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Abstract

Textbook Question Answering is a complex
task in the intersection of Machine Compre-
hension and Visual Question Answering that
requires reasoning with multimodal informa-
tion from text and diagrams. For the first
time, this paper taps on the potential of trans-
former language models and bottom-up and
top-down attention to tackle the language and
visual understanding challenges this task en-
tails. Rather than training a language-visual
transformer from scratch we rely on pre-
trained transformers, fine-tuning and ensem-
bling. We add bottom-up and top-down atten-
tion to identify regions of interest correspond-
ing to diagram constituents and their relation-
ships, improving the selection of relevant vi-
sual information for each question and answer
options. Our system ISAAQ reports unprece-
dented success in all TQA question types, with
accuracies of 81.36%, 71.11% and 55.12%
on true/false, text-only and diagram multiple
choice questions. ISAAQ also demonstrates
its broad applicability, obtaining state-of-the-
art results in other demanding datasets.

1 Introduction

Within NLP, machine understanding of textbooks
is one of the grand AI challenges. As originally put
by (Reddy, 1988): ”Reading a chapter in a college
freshman text (say physics or accounting) and an-
swering the questions at the end of the chapter is a
hard (AI) problem that requires advances in vision,
language, problem-solving, and learning theory.”.
Towards such goals, the Textbook Question An-
swering (TQA) dataset presented in (Kembhavi
et al., 2017) offers an excellent testbed. Drawn
from middle school science curricula, it describes
fairly complex phenomena through a combination
of text and diagrams. Answering questions may
therefore involve text, diagrams or both, and re-
quire information from multiple sentences and/or
diagrams in long textbook lessons.

Another characteristic of the TQA dataset that
makes it rather unique and challenging is that
questions often involve reasoning beyond methods
based on co-occurrence analysis or simple look-up.
TQA requires parsing information from different
sentences, dealing with qualitative and quantitative
information (high frequency vs. 20,000Hz), and
relating text or visual information with the ques-
tion. Solving the TQA task also requires dealing
with language about negation, conjunction, polarity
or commonsense. On the visual side, TQA is rich
with diagrams that describe potentially complex
concepts, such as photosynthesis, the trophic chain,
and the cycle of water, which are hard to represent
as a single natural image. Quite on the contrary,
diagrams contain simpler constituents and relation-
ships between them, whose semantics needs to be
captured in order to answer the questions.

Despite recent work, overall progress in the TQA
dataset has been rather limited until now, suggest-
ing that language and diagram understanding chal-
lenges like the ones above-mentioned are still far
from solved. In this paper we address such limita-
tions by building on the success of two recent devel-
opments in natural language processing and vision-
and-language reasoning: large-scale, pre-trained
language models and bottom-up and top-down
(BUTD) attention. We demonstrate that, com-
pared to previous approaches, transformer-based
language models like BERT and RoBERTa can
significantly contribute to increase the language un-
derstanding and reasoning capabilities required to
answer TQA questions. We also show that BUTD
attention, originally proposed for tasks like image
captioning and visual question answering with nat-
ural images, can be effectively adapted to propose
regions of interest in the diagram that are relevant
for the question in hand, enabling the identification
of diagram constituents and their relationships. The
main contributions of this paper are the following:

• For the first time, we apply transformers to
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language understanding in TQA, which in-
volves fine-tuning of pre-trained transformers
and ensembling.
• Based on BUTD attention we detect diagram

constituents and their relationships, and link
them to the question, its relevant background
and answer options.
• We study the language and visual understand-

ing capabilities of our approach, including
several ablations, and demonstrate its robust-
ness and broader applicability.
• We present ISAAQ (Intelligent System for Au-

tomatically Answering Textbook Questions),
which implements our approach.

The remainder of the paper is structured as fol-
lows. Section 2 describes related work. Section 3
introduces the notation that will be used throughout
the paper. We present our method in section 4, in-
cluding an overview of the overall model, its main
building blocks (background information retrievers,
solvers, ensemble), and their interplay. We focus
on each TQA question type, i.e. true/false and text
and diagram multiple-choice (MC) questions, as
sub-tasks of the main TQA task and propose spe-
cific solvers for each case, based on pre-trained
transformers, fine-tuning and BUTD attention. In
section 5, we present our experimental results, in-
cluding an ablation study focused on understanding
the specific contribution of each solver and their
components. We also analyze the robustness of our
model, its ability to generalize to other datasets,
and its reasoning abilities. Finally, section 6 illus-
trates the impact of the different techniques used in
ISAAQ to address diagram MC questions in TQA.

2 Related work

In (Kembhavi et al., 2016) several TQA baselines
were proposed that were based on Machine Com-
prehension (MC) models like BiDAF (Seo et al.,
2017) and MemoryNet (Weston et al., 2014), as
well as Visual Question Answering (VQA) (An-
tol et al., 2015) and diagram parsing algorithms
like DsDP-net (Kembhavi et al., 2016). Their re-
sults were rather modest (50.4, 32.9, and 31.3 in
true/false, text and diagram MC questions), sug-
gesting that existing MC/VQA methods would not
suffice for the TQA dataset. Indeed, diagram ques-
tions entail greater complexity than dealing with
natural images, as shown in (Gomez-Perez and
Ortega, 2019), where we beat the TQA baselines
using visual and language information extracted

from the correspondence between figures and cap-
tions in scientific literature enriched with lexico-
semantic information from a knowledge graph (De-
naux and Gomez-Perez, 2019). By contrast, (Li
et al., 2018) focused on finding contradictions be-
tween the candidate answers and their correspond-
ing context while (Kim et al., 2019) applied graph
convolutional networks on text and diagrams to rep-
resent relevant question background information as
a unified graph.

The field of NLP has advanced substantially with
the advent of large-scale language models such
as ELMo (Peters et al., 2018), ULMFit (Howard
and Ruder, 2018), GPT (Radford et al., 2018),
BERT (Devlin et al., 2018), and RoBERTa (Liu
et al., 2019). Using large amounts of text, e.g.
BERT was trained on Wikipedia plus the Google
Book Corpus of 10,000 books (Zhu et al., 2015),
they are trained to learn various language predic-
tion tasks such as guessing a missing word or the
next sentence. Language models and particularly
transformers have been used in question answer-
ing, as illustrated by the success of the Aristo sys-
tem (Clark et al., 2019) in standard science tests.
Transformers have also proved their worth as soft
reasoners (Clark et al., 2020), exhibiting capabil-
ities for natural language inference. Furthermore,
whilst learning linguistic information, transformers
have shown to capture semantic knowledge and
general understanding of the world from the train-
ing text (Petroni et al., 2019), including a notion
of commonsense that can be useful in question an-
swering. Our approach is the first to leverage the
language understanding and reasoning capabilities
of existing transformer language models for TQA.

Focused on natural images, some vision-and-
language reasoning systems are also adopting
transformer architectures at their backbone. VL-
BERT (Su et al., 2019) and LXMERT (Tan and
Bansal, 2019) pre-train large-scale transformers
that capture both visual concepts and language se-
mantics, as well as cross-modal information. Pre-
training is done via several tasks, like masked lan-
guage modeling, masked object prediction, cross-
modality matching, and image question answering,
on large-scale text and visual datasets, like Concep-
tual Captions (Sharma et al., 2018), Google Book
corpus, MS COCO (Lin et al., 2014) or Visual
Genome (Krishna et al., 2017), requiring consider-
able compute. By contrast, our approach is much
more frugal. We fine-tune pre-trained existing
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transformers like BERT and RoBERTa and count
on a much more limited variety of datasets focused
on diagrams, like AI2D (Kembhavi et al., 2016).
Like LXMERT, we extend region-of-interest (RoI)
features with object positional embeddings. Finally,
we apply bottom-up and top-down attention (An-
derson et al., 2018) to focus on the most relevant
diagram regions for each question.

3 Preliminaries and notation

3.1 The TQA dataset
The TQA dataset (Kembhavi et al., 2017) com-
prises 1,076 lessons from Life Science, Earth Sci-
ence and Physical Science textbooks, with 78,338
sentences and 3,455 diagrams, distributed in 5,400
true/false questions, 8,293 text MC, and 12,567 dia-
gram MC questions. The dataset is split in training,
validation and test sets (table 3), which are disjoint
at the lesson level. Thus, our model will often need
to answer questions it was not trained for, which
entails additional challenges to generalize beyond
the training set (section 5). TQA questions are long
compared to VQA, with a mode of 8 vs. 5 words
per question. Almost 85% of the questions are
what, how or which wh- questions. Another 10%
is formulated assertively, bringing additional lan-
guage understanding complexity. Most (80%) text
MC questions can be answered with information
from one or several sentences in a paragraph. The
rest may require multiple paragraphs and lessons
as well as external knowledge. Over 40% diagram
MC questions require complex diagram parsing,
only 2% can be answered with an OCR.

3.2 Notation
We divide the TQA task in three sub-tasks, one per
question type. The solvers addressing each sub-task
are denoted as TFm (true/false questions), TMCm

(text MC) and DMCm (diagram MC). Suffix m
indicates the method used for background retrieval.
∀l ∈ L, let lsi be each sentence in lesson l,

where L is the set of lessons in the dataset. We ap-
ply BERT-style transformers (Devlin et al., 2018) to
MC questions, treating the task as multiple choice
classification. Given a question q ∈ l with answer
options ai and background knowledge K, we pass
the following sequence s to the transformer:

seq(K,QAi) = [CLS]K[SEP ]QAi[SEP ] (1)

with QAi = [q, ai]. Similarly, for true/false ques-
tions we explore the relation between a question

q and a sentence ls. Overloading the previous
method, s is obtained as:

seq(q, ls) = [CLS]q[SEP ]ls[SEP ] (2)

A transformer T will produce one vector for
each token in s, including [CLS], whose vector
we denote as T[CLS](s), which we use as a pooled
representation of the whole sequence.

4 Proposed Method

Figure 1 shows our two-stage process to answer
text and diagram MC questions. First, for each
question we propose different retrievers to extract
relevant language and visual background knowl-
edge from the textbook. Note that we consider
both approaches based on conventional information
retrieval techniques and approaches that leverage
transformers pre-trained on specific tasks.

During training, the retrieved background is pro-
vided along with the question and candidate an-
swers to our solvers. Also during execution, pro-
viding the potential to “read” such knowledge and
apply it to the question. We ensemble different
solvers resulting from fine-tuning one or several
transformers on a multiple choice classification
task, which can be combined with others based e.g.
on information retrieval.

For text and diagram MC questions, each
transformer-based solver results from training the
MCC task on the text passages produced by one of
the text retrieval methods. Since each text retriever
produces a different but complementary dataset of
background text passages, the resulting solvers also
complement each other, motivating their combina-
tion as an ensemble. In addition, for the visual
part we apply BUTD attention as shown in figure 2.
For true/false questions we follow an analogous
two-stage process, in this case fine-tuning our trans-
formers on a text entailment task.

4.1 Background knowledge retrieval
Information retrieval techniques to obtain back-
ground information from the text are usually
keyword-based and potentially oblivious of the dif-
ferent artifacts of language, such as morphological
variations, conjugations, terms that may be seman-
tically related to the question, synonyms, hyper-
nyms or multi-word expressions, which are partic-
ularly frequent in the domains of the TQA dataset.
To address such shortcomings, we extend classic
information retrieval approaches with pre-trained
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Figure 1: Overview of the proposed TQA model for text and diagram MC. Left: background retrieval stage.
Right: Text and Diagram MC solvers are trained using transformers and BUTD. Flames indicate the underlying
transformer is fine-tuned for the task at hand. Ice denotes the opposite. Dashed lines only apply for diagram MC.

models that leverage the language understanding
capabilities of transformer language models. This
results in three text background retrievers:

Information Retrieval (IR) The IR method
searches the whole TQA dataset to see if question
q along with an answer option is explicitly stated
in the corpus. For each answer option ai, we con-
catenate q and ai and run the query against a search
engine like ElasticSearch. Based on the search en-
gine score, we take the top n sentences (n = 10)
resulting from the query, where each sentence has
at least one overlapping, non-stop word with ai.
This ensures that all sentences have some relevance
to both q and ai, while maximizing recall. Then,
we concatenate the selected sentences following
their ranking to compose a text passage with the
desired background knowledge.

Next Sentence Prediction (NSP). We imple-
ment this retriever by treating the task as next sen-
tence prediction using a transformer T with frozen
weights. For each triple (q, ai, lsj) we produce
a sequence sij = seq([q, ai], lsj), where q is a
question, ai one of its possible answers, and lsj
a sentence in lesson l. We pass it to T and take
the probability that lsj can be semantically derived
from the statement that ai is the answer of q, with
label isNext. Then, we rank the sentences based
on such value, take the top n sentences, and return
the passage resulting from their concatenation.

Nearest Neighbors (NN). For each question
and candidate answer pair q, ai and sentence lsj
in lesson l, we obtain their vector representations
Ci = T[CLS]([q, ai]) and Cj = T[CLS](lsj). We
calculate the cosine similarity between them, take
the top n sentences based on their similarity score,

and concatenate them as a single paragraph.
Diagram retrieval. In addition to text, we

also retrieve background diagrams. To this pur-
pose, we pass the question and lesson diagrams
through a ResNet-101 network pre-trained on Ima-
geNet (Deng et al., 2009). We calculate the cosine
similarity between the resulting features and select
the lesson diagram closest to the question diagram.

4.2 Solvers

The ISAAQ solvers result from the combination
of three main components: i) the specific mod-
els used to address each TQA question type as a
particular sub-task within the overall model, ii) the
underlying transformer language model, and iii) the
background information associated to each ques-
tion used to train the solver. Here we focus on the
first of such components for the different types of
questions in the TQA dataset: true/false, text, and
diagram MC questions.

True/False Questions. We address true/false
questions as an entailment task, where question q
corresponds to the hypothesis and the premise is
a sentence lsi, with q, lsi ∈ lesson l. Such task is
modeled as sequence classification, using a pre-
trained transformer T . For each lsi, sequence
si = seq(q, lsi) is passed to the sequence clas-
sification model, obtaining a 2 − d logit vector.
The answer, with possible labels true or false,
is computed as the output of a binary classifier,
trained by minimizing the negative log-likelihood
of the correct answer produced by a softmax layer.

Text MC Questions. This solver aims to select
the answer to question q amongst several answer
options ai, where the retrieved background knowl-
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edge for q and ai is a passage p. To this purpose
we use a pre-trained transformer T to implement a
multiple choice classification model. For each ai,
we pass the input sequence si = seq(p, [q, ai]) and
obtain and N − d logit vector, with N the number
of answer options. The answer to q is the output of
a multi-class classifier, also trained by minimizing
the negative log-likelihood of the correct answer.

Diagram MC Questions
Since diagram questions involve both text and

diagrams, we need to address both branches in our
model and merge them in order to answer the ques-
tion based on both text and visual information (see
figure 2). To encode the text part, we follow the
same approach as with text MC questions. For the
visual part, instead of using the feature map of the
diagram produced by a convolutional neural net-
work, we apply BUTD attention (Anderson et al.,
2018) to take the features of the regions of interest
(RoI) detected bottom-up in the diagram and then
apply top-down attention on the question.

Each RoI rj ∈ {r1 . . . rm} is represented by two
vectors: a visual feature vector fj with dimension-
ality df = 1000 and a positional vector pj with
dimensionality dp containing 4 bounding box coor-
dinates. In contrast to directly using the feature vec-
tor fj as in (Anderson et al., 2018) and in line with
other work like (Tan and Bansal, 2019), we learn
an embedding vj of dimensionality dv = 1024:

f̂j = LayerNorm(WF , fj + bf )

p̂j = LayerNorm(WP , pj + bP )

vj = (f̂j + p̂j)/2

(3)

To extract RoIs and their positional informa-
tion we fine-tune YOLO (Redmon et al., 2015)
on AI2D (Kembhavi et al., 2016), a dataset with
TQA-style diagrams annotated with position and
region type. The visual features vj of each RoI
detected bottom-up by YOLO are also made to at-
tend top-down to the representation of question q,
its background knowledge p and answer options
ai, produced by a transformer language model T
(figure 2). ∀ai we provide T with input si =
seq(p, [q, ai]) and obtain Ci = T[CLS](s) ∈ RH , a
pooled representation of si. We generate an unnor-
malized top-down attention weight aij for each m
diagram RoI feature vector vj as:

aij = wT
a ga([vj , Ci]) (4)

where wa ∈ RH is a learned vector. We im-
plement the learned non-linear transformation g

as a gated hyperbolic tangent activation (Dauphin
et al., 2017). The normalized attention weight and
attended image feature v̂i for each option ai are:

αij = softmax(aij)

v̂i =

m∑
j=1

αijvj
(5)

The distribution ŷ over the possible outputs is:

ŷ = softmax(UWu) (6)

where U ∈ RNxH is a matrix of ui vectors, withN
the number of answer options ai, and Wu ∈ RH a
learned parameter vector. Each vector ui is a joint
representation of the question and the diagram for
answer option ai, where ui = Ci ◦ v̂i .

4.3 Ensemble
The choice of a specific background retriever may
have a significant impact in the overall performance
of each solver after training. Transformer-based
background retrieval methods have deeper lan-
guage understanding capabilities than those based
on classic information retrieval approaches. How-
ever, they are also more computationally demand-
ing. This has implications in terms of the textbook
range that each retriever can reasonably cover. To
address such trade-off we use information retrieval
methods to extract background sentences from the
whole textbook, knowing they may not be as ac-
curate, while transformer-based methods focus on
the lesson of the question to be answered, which
potentially contains more relevant information.

We train our solvers using variations of the back-
ground knowledge provided by the different re-
trieval methods. Then, for each question type, we
combine the resulting solvers in a single ensemble.
Our ensemble algorithm is based on the two-step
approach proposed in (Clark et al., 2019) to pro-
duce a combined score in [0, 1]. In the first step,
each solver s is calibrated by learning a logistic
regression classifier from each answer option to a
correct/incorrect label. Like (Clark et al., 2019),
we also calibrate on the training set. The features
for answer option ai include the raw score si and
its value across all question options, normalized
with a softmax. This step returns a calibrated score
per solver s and option ai. The second step uses
the calibrated scores as the input to another logistic
regression classifier whose output is the ensemble
score for each ai.
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Figure 2: Overview of solver architecture for diagram questions, including BUTD attention.

5 Experiments and Results

5.1 Experimental settings

Our approach is rather frugal in terms of hardware.
All training and evaluation has been done on a sin-
gle server with 32GB of RAM, 1TB SSD and a
single GPU GeForce RTX 2080 Ti. ISAAQ solvers
have been implemented1 using the Transformers
library2 and RoBERTa large. We apply Pareto to
select maximum input sequences of 64 tokens for
true/false questions and 180 for text and diagram
MC. For text background retrieval we use a pre-
trained BERT-base model. We train each TQA
sub-task during 4 epochs and pick the epoch with
the best accuracy. We take Adam (Kingma and
Ba, 2014) with linearly-decayed learning-rate and
warm-up as in (Devlin et al., 2018) and empirically
select peak learning rates in the range [1e−6, 5e−5],
with 1e−5 for true/false and text MC questions
and 1e−6 for diagram MC. Similarly, we choose a
dropout value of 0.1 at the exit of the transformer.
Training time per epoch is 1’ for true/false ques-
tions, 30’ for text MC, and 60’ for diagram MC.

For diagram encoding, we pass each RoI to a pre-
trained ResNet-101 (He et al., 2016) backbone. We
have experimented with other visual models like
VGG (Simonyan and Zisserman, 2015) with similar
results. Unlike (Tan and Bansal, 2019) and (An-
derson et al., 2018), who used Faster R-CNN (Ren
et al., 2017) on natural images, we choose YOLO to
extract RoIs from TQA diagrams. After fine-tuning
on AI2D, YOLO outperformed Faster R-CNN with
a test set accuracy of 81.2% vs 79.22%. Both re-
sults suggest around 20% margin for additional
improvement in RoI selection. We apply Pareto to
fix the maximum number of regions to 32 and fine-
tune YOLO on AI2D with standard parameters3

for 242 epochs and initial learning rate 1e−4.

1Models, source code, and examples are available at
https://github.com/expertailab/isaaq

2https://huggingface.co/transformers
3https://github.com/ultralytics/yolov3

5.2 Language and visual pre-training

We pre-train our text MC question solvers on sev-
eral datasets (table 3), including some not specific
of science. The resulting fine-tuned transformer
is also used to train the true/false solvers. We
follow common practice in multi-step fine-tuning,
with some variations in the usual order based on
dataset size. First, we fine-tune on the training set
of RACE (Sun et al., 2019), a challenging set of En-
glish comprehension MC exams given in Chinese
middle and high schools. Then we continue with
the training sets of a collection of scientific MC
question datasets: ARC (Clark et al., 2018), both
Easy and Challenge, and OpenBookQA (Mihaylov
et al., 2018). Finally, we fine-tune the result of the
previous step on the TQA training set for text and
diagram MC. Peak learning rates are 1e−6 for the
first fine-tuning step and 1e−5 for the second.

We pre-train our diagram MC question solvers
on the training sets of VQA abstract scenes and
VQA, the latter being the largest visual resource
available with support for MC questions and
diagram-style images. The size of such datasets
is still far from natural image datasets like Visual
Genome or MS COCO. Also, note that AI2D is
annotated for generic diagram constituents (blob,
arrow, arrow head, text), i.e. it does not observe se-
mantic visual categories like cloud, tree or mammal.
Nor does AI2D annotate parts of diagram blobs,
like the different layers of Earth or the organelles
in a cell, which suggests further room for improve-
ment. We train on VQA and AI2D with learning
rate 1e−6 for 4 and 12 epochs, respectively.

5.3 Main results

Table 2 shows the results (% accuracies) obtained
by ISAAQ in true/false, text and diagram MC. Fig-
ure 3 shows the ratio of correct vs. incorrectly
answered questions per question type and subject
matter. Results are very similar across all domains,
with a slight preference for Physical sciences.

Since most previous approaches did not report

https://github.com/expertailab/isaaq
https://huggingface.co/transformers
https://github.com/ultralytics/yolov3
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Partition

Dataset Train Dev Test Total

RACE 87,866 4,887 4,934 97,687
ARC-Easy 2,251 570 2,376 5,197
ARC-Challenge 1,119 299 1,172 2,590
OpenBookQA 4,957 500 500 5,957

VQA (abs. scenes) 60,000 30,000 60,000 150,000
AI2D 7,824 906 978 9,708

TQA 15,154 5,309 5,797 26,260

Table 1: Dataset partition sizes (#questions).

Figure 3: ISAAQ hits (darker) vs. misses (lighter).

on the test set, here we focus on validation. ISAAQ
outperforms all other systems in all question types,
establishing by a large margin a new SotA in TQA.
We include a baseline using RoBERTa and a VQA
model which, unlike ISAAQ, does not apply e.g.
fine-tuning on related datasets or ensembling. This
baseline outperforms all previous approaches, illus-
trating the benefits of applying transformers to this
problem. However, ISAAQ clearly beats it in all
question types, particularly in diagram MC, with a
14% improvement that demonstrates how ISAAQ
successfully incorporates visual information into
the transformer. On the other hand, our results also
confirm the complexity of diagram MC compared
to the other question types, suggesting future work
in language-visual understanding. Finally, ISAAQ
also obtains excellent results in all the datasets used
for pre-training (table 3), confirming that our ap-
proach is robust and generalizes well.

To obtain a deeper understanding of ISAAQ’s
reasoning ability we focus on ARC-Challenge,
which only contains questions that neither retrieval
nor co-occurrence methods can answer correctly.
We run ISAAQ on a sample of 203 text MC ques-
tions manually annotated by (Boratko et al., 2018)
against 7 knowledge and 9 reasoning types. Since
these questions were extracted from the ARC-
Challenge training set, for this experiment we pre-
viously removed them from the pre-training of our
model. Figure 4 shows how the results we obtain
for each reasoning type are in general in line with

our overall results in the ARC-Challenge test set
(60.34%). We also notice an interesting spike in
analogical reasoning, featured in (Kembhavi et al.,
2017) as a key reasoning type in TQA, with 90% ac-
curacy. This is consistent with the findings reported
by (Clark et al., 2019, 2020) on the reasoning abil-
ity of transformer language models.

Figure 4: ISAAQ performance per reasoning type.

5.4 Ablation study

We drill down on the results reported in table 2 in
order to understand the contribution of each solver
to the ISAAQ ensemble, both in the validation and
test sets. Tables 4, 5, and 6 show the individual
results of such solvers for true/false, text, and di-
agram MC questions. For each sub-task, the dif-
ferences between solvers result mainly from the
background information used for training, which
was produced by different retrievers (section 4.1).

In addition to RoBERTa large we experimented
with BERT large, adding 3 more solvers to the
true/false and MC ensembles. However, the added
gain was extremely limited. Replacing BERT with
RoBERTa large without pre-training on the datasets
shown in table 3 had similar effect. Thus, we opted
for the 3-way ensembles shown in the tables.

Tables 5 and 6 show how the solvers based on
transformers clearly outperform an information re-
trieval baseline (IR), which is itself already on par
with the former TQA SotA (Kim et al., 2019) for
text MC questions and clearly better for diagram
MC. Each of the true/false, text MC, and diagram
MC solvers perform similarly in their respective
question type sub-tasks. They are also complemen-
tary: in average, 33.41% of the questions answered
incorrectly by one of the solvers is correctly ad-
dressed by another. Such complementarity brings
an extra performance boost by combining the dif-
ferent solvers in each sub-task as an ensemble.

While the results obtained for text MC questions
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Model Text T/F Text MC Text All Diagram MC All

Random - 50.10 22.88 33.62 24.96 29.08
MemN+VQA

(Kembhavi et al., 2017)
50.50 31.05 38.73 31.82 35.11

MemN+DPG 50.50 30.98 38.69 32.83 35.62
BiDAF+DPG 50.40 30.46 38.33 32.72 35.39
FCC+Vecsigrafo (Gomez-Perez and Ortega, 2019) - 36.56 - 35.30 -
IGMN (Li et al., 2018) 57.41 40.00 46.88 36.35 41.36
f-GCN1+SSOC (Kim et al., 2019) 62.73 49.54 54.75 37.61 45.77

RoBERTa+VQA 76.85 62.81 68.38 41.14 54.09
ISAAQ 81.36 71.11 75.16 55.12 64.66

Table 2: ISAAQ performance and comparison (validation set) with previous SotA for the TQA dataset.

Dataset ISAAQ SotA

RACE 71.63 90.90 (Shoeybi et al., 2019)
OBQA 83.60 86.00

(Khashabi et al., 2020)ARC-Easy 83.51 85.70
ARC-Cha. 60.34 75.60

VQA abs. 64.75 74.37 (Teney et al., 2017)
AI2D 73.29 38.47 (Kembhavi et al., 2016)

Table 3: ISAAQ vs. SotA in pre-training datasets (test).

Dataset TFIR TFNSP TFNN ISAAQ

validation 78.26 76.25 79.16 81.36
test 77.74 74.89 75.44 78.83

Table 4: Results of each of our solvers and the overall
ISAAQ model for TQA true/false questions.

do not seem to depend on the specific split, for
true/false and diagram MC questions we obtain
clearly better results in the validation set compared
to the test set. This emphasizes the heterogeneity of
the TQA splits and how challenging it is to produce
a model that generalizes well across them.

Looking at the incremental analysis of our di-
agram MC model in table 7, visual information
only enters into play once pre-training on VQA
and AI2D is added, outperforming the text base-
line. Additional background diagrams adds a little
in test. BUTD attention does improve consider-
ably in both validation and test, but not much more
than using just bottom-up (BU) attention. The final
ISAAQ model is a 6-way ensemble that combines
the transformer-based solvers for text MC (table 5)

Dataset IR TMCIR TMCNSP TMCNN ISAAQ

validation 47.91 67.52 68.63 64.64 71.11
test 48.31 68.94 67.19 65.31 72.06

Table 5: Individual text MC solvers and ISAAQ. Note
the large delta vs. IR solver baseline (also in table 6).
Pre-training on RACE, OBQA, ARC-Easy/Challenge.

Dataset IR DMCIR DMCNSP DMCNN ISAAQ

validation 39.12 53.83 52.14 51.28 55.12
test 32.57 50.50 50.84 51.08 51.81

Table 6: Individual diagram MC solvers and ISAAQ.
Pre-training on VQA abstract scenes and AI2D.

and diagram MC (table 6) and uses VQA+AI2D
pre-training and BUTD. These results indicate in-
teresting challenges yet to be addressed.

Model Val. acc. Test acc.

text (w/o pre-training) 46.67 39.79
text 53.22 46.82

text+visual (w/o pre-training) 51.31 47.34
text+visual 53.54 51.32
text+visual+background diagram 53.47 51.84
text+visual+BU attention 53.93 51.60
text+visual+BUTD attention 54.26 52.15

ISAAQ 55.12 51.81

Table 7: ISAAQ ablations for diagram MC.

6 Qualitative study

Table 8 illustrates the impact of the different levels
of attention on the question diagram, previously
quantified in table 7. The first column shows ques-
tion and answer options, while the second adds
the question diagram. Third column illustrates the
RoIs extracted through BU attention and the fourth
adds attention heatmaps using BUTD. While BU
assigns equal attention to all RoIs, BUTD also at-
tends to the text of the question and each possible
answer. For all the example questions, only the
model with BUTD produces the correct answer.

Some observations follow. RoI detection (col-
umn three) fails to detect inner shapes in nested
diagrams, e.g. state of matter, question four. The
intensity of BUTD attention (column four) is rather
low, with maximum values between 0.08 and 0.2 in
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Question Diagram Diagram MC+BU Diagram MC+BUTD

Which of the following
layers comprises mineral
particles?

a) bedrock
b) subsoil
c) surface layers
d) topsoil X

Which phase is shown in
the picture below?

a) mitosis X
b) prophase
c) interphase
d) mitotic

Which lamps would turn
on if switch is connected?

a) b X
b) a
c) a, b, c
d) c

In which state does the
substance hold shape?

a) solid X
b) liquid
c) gas
d) none

Table 8: Study of the attention on question diagrams (red stands for higher attention). Samples from validation set.

a 0 to 1 scale, suggesting an opportunity to improve
the cross-modal aspects of our model. When the
text of the correct answer (topsoil, solid) appears
explicitly in the diagram, its RoI is generally more
attended than the rest. Other times, the RoI labeled
by such text (switch) is the warmest. ISAAQ seems
to attend to aspects of the diagrams that are key to
answer correctly, suggesting both language and vi-
sual understanding: the two cells resulting from the
original one through mitosis, the circuit segment
where a lamp flashes upon switch actuation or the
properties of the state in which a substance holds
shape. Other examples seem to indicate some abil-
ity to deal with counting and spatial reasoning. All
will deserve further investigation in future work.

7 Conclusion

This paper reports on ISAAQ, the first system to
achieve accuracies above 80%, 70% and 55% on
TQA true/false, text and diagram MC questions.
ISAAQ demonstrates that it is possible to master

the grand AI challenge of machine textbook under-
standing based on modern methods for language
and visual understanding, with modest infrastruc-
ture requirements. Key to this success are trans-
formers, BUTD attention, pre-training on related
datasets, and the selection of complementary back-
ground information to train and ensemble different
solvers. Our approach allowed overcoming critical
challenges like the complexity and relatively small
size of the TQA dataset or the scarcity of large
diagram datasets. Still, further research is neces-
sary to keep pushing the boundaries of textbook
understanding, e.g. by charting and expanding the
reasoning skills of transformers, making model out-
comes more interpretable by humans, and further
exploiting diagrams. Additional effort will also be
needed in activities like the development of large
diagram datasets, including the semantic annota-
tion of diagram constituents and connectors, and
annotating diagram questions with the reasoning
and knowledge types required to answer them.
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