Workshop on Statistical Machine Translation, pages
376–380, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venu-
gopalan, S. Guadarrama, K. Saenko, and T. Dar-
rell. 2017. Long-term recurrent convolutional net-
works for visual recognition and description. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 39(4):677–691.

Cole Gleason, Patrick Carrington, Cameron Cassidy,
Meredith Ringel Morris, Kris M. Kitani, and Jef-
frey P. Bigham. 2019. “it’s almost like
they’re trying to hide it”: How user-provided
image descriptions have failed to make twitter acces-
sible. In The World Wide Web Conference, WWW
’19, pages 549–559, New York, NY, USA. ACM.

Darren Guinness, Edward Cutrell, and Meredith Ringel
Morris. 2018. Caption crawler: Enabling reusable
alternative text descriptions using reverse image
search. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, CHI ’18,
pages 518:1–518:11, New York, NY, USA. ACM.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recog-
nition. Cite arxiv:1512.03385Comment: Tech re-
port.

Micah Hodosh, Peter Young, and Julia Hockenmaier.
2013. Framing image description as a ranking task:
Data, models and evaluation metrics. J. Artif. Int.
Res., 47(1):853899.

Andrej Karpathy and Fei-Fei Li. 2014. Deep visual-
semantic alignments for generating image descrip-
tions. CoRR, abs/1412.2306.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020. Mapping natural language instruc-
tions to mobile ui action sequences. In Annual Con-
ference of the Association for Computational Lin-
guistics (ACL 2020).

Chin-Yew Lin and Franz Josef Och. 2004. Orange: A
method for evaluating automatic evaluation metrics
for machine translation. In Proceedings of the 20th
International Conference on Computational Linguis-
tics, COLING ’04, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
Lubomir D. Bourdev, Ross B. Girshick, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. 2014. Microsoft COCO: com-
mon objects in context. CoRR, abs/1405.0312.

Mathias Niepert, Mohamed Ahmed, and Konstantin
Kutzkov. 2016. Learning convolutional neural net-
works for graphs. In Proceedings of The 33rd In-
ternational Conference on Machine Learning, vol-

https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
http://arxiv.org/abs/1607.08822
http://arxiv.org/abs/1607.08822
https://developer.android.com/reference/kotlin/android/widget/package-summary
https://developer.android.com/reference/kotlin/android/widget/package-summary
https://developer.android.com/reference/kotlin/android/widget/package-summary
https://developer.android.com/reference/android/support/v4/app/package-summary
https://developer.android.com/reference/android/support/v4/app/package-summary
https://developer.android.com/reference/android/support/v4/app/package-summary
http://arxiv.org/abs/1504.00325
http://arxiv.org/abs/1504.00325
https://doi.org/10.1145/3290605.3300605
https://doi.org/10.1145/3290605.3300605
https://doi.org/10.1145/3290605.3300605
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3308558.3313605
https://doi.org/10.1145/3308558.3313605
https://doi.org/10.1145/3308558.3313605
https://doi.org/10.1145/3308558.3313605
https://doi.org/10.1145/3173574.3174092
https://doi.org/10.1145/3173574.3174092
https://doi.org/10.1145/3173574.3174092
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1412.2306
http://arxiv.org/abs/1412.2306
http://arxiv.org/abs/1412.2306
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/2005.03776
https://arxiv.org/abs/2005.03776
https://doi.org/10.3115/1220355.1220427
https://doi.org/10.3115/1220355.1220427
https://doi.org/10.3115/1220355.1220427
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://proceedings.mlr.press/v48/niepert16.html
http://proceedings.mlr.press/v48/niepert16.html

5505

ume 48 of Proceedings of Machine Learning Re-
search, pages 2014–2023, New York, New York,
USA. PMLR.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, pages 311–318, USA.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Anne Spencer Ross, Xiaoyi Zhang, James Fogarty,
and Jacob O. Wobbrock. 2017. Epidemiology as a
framework for large-scale mobile application acces-
sibility assessment. In Proceedings of the 19th In-
ternational ACM SIGACCESS Conference on Com-
puters and Accessibility, ASSETS ’17, pages 2–11,
New York, NY, USA. ACM.

Anne Spencer Ross, Xiaoyi Zhang, James Fogarty,
and Jacob O. Wobbrock. 2018. Examining image-
based button labeling for accessibility in android
apps through large-scale analysis. In Proceedings
of the 20th International ACM SIGACCESS Confer-
ence on Computers and Accessibility, ASSETS ’18,
pages 119–130, New York, NY, USA. ACM.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for au-
tomatic image captioning. pages 2556–2565.

Google Android Talkback. 2019. Android talk-
back. https://support.google.com/

accessibility/android/answer/6007100?

hl=en.

TensorFlow. 2017. An open-source software li-
brary for Machine Intelligence. https://www.

tensorflow.org/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Ramakrishna Vedantam, C. Zitnick, and Devi Parikh.
2015. Cider: Consensus-based image description
evaluation. pages 4566–4575.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and
composing robust features with denoising autoen-
coders. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, pages
1096–1103, New York, NY, USA. ACM.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun
Cho, Aaron C. Courville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. 2015. Show,
attend and tell: Neural image caption generation
with visual attention. CoRR, abs/1502.03044.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. Transactions of the
Association for Computational Linguistics, 2:67–78.

Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James
Fogarty, and Jacob O. Wobbrock. 2017. Interaction
proxies for runtime repair and enhancement of mo-
bile application accessibility. In Proceedings of the
2017 CHI Conference on Human Factors in Comput-
ing Systems, CHI ’17, pages 6024–6037, New York,
NY, USA. ACM.

Xiaoyi Zhang, Anne Spencer Ross, and James Foga-
rty. 2018. Robust annotation of mobile application
interfaces in methods for accessibility repair and en-
hancement. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technol-
ogy, UIST ’18, pages 609–621, New York, NY, USA.
ACM.

A Further Details for Preprocessing the

UI Corpus

We keep all the types of UI elements and determine

the type of an element based on its class and an-

cestors attributes in the view hierarchy. We first

check whether the element’s class is in the set of

predefined widget types in the Android develop-

ment library (Android, 2019a,b). If not, i.e., if it

is a custom class, which is specific to an app, e.g.,

“SearchButton”, we find the closest class in its an-

cestry that belongs to the standard Android widget

set as its type, e.g., “Button”.

B The Annotation Interface

We built a web interface for crowd workers to cre-

ate captions for UI elements (see Figure 8). On

the left of the interface is shown the screenshot of

a mobile user interface. The element to be anno-

tated is highlighted with a red bounding box. On

the right, the app description that is crawled from

Google Play Store is displayed to give the annota-

tor the background about the mobile app that the

UI screen is from. Underneath the app description

the description for the annotation task. An annota-

tor is given a guideline about the captioning task

and several concrete examples about desired cap-

tions as well as captions should be avoided. The

annotator can perform a task by entering a cap-

tion for the highlighted element in the text field,

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/3132525.3132547
https://doi.org/10.1145/3132525.3132547
https://doi.org/10.1145/3132525.3132547
https://doi.org/10.1145/3234695.3236364
https://doi.org/10.1145/3234695.3236364
https://doi.org/10.1145/3234695.3236364
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://support.google.com/accessibility/android/answer/6007100?hl=en
https://support.google.com/accessibility/android/answer/6007100?hl=en
https://support.google.com/accessibility/android/answer/6007100?hl=en
https://www.tensorflow.org/
https://www.tensorflow.org/
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1109/CVPR.2015.7299087
https://doi.org/10.1109/CVPR.2015.7299087
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
http://arxiv.org/abs/1502.03044
http://arxiv.org/abs/1502.03044
http://arxiv.org/abs/1502.03044
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.1162/tacl_a_00166
https://doi.org/10.1145/3025453.3025846
https://doi.org/10.1145/3025453.3025846
https://doi.org/10.1145/3025453.3025846
https://doi.org/10.1145/3242587.3242616
https://doi.org/10.1145/3242587.3242616
https://doi.org/10.1145/3242587.3242616

5506

Figure 8: The annotation web interface for crowd workers to create captions for a UI element.

or skip the task by selecting the checkbox options

that apply when the target element is incorrectly

highlighted or cannot be described. The annotator

clicks on the Submit button at the bottom to submit

the responses.

C Phrase Distribution

There are 476,912 UI elements in the UI corpus that

come with text, which are from the app content or

created by the app developers. These constitute the

widget text feature input to the structural en-

coder to help generating descriptions for elements

with missing captions. We compare the lengths

of captions created by human workers with the

lengths of these preexisting text content. We found

the length distributions of the two sources are sim-

ilar (see Figure 9). The median length for both

sources of text content is 2. There is a larger vari-

ance in length for the preexisting text, and there

are more single-word and long descriptions. A pre-

existing caption can simply repeat the content of an

element that can be a long sentence or paragraph,

which contributes to the long tail of the distribution

(length≥ 10). A pre-existing caption can also be

generic names such as image or button, which are

undesirable for accessibility. There are a diverse

set of captions created by human workers (see Fig-

ure 10).

D Predicate-Object Phrases

We identify the Predicate + Object subset used

for evaluation in the paper as follows. First, we

collected all the verbs with frequency more than

1000 in the corpus. This resulted in 22 verbs: go,

Worker-Created Captions

0 2 4 6 8

Number of captions 10
4

1

2

3

4

5

6

7

8

9

>=10

C
a
p
ti
o
n
 l
e
n
g
th

Preexisting Text Content

0 0.5 1 1.5 2 2.5

Number of captions 10
5

1

2

3

4

5

6

7

8

9

>=10

C
a
p
ti
o
n
 l
e
n
g
th

Figure 9: The length distribution of captions created by

human workers versus those preexisting in the UI cor-

pus. The X axis shows the number of text descriptions

and the Y axis is the lengths from 1 to ≥ 10.

select, enter, open, add, search, click, toggle, play,

view, share, close, switch, choose, show, download,

input, see, like, change, check, and turn. For these

verbs, we manually checked all their objects and

identified 194 nouns that are likely to require con-

textual and structural information from the view

hierarchy to decode (see Table 1 in the paper). Fi-

nally, the Predicate + Object captions were iden-

tified as the ones that contain at least one of the

22 verbs and one of the 194 nouns and appear at

least twice in the corpus. As a result, 1850 (40.6%)

widgets in the test dataset have Predicate + Object

captions in their references and thus are selected

as the Predicate + Object subset for evaluating the

model performance, as reported in the main paper.

E Model Configurations & Training

Template Matching is based on a Nearest-Neighbor

approach where all the examples in the training

dataset are used as templates. Given an element to

be captioned in the test dataset, the caption of the

most similar template, based on cosine similarity

between their pixel values, is used as the prediction.

5507

Model Configuration BLEU-1 BLEU-2 ROUGE CIDEr METOER SPICE

Full Validation Set

Template Matching 19.5 10.1 20.1 35.2 12.6 5.8
Pixel Only 35.8 23.9 35.9 70.7 24.6 10.8
Pixel+Local 41.1 27.8 40.1 81.4 27.2 13.3
Pixel+Local+Context (PLC) 44.6 30.2 43.9 91.8 29.9 16.3
PLC Classification 36.2 24.4 36.7 76.3 25.4 12.9

Predicate-Object Subset

Template Matching 19.0 8.9 19.2 27.0 10.9 6.4
Pixel Only 38.2 24.4 38.0 64.0 23.8 13.0
Pixel+Local 45.1 30.3 43.5 80.9 27.9 17.0
Pixel+Local+Context (PLC) 51.0 35.1 49.7 100.3 32.9 21.7
PLC Classification 38.9 26.6 38.9 76.9 26.0 16.7

Table 5: The accuracy of each model configuration on the full set and the predicate-object subset of the validation

dataset.

Ablation BLEU-1 BLEU-2 ROUGE CIDEr METOER SPICE

− Text 40.5 27.7 40.7 82.3 28.6 14.2
− Position 43.4 30.8 43.6 93.8 30.8 16.2
− Widget Type 44.3 30.9 43.6 92.1 30.3 16.4
− Clickable 44.8 31.8 43.8 95.0 30.8 16.5
− Dom 44.4 31.3 44.0 94.8 30.9 16.9

Full model 44.9 32.2 44.7 97.0 31.7 17.6

Table 6: The ablation study results for the Pixel+Local+Context model.

For Pixel+Local, the structural encoding is com-

puted by feeding the element embedding, ei, into a

multi-layer perceptron that is followed by a linear

projection: φ(ei, θe)We where φ(·) is a multi-layer

perceptron parameterized by θe, and We are train-

able parameters for the linear projection.

We pre-trained the ResNet image encoder using

a denoised auto-encoder approach (Vincent et al.,

2008). Pre-training allows us to leverage the im-

ages of all the elements instead of only those with

caption labels. In particular, to reconstruct an im-

age, we used 5 layers of transposed convolution

where each layer has a residual connection archi-

tecture that is similar to the encoder part (that is

discussed in the main paper). The reconstruction

part of the model is discarded once the image en-

coder is trained.

We implemented our model in TensorFlow (Ten-

sorFlow, 2017), and all the input and evaluta-

tion pipelines in Python. We tuned our mod-

els on a range of hyperparameters, including

the hidden sizes (64, 128, 256 and 512), the

number of encoder/decoder hidden layers (2, 4

and 6), widget text pooling (max, mean and

sum), and the Transformer hyperparameter learn-

ing rate constant (0.01, 0.03, 0.1, 0.3, 1.0, 2.0).

We trained our model on 4 Tesla V100 GPU cores

with asynchronous training with a batch size of

64 (screens) for all the models, which are all con-

verged in less than 2 days. The model is trained,

using the Adam optimizer, until it converges with a

scheduled learning rate—a linear warmup followed

by an exponential decay. We followed other model-

ing choices from the Transformer paper (Vaswani

et al., 2017). The number of parameters for Pixel

Only, Pixel+Local, Pixel+Local+Context (PLC)

and PLC Classification are 3.73M, 4.24M, 5.33M

and 5.33M respectively. The performance of all the

model configurations on the validation dataset are

shown in Table 5.

F Ablation Study

To investigate how different information in the view

hierarchy contribute to the model performance, we

conducted an ablation study by removing features

in the UI element representation. As showed in

Table 6, each feature contributes to the overal per-

formance of the model. Particularly, removing the

text feature resulted in the largest drop in accuracy.

G Captioning Examples

A collection of examples of captions generated by

the models versus those created by human workers

from the held-out test dataset are shown in Fig-

ure 11 and 12.

5508

go
to

n
e
x
t

p
a
g
e

fo
rw
ar
d

op
en

ad
ve
rti
se
m
en
t

me
nu

enter

password

address

ad
vertisem

en
t

p
age

select

option

ad
d

to

favorites

c
lo
s
e

sh
ar
e

th
e

ar
ti
cl
e

p
la
y

m
o
re

o
p
ti
o
n
s

vie
w

go open enter advertisement select add search

close share play more view menu click

next settings refresh toggle back text

Figure 10: The distribution of captions by their first four words for the top 300 unique captions. The ordering of

the words in a caption starts from the center and radiates outwards. The arc length is proportional to the number of

captions containing the word.

5509

Prediction: go to next
References: next, skip button, toggle go
to next option

Prediction: enter password
References: text box, type your pass-
word

Prediction: profile picture
References: edit profile, edit profile
photo, go to profile picture

Prediction: share on facebook
References: facebook icon, facebook
logo, see facebook page

Prediction: select color
References: change color to teal, choose
the color, pick a color

Prediction: close window
References: exit page, exit screen, exits
out of current screen

Figure 11: Widget captioning examples: the model predicted caption versus the reference captions labeled by

human workers for the highlighted element in each screenshot.

5510

Prediction: toggle remember me option
References: check box for keep me
logged in, check box to stay logged in,
toggle check

Prediction: check to agree to terms and
conditions
References: accept, accept terms and
conditions checkbox, toggle a select op-
tion

Prediction: go to advertisement
References: select advertisement, view
advertisement

Prediction: go to location
References: choose location, open loca-
tion settings, view map

Prediction: save
References: save, save image, save tem-
plate

Prediction: play music
References: playing audio, stop sound

Figure 12: More examples: the model predicted caption versus the reference captions labeled by human workers

for the highlighted element in each screenshot.

